1
|
Yaremenko AV, Pechnikova NA, Porpodis K, Damdoumis S, Aggeli A, Theodora P, Domvri K. Association of Fetal Lung Development Disorders with Adult Diseases: A Comprehensive Review. J Pers Med 2024; 14:368. [PMID: 38672994 PMCID: PMC11051200 DOI: 10.3390/jpm14040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Fetal lung development is a crucial and complex process that lays the groundwork for postnatal respiratory health. However, disruptions in this delicate developmental journey can lead to fetal lung development disorders, impacting neonatal outcomes and potentially influencing health outcomes well into adulthood. Recent research has shed light on the intriguing association between fetal lung development disorders and the development of adult diseases. Understanding these links can provide valuable insights into the developmental origins of health and disease, paving the way for targeted preventive measures and clinical interventions. This review article aims to comprehensively explore the association of fetal lung development disorders with adult diseases. We delve into the stages of fetal lung development, examining key factors influencing fetal lung maturation. Subsequently, we investigate specific fetal lung development disorders, such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), congenital diaphragmatic hernia (CDH), and other abnormalities. Furthermore, we explore the potential mechanisms underlying these associations, considering the role of epigenetic modifications, transgenerational effects, and intrauterine environmental factors. Additionally, we examine the epidemiological evidence and clinical findings linking fetal lung development disorders to adult respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and other respiratory ailments. This review provides valuable insights for healthcare professionals and researchers, guiding future investigations and shaping strategies for preventive interventions and long-term care.
Collapse
Affiliation(s)
- Alexey V. Yaremenko
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Nadezhda A. Pechnikova
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (N.A.P.); (A.A.)
- Saint Petersburg Pasteur Institute, Saint Petersburg 197101, Russia
| | - Konstantinos Porpodis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Savvas Damdoumis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Amalia Aggeli
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (N.A.P.); (A.A.)
| | - Papamitsou Theodora
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Kalliopi Domvri
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
2
|
Guo Y, Li Z, Cheng C. Circ_0035292 knockdown alleviates lipopolysaccharide (LPS)-induced WI-38 cell apoptosis and inflammatory injury. Immun Inflamm Dis 2023; 11:e905. [PMID: 37382271 PMCID: PMC10266152 DOI: 10.1002/iid3.905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Circular RNAs have emerged as important regulators in the pathogenesis of human diseases, including infantile pneumonia (IP). In this study, we aimed to explore the effects of circ_0035292 on lipopolysaccharide (LPS)-treated Wistsar Institute (WI)-38 cells. METHODS Quantitative real-time polymerase chain reaction and western blot were executed to detect the levels of circ_0035292, microRNA-370-3p (miR-370-3p) and transducin β-like 1X related protein 1 (TBL1XR1). Cell counting kit-8, 5-ethynyl-2'-deoxyuridine, and flow cytometry assessed cell proliferation and apoptosis. Concentrations of inflammatory factors were examined with enzyme linked immunosorbent assay kits. Dual-luciferase reporter assay and RNA immunoprecipitation were adopted to analyze binding between miR-370-3p and circ_0035292 or TBL1XR1. RESULTS Circ_0035292 level was increased in IP patients and LPS-triggered WI-38 cells. Circ_0035292 knockdown rescued LPS-mediated WI-38 cell proliferation suppression and WI-38 cell apoptosis and inflammation promotion. Circ_0035292 interacted with miR-370-3p and miR-370-3p directly targeted TBL1XR1. Moreover, miR-370-3p overexpression alleviated LPS-induced WI-38 cell apoptosis and inflammatory injury, which was abrogated via TBL1XR1 upregulation. Circ_0035292 absence inhibited the NF-κB pathway. CONCLUSION Knockdown of circ_0035292 rescued LPS-triggered WI-38 cell injury via miR-370-3p/TBL1XR1 axis and NF-κB pathway.
Collapse
Affiliation(s)
- Ying Guo
- Department of PediatricsWuhan Asia General HospitalWuhan CityHubeiChina
| | - Zhouzhen Li
- Department of PediatricsWuhan Asia General HospitalWuhan CityHubeiChina
| | - Chen Cheng
- Department of PediatricsWuhan Asia General HospitalWuhan CityHubeiChina
| |
Collapse
|
3
|
Zhang X, Chen C, Li B, Lu W. Circ-UQCRC2 aggravates lipopolysaccharide-induced injury in human bronchial epithelioid cells via targeting miR-495-3p/MYD88-mediated inflammatory response and oxidative stress. Autoimmunity 2021; 54:483-492. [PMID: 34499003 DOI: 10.1080/08916934.2021.1975273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Infantile pneumonia is a common inflammatory disease with the infections of various pathogens in lower respiratory tracts. Here, the role and working mechanism of circular RNA (circRNA) ubiquinol-cytochrome c reductase core protein 2 (circ-UQCRC2; hsa_circ_0038467) in infantile pneumonia were investigated. Cell viability, apoptosis, and inflammatory response were assessed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, and enzyme-linked immunosorbent assay (ELISA). Cell oxidative stress was analyzed by measuring the production of malondialdehyde (MDA) and superoxide dismutase (SOD). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were performed to determine the expression of RNAs and proteins. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the interaction between microRNA-495-3p (miR-495-3p) and circ-UQCRC2 or myeloid differentiation primary response protein 88 (MYD88). Lipopolysaccharide (LPS) treatment suppressed the viability while induced the apoptosis, inflammation, and oxidative stress of 16HBE cells in a dose-dependent manner. LPS exposure dose-dependently up-regulated the expression of circ-UQCRC2 in 16HBE cells. Circ-UQCRC2 absence attenuated LPS-induced injury in 16HBE cells. miR-495-3p was a target of circ-UQCRC2, and circ-UQCRC2 silencing-mediated protective effects in LPS-induced 16HBE cells were partly reversed by anti-miR-495-3p. MYD88 was a target of miR-495-3p, and MYD88 overexpression partly counteracted miR-495-3p accumulation-mediated influences in 16HBE cells upon LPS exposure. Circ-UQCRC2 interference decreased the protein expression of MYD88 partly by up-regulating miR-495-3p in LPS-induced 16HBE cells. In conclusion, circ-UQCRC2 contributed to LPS-induced injury of 16HBE cells by targeting miR-495-3p/MYD88 signalling-mediated inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pediatrics, The First College of Clinical Medical Science, China Three Gorges University, Yichang City, Hubei Province, China
| | - Chunbao Chen
- Department of Pediatrics, The First College of Clinical Medical Science, China Three Gorges University, Yichang City, Hubei Province, China
| | - Bei Li
- Department of Pediatrics, The First College of Clinical Medical Science, China Three Gorges University, Yichang City, Hubei Province, China
| | - Wei Lu
- Department of Pediatrics, The First College of Clinical Medical Science, China Three Gorges University, Yichang City, Hubei Province, China
| |
Collapse
|
4
|
Guo R, Zhang L, Meng J. Circular RNA ANKRD36 attends to lipopolysaccharide-aroused MRC-5 cell injury via regulating microRNA-31-3p. Biofactors 2020; 46:391-401. [PMID: 31793082 DOI: 10.1002/biof.1592] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Some circular RNAs (circRNAs) are reported to attend to the pathogenesis of pneumonia. This study tested the impact of circRNA ankyrin repeat domain 36 (circANKRD36) on human embryonic lung fibroblast MRC-5 cell injury irritated by lipopolysaccharide (LPS). METHODS After LPS irritation, viability, apoptosis, ROS, protein, and cytokines, along with circANKRD36 were tested by CCK-8, Annexin V-FITC, DCFH-DA, and ELISA or Western blot. si-circANKRD36 and microRNA-31-3p/5p (miR-31-3p/5p) inhibitor were applied to silence circANKRD36 and miR-31-3p/5p. miR-31-3p/5p mimic was utilized to upregulate miR-31-3p/5p. RT-qPCR was used to detect miRNAs. The relationship between miRNAs and MyD88 or IL-34 was analyzed by luciferase activity reporter assay. RESULTS LPS aroused a decrease in viability, increases in apoptosis, ROS, and IL-6, IL-8, and TNF-α, along with circANKRD36, and activation of NF-κB pathway. Silencing circANKRD36 weakened the above-mentioned influences of LPS. Moreover, silencing circANKRD36 hoisted miR-31-3p expression. Silencing miR-31-3p mitigated the impacts of circANKRD36 silence on LPS-irritated MRC-5 cells. Besides, MyD88 was a downstream target of miR-31-3p, and 3'UTR of IL-34 mRNA was targeted by miR-31-5p. LPS induced the accumulation of MyD88. Silencing MyD88 was constructive to maintain cell viability, retard apoptosis and inhibit adverse oxidation and inflammation. CONCLUSION This research verified that silencing circANKRD36 could weaken LPS-irritated MRC-5 cell injury via regulating miR-31/MyD88-mediated repression of NF-κB pathway.
Collapse
Affiliation(s)
- Rui Guo
- Department of Pediatrics, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Lijuan Zhang
- Department of Pediatrics, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Jingjing Meng
- Department of Pediatrics, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
5
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|