1
|
Młynarczyk MA, Domian N, Kasacka I. Evaluation of the Canonical Wnt Signaling Pathway in the Hearts of Hypertensive Rats of Various Etiologies. Int J Mol Sci 2024; 25:6428. [PMID: 38928134 PMCID: PMC11204257 DOI: 10.3390/ijms25126428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Wnt/β-catenin signaling dysregulation is associated with the pathogenesis of many human diseases, including hypertension and heart disease. The aim of this study was to immunohistochemically evaluate and compare the expression of the Fzd8, WNT1, GSK-3β, and β-catenin genes in the hearts of rats with spontaneous hypertension (SHRs) and deoxycorticosterone acetate (DOCA)-salt-induced hypertension. The myocardial expression of Fzd8, WNT1, GSK-3β, and β-catenin was detected by immunohistochemistry, and the gene expression was assessed with a real-time PCR method. In SHRs, the immunoreactivity of Fzd8, WNT1, GSK-3β, and β-catenin was attenuated in comparison to that in normotensive animals. In DOCA-salt-induced hypertension, the immunoreactivity of Fzd8, WNT1, GSK-3β, and β-catenin was enhanced. In SHRs, decreases in the expression of the genes encoding Fzd8, WNT1, GSK-3β, and β-catenin were observed compared to the control group. Increased expression of the genes encoding Fzd8, WNT1, GSK-3β, and β-catenin was demonstrated in the hearts of rats with DOCA-salt-induced hypertension. Wnt signaling may play an essential role in the pathogenesis of arterial hypertension and the accompanying heart damage. The obtained results may constitute the basis for further research aimed at better understanding the role of the Wnt/β-catenin pathway in the functioning of the heart.
Collapse
Affiliation(s)
| | | | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (M.A.M.); (N.D.)
| |
Collapse
|
2
|
Koraćević G, Mićić S, Stojanović M, Zdravkovic M, Simić D, Kostić T, Atanasković V, Janković-Tomašević R. Beta-blockers in Hypertensive Left Ventricular Hypertrophy and Atrial Fibrillation Prevention. Curr Vasc Pharmacol 2024; 22:19-27. [PMID: 38031765 DOI: 10.2174/0115701611264647231110101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Hypertensive left ventricular hypertrophy (HTN LVH) is a key risk factor for atrial fibrillation (AF). OBJECTIVE To evaluate the possible role of beta-blockers (BBs) in addition to a renin-angiotensinaldosterone system (RAAS) blocker in AF prevention in patients with HTN LVH. METHODS We performed a PubMed, Elsevier, SAGE, Oxford, and Google Scholar search with the search items 'beta blocker hypertension left ventricular hypertrophy patient' from 2013-2023. In the end, a 'snowball search', based on the references of relevant papers as well as from papers that cited them was performed. RESULTS HTN LVH is a risk factor for AF. In turn, AF substantially complicates HTN LVH and contributes to the genesis of heart failure (HF) with preserved ejection fraction (HFpEF). The prognosis of HFpEF is comparable with that of HF with reduced EF (HFrEF), and, regardless of the type, HF is associated with five-year mortality of 50-75%. The antiarrhythmic properties of BBs are wellrecognized, and BBs as a class of drugs are - in general - recommended to decrease the incidence of AF in HTN. CONCLUSION BBs are recommended (as a class) for AF prevention in several contemporary guidelines for HTN. LVH regression in HTN - used as a single criterion for the choice of antihypertensive medication - does not capture this protective effect. Consequently, it is worth studying how meaningful this antiarrhythmic action (to prevent AF) of BBs is in patients with HTN LVH in addition to a RAAS blocker.
Collapse
Affiliation(s)
- Goran Koraćević
- Department of Cardiovascular Diseases, University Clinical Center Niš, Serbia
- Faculty of Medicine, Niš University, Serbia
| | - Sladjana Mićić
- Department of Nephrology, University Clinical Center Niš, Serbia
| | | | - Marija Zdravkovic
- Department of Cardiology, University Hospital Medical Center Bežanijska kosa and Faculty of Medicine, University of Belgrade, Serbia
| | - Dragan Simić
- Department of Cardiovascular Diseases, University Clinical Center Belgrade, Serbia
| | - Tomislav Kostić
- Department of Cardiovascular Diseases, University Clinical Center Niš, Serbia
- Faculty of Medicine, Niš University, Serbia
| | - Vesna Atanasković
- Department of Cardiovascular Diseases, University Clinical Center Niš, Serbia
| | | |
Collapse
|
3
|
Tunedal K, Viola F, Garcia BC, Bolger A, Nyström FH, Östgren CJ, Engvall J, Lundberg P, Dyverfeldt P, Carlhäll CJ, Cedersund G, Ebbers T. Haemodynamic effects of hypertension and type 2 diabetes: Insights from a 4D flow MRI-based personalized cardiovascular mathematical model. J Physiol 2023; 601:3765-3787. [PMID: 37485733 DOI: 10.1113/jp284652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Type 2 diabetes (T2D) and hypertension increase the risk of cardiovascular diseases mediated by whole-body changes to metabolism, cardiovascular structure and haemodynamics. The haemodynamic changes related to hypertension and T2D are complex and subject-specific, however, and not fully understood. We aimed to investigate the haemodynamic mechanisms in T2D and hypertension by comparing the haemodynamics between healthy controls and subjects with T2D, hypertension, or both. For all subjects, we combined 4D flow magnetic resonance imaging data, brachial blood pressure and a cardiovascular mathematical model to create a comprehensive subject-specific analysis of central haemodynamics. When comparing the subject-specific haemodynamic parameters between the four groups, the predominant haemodynamic difference is impaired left ventricular relaxation in subjects with both T2D and hypertension compared to subjects with only T2D, only hypertension and controls. The impaired relaxation indicates that, in this cohort, the long-term changes in haemodynamic load of co-existing T2D and hypertension cause diastolic dysfunction demonstrable at rest, whereas either disease on its own does not. However, through subject-specific predictions of impaired relaxation, we show that altered relaxation alone is not enough to explain the subject-specific and group-related differences; instead, a combination of parameters is affected in T2D and hypertension. These results confirm previous studies that reported more adverse effects from the combination of T2D and hypertension compared to either disease on its own. Furthermore, this shows the potential of personalized cardiovascular models in providing haemodynamic mechanistic insights and subject-specific predictions that could aid in the understanding and treatment planning of patients with T2D and hypertension. KEY POINTS: The combination of 4D flow magnetic resonance imaging data and a cardiovascular mathematical model allows for a comprehensive analysis of subject-specific haemodynamic parameters that otherwise cannot be derived non-invasively. Using this combination, we show that diastolic dysfunction in subjects with both type 2 diabetes (T2D) and hypertension is the main group-level difference between controls, subjects with T2D, subjects with hypertension, and subjects with both T2D and hypertension. These results suggest that, in this relatively healthy population, the additional load of both hypertension and T2D affects the haemodynamic function of the left ventricle, whereas each disease on its own is not enough to cause significant effects under resting conditions. Finally, using the subject-specific model, we show that the haemodynamic effects of diastolic dysfunction alone are not sufficient to explain all the observed haemodynamic differences. Instead, additional subject-specific variations in cardiac and vascular function combine to explain the complex haemodynamics of subjects affected by hypertension and/or T2D.
Collapse
Affiliation(s)
- Kajsa Tunedal
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Federica Viola
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Belén Casas Garcia
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Ann Bolger
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Fredrik H Nyström
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Carl Johan Östgren
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Division of Prevention, Rehabilitation and Community Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Jan Engvall
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Physiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiation Physics, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Petter Dyverfeldt
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Carl-Johan Carlhäll
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Physiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Tino Ebbers
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
The Traditional Chinese Medicine Gedan Jiangya Decoction Alleviates Left Ventricular Hypertrophy via Suppressing the Ras/ERK1/2 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6924197. [PMID: 36437833 PMCID: PMC9699742 DOI: 10.1155/2022/6924197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022]
Abstract
Gedan Jiangya Decoction (GJD), a Chinese herbal medicine composed of six botanical medicines, was designed to treat hypertension (patent published number (CN114246896A)). The overexpression of the ERK (extracellular signal-regulated kinase) signaling pathway is essential in developing left ventricular hypertrophy (LVH). This study aimed to evaluate GJD's effects on LVH in spontaneously hypertensive rats (SHRs) and examine its potential mechanisms on Ras/ERK1/2 pathway regulation. Thirty-five ten-week-old SHRs were randomly assigned to one of five groups: GJD low dosage, medium dose, high dose, model, and captopril. Wistar–Kyoto (WKY) rats served as the control group. All rats received a 6-week treatment. The following parameters were measured: systolic (SBP) and diastolic blood pressure (DBP), left ventricular mass index (LVMI), and serum TGF-beta1. The pathologic structure was determined by H & E staining and Masson. TGF-beta1, Ras, ERK1/2, and C-Fos levels were determined using western blotting and real-time qPCR. SBP, DBP, and LVMI were reduced significantly in the GJD group compared with the model group. GJD inhibited TGF-beta1, Ras, ERK1/2, and C-Fos expression in LVH. In conclusion, GJD reduced the Ras/ERK1/2 pathway expression, which decreased hypertension-induced heart hypertrophy. GJD may protect hypertension-induced myocardial hypertrophy by altering gene expression patterns in the heart.
Collapse
|
5
|
Anik MI, Mahmud N, Masud AA, Khan MI, Islam MN, Uddin S, Hossain MK. Role of Reactive Oxygen Species in Aging and Age-Related Diseases: A Review. ACS APPLIED BIO MATERIALS 2022; 5:4028-4054. [PMID: 36043942 DOI: 10.1021/acsabm.2c00411] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research on the role of reactive oxygen species (ROS) in the aging process has advanced significantly over the last two decades. In light of recent findings, ROS takes part in the aging process of cells along with contributing to various physiological signaling pathways. Antioxidants being cells' natural defense mechanism against ROS-mediated alteration, play an imperative role to maintain intracellular ROS homeostasis. Although the complete understanding of the ROS regulated aging process is yet to be fully comprehended, current insights into various sources of cellular ROS and their correlation with the aging process and age-related diseases are portrayed in this review. In addition, results on the effect of antioxidants on ROS homeostasis and the aging process as well as their advances in clinical trials are also discussed in detail. The future perspective in ROS-antioxidant dynamics on antiaging research is also marshaled to provide future directions for ROS-mediated antiaging research fields.
Collapse
Affiliation(s)
- Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Niaz Mahmud
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Md Nurul Islam
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Shihab Uddin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - M Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan
| |
Collapse
|
6
|
Młynarczyk M, Kasacka I. The role of the Wnt / β-catenin pathway and the functioning of the heart in arterial hypertension - A review. Adv Med Sci 2022; 67:87-94. [PMID: 35101653 DOI: 10.1016/j.advms.2022.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
Abstract
Many factors and molecular pathways are involved in the pathogenesis of arterial hypertension. The increase in blood pressure may be determined by the properties of specific gene products and their associated action with environmental factors. In recent years, much attention has been paid to the Wnt/β-catenin signaling pathway which is essential for organ damage repair and homeostasis. Deregulation of the activity of the Wnt/β-catenin pathway may be directly or indirectly related to myocardial hypertrophy, as well as to cardiomyocyte remodeling and remodeling processes in pathological states of this organ. There are reports pointing to the role of the Wnt/β-catenin pathway in the course and development of organ complications in conditions of arterial hypertension. This paper presents the current state of knowledge of the role of the Wnt/β-catenin pathway in the regulation of arterial pressure and its impact on the physiology and the development of the complications of arterial hypertension in the heart.
Collapse
Affiliation(s)
- Maryla Młynarczyk
- Department of Histology and Cytophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
7
|
Gue YX, Lip GYH. Hypertension and atrial fibrillation: Closing a virtuous circle. PLoS Med 2021; 18:e1003598. [PMID: 34061832 PMCID: PMC8168876 DOI: 10.1371/journal.pmed.1003598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ying Gue and Gregory Lip discuss the accompanying study by Ana-Catarina Pinho-Gomes and co-workers on blood pressure lowering treatment in patients with atrial fibrillation.
Collapse
Affiliation(s)
- Ying X. Gue
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
8
|
Koracevic G, Stojanovic M, Lovic D, Zdravkovic M, Sakac D. Certain beta blockers (e.g., bisoprolol) may be reevaluated in hypertension guidelines for patients with left ventricular hypertrophy to diminish the ventricular arrhythmic risk. J Hum Hypertens 2021; 35:564-576. [PMID: 33654234 DOI: 10.1038/s41371-021-00505-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022]
Abstract
Hypertensive left ventricular hypertrophy (HTN LVH) is associated with almost threefold increased risk of ventricular tachycardia (VT)/ventricular fibrillation (VF). Furthermore, HTN LVH increases the risk of sudden cardiac death (SCD). The reverse LV remodeling due to efficient antihypertensive therapy lowers the incidence rates of cardiovascular events and SCD and the vast majority of available arterial hypertension (HTN) guidelines recommend renin angiotensin system (RAS) blockers and calcium channel blockers (CCBs) for HTN LVH aiming for LVH regression. On the other hand, beta blockers (BBs) as a class are not recommended in HTN LVH due to their insufficient capacity to reverse LVH remodeling even though they are recommended as the first-line drugs for prevention/treatment of VT/VF (in general, unrelated to HTN LVH). Moreover, BBs are the best antiarrhythmic (against VT/VF) among antihypertensive drugs. Despite that, BBs are currently not recommended for LVH treatment in HTN Guidelines. It is important to prevent VT/VF in patients at high risk, such as those with HTN LVH. Therefore, certain BBs (such as Bisoprolol) may be reevaluated in guidelines for HTN (in the section of HTN LVH).
Collapse
Affiliation(s)
- Goran Koracevic
- Department for Cardiovascular Diseases, Clinical Center Nis, Nis, Serbia.,Faculty of Medicine, University of Nis, Nis, Serbia
| | | | - Dragan Lovic
- Clinic for Internal Diseases Inter Medica, Nis, Serbia.,Singidunum University, School of Medicine, Belgrade, Serbia
| | - Marija Zdravkovic
- University Hospital Medical Center Bezanijska Kosa, Belgrade, Serbia
| | - Dejan Sakac
- Institute for Cardiovascular Diseases of Vojvodina, Sremska Kamenica & Medical Faculty Novi Sad, Novi Sad, Serbia
| |
Collapse
|