1
|
Thi YVN, Vu TD, Huong NTL, Chu DT. Epigenetic contribution to the relationship between obesity and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:195-213. [PMID: 39179347 DOI: 10.1016/bs.ircmb.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Obesity and cancer are two major health issues all around the world due to their elevated prevalence. Several experimental and epidemiological studies have demonstrated the relationship between obesity and cancer, in which obesity is considered a risk factor for cancer development. The ultimate goal of knowing the epigenetic contribution to the relationship between obesity and cancer is to find the method of intervention or treatment of obesity and cancer. Therefore, providing the most general perspective on epigenetic contribution to the relationship between obesity and cancer is necessary. Obesity is closely related to some common cancers that are currently encountered, including breast, esophagus, liver, kidney, uterus, colorectal, pancreatic, and gallbladder. Obesity has a significant impact that increases the risk of cancer deaths and thereby indirectly affects the choice of treatment. It is estimated that about 4-8% of cancer cases are caused by obesity. In particular, the basic mechanism to understand the relationship between cancer is very complicated and has not been fully understood. This work is aimed at summarizing the current knowledge of the role of epigenetic regulation in the relationship between obesity, and potential applications.
Collapse
Affiliation(s)
- Yen-Vy Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Thuy-Duong Vu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | | | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
2
|
Darmadi D, Chugaeva UY, Saleh RO, Hjazi A, Saleem HM, Ghildiyal P, Alwaily ER, Alawadi A, Alnajar MJ, Ihsan A. Critical roles of long noncoding RNA H19 in cancer. Cell Biochem Funct 2024; 42:e4018. [PMID: 38644608 DOI: 10.1002/cbf.4018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
Long noncoding RNAs (lncRNAs) are a category of noncoding RNAs characterized by their length, often exceeding 200 nucleotides. There is a growing body of data that indicate the significant involvement of lncRNAs in a wide range of disorders, including cancer. lncRNA H19 was among the initial lncRNAs to be identified and is transcribed from the H19 gene. The H19 lncRNA exhibits significant upregulation in a diverse range of human malignancies, such as breast, colorectal, pancreatic, glioma, and gastric cancer. Moreover, the overexpression of H19 is frequently associated with a worse prognosis among individuals diagnosed with cancer. H19 has been shown to have a role in facilitating several cellular processes, including cell proliferation, invasion, migration, epithelial-mesenchymal transition, metastasis, and apoptosis. This article summarizes the aberrant upregulation of H19 in human malignancies, indicating promising avenues for future investigations on cancer diagnostics and therapeutic interventions.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, Indonesia
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hiba Muwafaq Saleem
- Department of Biology, College of Science, University of Anbar, Ramadi, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Hillah, Iraq
| | | | - Ali Ihsan
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
3
|
Jafari S, Motedayyen H, Javadi P, Jamali K, Moradi Hasan-Abad A, Atapour A, Sarab GA. The roles of lncRNAs and miRNAs in pancreatic cancer: a focus on cancer development and progression and their roles as potential biomarkers. Front Oncol 2024; 14:1355064. [PMID: 38559560 PMCID: PMC10978783 DOI: 10.3389/fonc.2024.1355064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most penetrative malignancies affecting humans, with mounting incidence prevalence worldwide. This cancer is usually not diagnosed in the early stages. There is also no effective therapy against PDAC, and most patients have chemo-resistance. The combination of these factors causes PDAC to have a poor prognosis, and often patients do not live longer than six months. Because of the failure of conventional therapies, the identification of key biomarkers is crucial in the early diagnosis, treatment, and prognosis of pancreatic cancer. 65% of the human genome encodes ncRNAs. There are different types of ncRNAs that are classified based on their sequence lengths and functions. They play a vital role in replication, transcription, translation, and epigenetic regulation. They also participate in some cellular processes, such as proliferation, differentiation, metabolism, and apoptosis. The roles of ncRNAs as tumor suppressors or oncogenes in the growth of tumors in a variety of tissues, including the pancreas, have been demonstrated in several studies. This study discusses the key roles of some lncRNAs and miRNAs in the growth and advancement of pancreatic carcinoma. Because they are involved not only in the premature identification, chemo-resistance and prognostication, also their roles as potential biomarkers for better management of PDAC patients.
Collapse
Affiliation(s)
- Somayeh Jafari
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Parisa Javadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kazem Jamali
- Emergency Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Anani Sarab
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
4
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Xia Y, Pei T, Zhao J, Wang Z, Shen Y, Yang Y, Liang J. Long noncoding RNA H19: functions and mechanisms in regulating programmed cell death in cancer. Cell Death Discov 2024; 10:76. [PMID: 38355574 PMCID: PMC10866971 DOI: 10.1038/s41420-024-01832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs with transcript lengths of >200 nucleotides. Mounting evidence suggests that lncRNAs are closely associated with tumorigenesis. LncRNA H19 (H19) was the first lncRNA to function as an oncogene in many malignant tumors. Apart from the established role of H19 in promoting cell growth, proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), and metastasis, it has been recently discovered that H19 also inhibits programmed cell death (PCD) of cancer cells. In this review, we summarize the mechanisms by which H19 regulates PCD in cancer cells through various signaling pathways, molecular mechanisms, and epigenetic modifications. H19 regulates PCD through the Wnt/β-catenin pathway and the PI3K-Akt-mTOR pathway. It also acts as a competitive endogenous RNA (ceRNA) in PCD regulation. The interaction between H19 and RNA-binding proteins (RBP) regulates apoptosis in cancer. Moreover, epigenetic modifications, including DNA and RNA methylation and histone modifications, are also involved in H19-associated PCD regulation. In conclusion, we summarize the role of H19 signaling via PCD in cancer chemoresistance, highlighting the promising research significance of H19 as a therapeutic target. We hope that our study will contribute to a broader understanding of H19 in cancer development and treatment.
Collapse
Affiliation(s)
- Yuyang Xia
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Tianjiao Pei
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Junjie Zhao
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Zilin Wang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Yu Shen
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Yang Yang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
6
|
Chen S, Wang H, Xu P, Dang S, Tang Y. H19 encourages aerobic glycolysis and cell growth in gastric cancer cells through the axis of microRNA-19a-3p and phosphoglycerate kinase 1. Sci Rep 2023; 13:17181. [PMID: 37821504 PMCID: PMC10567772 DOI: 10.1038/s41598-023-43744-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Numerous studies have been conducted on long non-coding RNAs (lncRNAs) in human tumors like gastric cancer (GC). Our research uncovers how aerobic glycolysis and cell proliferation in gastric cancer cells are related to H19. We discovered that H19 was highly expressed in tumor tissues and that patients with higher H19 expression have a poorer prognosis. Intriguingly, we applied the subcellular isolation, luciferase reporter, western blot analysis, MTT, colony formation experiments, and CDX Model in Mice to verify that H19 regulates aerobic glycolysis towards GC cell growth by H19/microRNA (miR)-19a-3p/phosphoglycerate kinase 1 (PGK1) axis. Together, our research offers proof that the H19/miR-19a-3p/PGK1 pathway aids in the regulation of aerobic glycolysis and cell proliferation in GC. This may offer an opportunity for novel therapeutic approaches to the treatment of GC.
Collapse
Affiliation(s)
- Siche Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Haiping Wang
- Department of Emergency Surgery, the Second Hospital of Anhui Medical University, Hefei, 230001, Anhui, China
| | - Peiren Xu
- School of Stomatology, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shengchun Dang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, China.
- Siyang Hospital, Suqian, 223700, Jiangsu, China.
| | - Yongqin Tang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
7
|
Zhang R, Zeng Y, Deng JL. Long non-coding RNA H19: a potential biomarker and therapeutic target in human malignant tumors. Clin Exp Med 2023; 23:1425-1440. [PMID: 36484927 DOI: 10.1007/s10238-022-00947-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs play important roles in cellular functions and disease development. H19, as a long non-coding RNA, is pervasively over-expressed in almost all kinds of human malignant tumors. Although many studies have reported that H19 is closely associated with tumor cell proliferation, apoptosis, invasion, metastasis, and chemoresistance, the role and mechanism of H19 in gene regulation and tumor development are largely unclear. In this review, we summarized the recent progress in the study of the major functions and mechanisms of H19 lncRNA in cancer development and progression. H19 possesses both oncogenic and tumor-suppressing activities, presumably through regulating target gene transcription, mRNA stability and splicing, and competitive inhibition of endogenous RNA degradation. Studies indicate that H19 may involve in cell proliferation and apoptosis, tumor initiation, migration, invasion, metastasis and chemoresistance and may serve as a potential biomarker for early diagnosis, prognosis, and novel molecular target for cancer therapy.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, 230041, People's Republic of China
| | - Ying Zeng
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410008, People's Republic of China
| | - Jun-Li Deng
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China.
| |
Collapse
|
8
|
Eslami M, Khazeni S, Khanaghah XM, Asadi MH, Ansari MA, Garjan JH, Lotfalizadeh MH, Bayat M, Taghizadieh M, Taghavi SP, Hamblin MR, Nahand JS. MiRNA-related metastasis in oral cancer: moving and shaking. Cancer Cell Int 2023; 23:182. [PMID: 37635248 PMCID: PMC10463971 DOI: 10.1186/s12935-023-03022-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
Across the world, oral cancer is a prevalent tumor. Over the years, both its mortality and incidence have grown. Oral cancer metastasis is a complex process involving cell invasion, migration, proliferation, and egress from cancer tissue either by lymphatic vessels or blood vessels. MicroRNAs (miRNAs) are essential short non-coding RNAs, which can act either as tumor suppressors or as oncogenes to control cancer development. Cancer metastasis is a multi-step process, in which miRNAs can inhibit or stimulate metastasis at all stages, including epithelial-mesenchymal transition, migration, invasion, and colonization, by targeting critical genes in these pathways. On the other hand, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), two different types of non-coding RNAs, can regulate cancer metastasis by affecting gene expression through cross-talk with miRNAs. We reviewed the scientific literature (Google Scholar, Scopus, and PubMed) for the period 2000-2023 to find reports concerning miRNAs and lncRNA/circRNA-miRNA-mRNA networks, which control the spread of oral cancer cells by affecting invasion, migration, and metastasis. According to these reports, miRNAs are involved in the regulation of metastasis pathways either by directly or indirectly targeting genes associated with metastasis. Moreover, circRNAs and lncRNAs can induce or suppress oral cancer metastasis by acting as competing endogenous RNAs to inhibit the effect of miRNA suppression on specific mRNAs. Overall, non-coding RNAs (especially miRNAs) could help to create innovative therapeutic methods for the control of oral cancer metastases.
Collapse
Affiliation(s)
- Meghdad Eslami
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Khazeni
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Xaniar Mohammadi Khanaghah
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Asadi
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Amin Ansari
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Hayati Garjan
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Liao J, Chen B, Zhu Z, Du C, Gao S, Zhao G, Zhao P, Wang Y, Wang A, Schwartz Z, Song L, Hong J, Wagstaff W, Haydon RC, Luu HH, Fan J, Reid RR, He TC, Shi L, Hu N, Huang W. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases. Genes Dis 2023; 10:1351-1366. [PMID: 37397543 PMCID: PMC10311118 DOI: 10.1016/j.gendis.2023.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 07/04/2023] Open
Abstract
Recent advances in deep sequencing technologies have revealed that, while less than 2% of the human genome is transcribed into mRNA for protein synthesis, over 80% of the genome is transcribed, leading to the production of large amounts of noncoding RNAs (ncRNAs). It has been shown that ncRNAs, especially long non-coding RNAs (lncRNAs), may play crucial regulatory roles in gene expression. As one of the first isolated and reported lncRNAs, H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis, development, tumorigenesis, osteogenesis, and metabolism. Mechanistically, H19 mediates diverse regulatory functions by serving as competing endogenous RNAs (CeRNAs), Igf2/H19 imprinted tandem gene, modular scaffold, cooperating with H19 antisense, and acting directly with other mRNAs or lncRNAs. Here, we summarized the current understanding of H19 in embryogenesis and development, cancer development and progression, mesenchymal stem cell lineage-specific differentiation, and metabolic diseases. We discussed the potential regulatory mechanisms underlying H19's functions in those processes although more in-depth studies are warranted to delineate the exact molecular, cellular, epigenetic, and genomic regulatory mechanisms underlying the physiological and pathological roles of H19. Ultimately, these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions.
Collapse
Affiliation(s)
- Junyi Liao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bowen Chen
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shengqiang Gao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Medical Scientist Training Program, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ning Hu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Huang
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Baba SK, Baba SK, Mir R, Elfaki I, Algehainy N, Ullah MF, Barnawi J, Altemani FH, Alanazi M, Mustafa SK, Masoodi T, Akil ASA, Bhat AA, Macha MA. Long non-coding RNAs modulate tumor microenvironment to promote metastasis: novel avenue for therapeutic intervention. Front Cell Dev Biol 2023; 11:1164301. [PMID: 37384249 PMCID: PMC10299194 DOI: 10.3389/fcell.2023.1164301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Cancer is a devastating disease and the primary cause of morbidity and mortality worldwide, with cancer metastasis responsible for 90% of cancer-related deaths. Cancer metastasis is a multistep process characterized by spreading of cancer cells from the primary tumor and acquiring molecular and phenotypic changes that enable them to expand and colonize in distant organs. Despite recent advancements, the underlying molecular mechanism(s) of cancer metastasis is limited and requires further exploration. In addition to genetic alterations, epigenetic changes have been demonstrated to play an important role in the development of cancer metastasis. Long non-coding RNAs (lncRNAs) are considered one of the most critical epigenetic regulators. By regulating signaling pathways and acting as decoys, guides, and scaffolds, they modulate key molecules in every step of cancer metastasis such as dissemination of carcinoma cells, intravascular transit, and metastatic colonization. Gaining a good knowledge of the detailed molecular basis underlying lncRNAs regulating cancer metastasis may provide previously unknown therapeutic and diagnostic lncRNAs for patients with metastatic disease. In this review, we concentrate on the molecular mechanisms underlying lncRNAs in the regulation of cancer metastasis, the cross-talk with metabolic reprogramming, modulating cancer cell anoikis resistance, influencing metastatic microenvironment, and the interaction with pre-metastatic niche formation. In addition, we also discuss the clinical utility and therapeutic potential of lncRNAs for cancer treatment. Finally, we also represent areas for future research in this rapidly developing field.
Collapse
Affiliation(s)
- Sana Khurshid Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, India
| | - Sadaf Khursheed Baba
- Department of Microbiology, Sher-I-Kashmir Institute of Medical Science (SKIMS), Soura, Kashmir, India
| | - Rashid Mir
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Fahad Ullah
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Jameel Barnawi
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal H. Altemani
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research Chair Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Alanazi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Tariq Masoodi
- Human Immunology Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Ammira S. Alshabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity, and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity, and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, India
| |
Collapse
|
11
|
Jiang XY, Zhu QC, Zhang XJ, Duan T, Feng J, Sui XB, Sun XN, Mou YP. Roles of lncRNAs in pancreatic ductal adenocarcinoma: Diagnosis, treatment, and the development of drug resistance. Hepatobiliary Pancreat Dis Int 2023; 22:128-139. [PMID: 36543619 DOI: 10.1016/j.hbpd.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, primarily due to its late diagnosis, high propensity to metastasis, and the development of resistance to chemo-/radiotherapy. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are intimately involved in the treatment resistance of pancreatic cancer cells via interacting with critical signaling pathways and may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. DATA SOURCES We carried out a systematic review on lncRNAs-based research in the context of pancreatic cancer and presented an overview of the updated information regarding the molecular mechanisms underlying lncRNAs-modulated pancreatic cancer progression and drug resistance, together with their potential value in diagnosis, prognosis, and treatment of PDAC. Literature mining was performed in PubMed with the following keywords: long non-coding RNA, pancreatic ductal adenocarcinoma, pancreatic cancer up to January 2022. Publications relevant to the roles of lncRNAs in diagnosis, prognosis, drug resistance, and therapy of PDAC were collected and systematically reviewed. RESULTS LncRNAs, such as HOTAIR, HOTTIP, and PVT1, play essential roles in regulating pancreatic cancer cell proliferation, invasion, migration, and drug resistance, thus may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. They participate in tumorigenesis mainly by targeting miRNAs, interacting with signaling molecules, and involving in the epithelial-mesenchymal transition process. CONCLUSIONS The functional lncRNAs play essential roles in pancreatic cancer cell proliferation, invasion, migration, and drug resistance and have potential values in diagnosis, prognostic prediction, and treatment of PDAC.
Collapse
Affiliation(s)
- Xiao-Yin Jiang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China; Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China; School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Qi-Cong Zhu
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xiao-Jian Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ting Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiao Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Bing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xue-Ni Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi-Ping Mou
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
12
|
Wang Y, Zeng J, Chen W, Fan J, Hylemon PB, Zhou H. Long Noncoding RNA H19: A Novel Oncogene in Liver Cancer. Noncoding RNA 2023; 9:19. [PMID: 36960964 PMCID: PMC10037657 DOI: 10.3390/ncrna9020019] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Liver cancer is the second leading cause of cancer-related death globally, with limited treatment options. Recent studies have demonstrated the critical role of long noncoding RNAs (lncRNAs) in the pathogenesis of liver cancers. Of note, mounting evidence has shown that lncRNA H19, an endogenous noncoding single-stranded RNA, functions as an oncogene in the development and progression of liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the two most prevalent primary liver tumors in adults. H19 can affect many critical biological processes, including the cell proliferation, apoptosis, invasion, and metastasis of liver cancer by its function on epigenetic modification, H19/miR-675 axis, miRNAs sponge, drug resistance, and its regulation of downstream pathways. In this review, we will focus on the most relevant molecular mechanisms of action and regulation of H19 in the development and pathophysiology of HCC and CCA. This review aims to provide valuable perspectives and translational applications of H19 as a potential diagnostic marker and therapeutic target for liver cancer disease.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jing Zeng
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
| |
Collapse
|
13
|
LncRNA H19 Impairs Chemo and Radiotherapy in Tumorigenesis. Int J Mol Sci 2022; 23:ijms23158309. [PMID: 35955440 PMCID: PMC9368906 DOI: 10.3390/ijms23158309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/27/2022] Open
Abstract
Various treatments based on drug administration and radiotherapy have been devoted to preventing, palliating, and defeating cancer, showing high efficiency against the progression of this disease. Recently, in this process, malignant cells have been found which are capable of triggering specific molecular mechanisms against current treatments, with negative consequences in the prognosis of the disease. It is therefore fundamental to understand the underlying mechanisms, including the genes—and their signaling pathway regulators—involved in the process, in order to fight tumor cells. Long non-coding RNAs, H19 in particular, have been revealed as powerful protective factors in various types of cancer. However, they have also evidenced their oncogenic role in multiple carcinomas, enhancing tumor cell proliferation, migration, and invasion. In this review, we analyze the role of lncRNA H19 impairing chemo and radiotherapy in tumorigenesis, including breast cancer, lung adenocarcinoma, glioma, and colorectal carcinoma.
Collapse
|
14
|
Wang G, Lin X, Han H, Zhang H, Li X, Feng M, Jiang C. lncRNA H19 promotes glioblastoma multiforme development by activating autophagy by sponging miR-491-5p. Bioengineered 2022; 13:11440-11455. [PMID: 35506168 PMCID: PMC9275997 DOI: 10.1080/21655979.2022.2065947] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant cancer with severely poor survival, and the cells continue to thrive during hypoxia and toxic stress through autophagy. To validate the oncogenic role of long noncoding RNA H19 in GBM progression and examine whether autophagy and/or miR-491-5p participate in the process. The expression of H19 and autophagy-related genes in GBM and healthy control tissues was assessed via quantitative polymerase chain reaction. In addition, cell viability, proliferation, apoptosis and autophagy were respectively determined via cell counting kit-8 assay, clone formation assay, flow cytometry, western blotting and green fluorescent protein-microtubule-associated protein 1 light chain 3 alpha fluorescence analysis in vitro. Furthermore, a rescue assay was performed using rapamycin or miR-491-5p antagomir to examine the role of autophagy or miR-491-5p in H19-mediated regulation of proliferation and apoptosis. RNA pull-down and dual-luciferase reporter assays were employed to analyze the interaction between H19 and miR-491-5p. Additionally, tumor growth in a xenograft-bearing mouse model and autophagy in tumor mass were analyzed in vivo. The expression H19 was increased in GBM and was positively correlated with LC3 or Beclin-1. Silencing H19 inhibited growth and promoted apoptosis in GBM cells both in vitro and in vivo, and miR-491-5p was identified as one of the important mediators. H19 regulated the autophagy signaling pathway at least partly via miR-491-5p. Increased H19 expression in GBM exerts oncogenic effects by sponging miR-491-5p and enhancing autophagy. Therefore, H19 may be explored as a target for GBM therapy.
Collapse
Affiliation(s)
- Guo Wang
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Xiaoyan Lin
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Han Han
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Hongxu Zhang
- Department of Ophthalmology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Ophthalmology, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Xiaoli Li
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Mei Feng
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Chunming Jiang
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| |
Collapse
|
15
|
Gp130-Mediated STAT3 Activation Contributes to the Aggressiveness of Pancreatic Cancer through H19 Long Non-Coding RNA Expression. Cancers (Basel) 2022; 14:cancers14092055. [PMID: 35565185 PMCID: PMC9100112 DOI: 10.3390/cancers14092055] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The signal transducer and activator of transcription 3 (STAT3) activation correlate with the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). We demonstrated that the autocrine/paracrine interleukin-6 (IL-6) or leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway contributes to the maintenance of stemness features and membrane-type 1 matrix metalloproteinase (MT1-MMP) expression, and modulates transforming growth factor (TGF)-β1/Smad signaling-mediated epithelial-mesenchymal transition (EMT) and invasion through regulation of TGFβ-RII expression in PDAC cancer stem cell (CSC)-like cells. Furthermore, we demonstrated that p-STAT3 acts through the IL-6 or LIF/gp130/STAT3 pathway to access the active promoter region of metastasis-related long non-coding RNA H19 and contribute to its transcription in CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC CSC-like cells exhibiting H19 expression is considered to be involved in the aggressiveness of PDAC, and inhibition of the gp130/STAT3 pathway is a promising strategy to target CSCs for the elimination of PDAC (146/150). Abstract Signaling pathways involving signal transducer and activator of transcription 3 (STAT3) play key roles in the aggressiveness of pancreatic ductal adenocarcinoma (PDAC), including their tumorigenesis, invasion, and metastasis. Cancer stem cells (CSCs) have been correlated with PDAC aggressiveness, and activation of STAT3 is involved in the regulation of CSC properties. Here, we investigated the involvement of interleukin-6 (IL-6) or the leukemia inhibitory factor (LIF)/glycoprotein 130 (gp130)/STAT3 pathway and their role in pancreatic CSCs. In PDAC CSC-like cells formed by culturing on a low attachment plate, autocrine/paracrine IL-6 or LIF contributes to gp130/STAT3 pathway activation. Using a gp130 inhibitor, we determined that the gp130/STAT3 pathway contributes to the maintenance of stemness features, the expression of membrane-type 1 matrix metalloproteinase (MT1-MMP), and the invasion of PDAC CSC-like cells. The gp130/STAT3 pathway also modulates the transforming growth factor (TGF)-β1/Smad pathway required for epithelial-mesenchymal transition induction through regulation of TGFβ-RII expression in PDAC CSC-like cells. Furthermore, chromatin immunoprecipitation assays revealed that p-STAT3 can access the active promoter region of H19 to influence this metastasis-related long non-coding RNA and contribute to its transcription in PDAC CSC-like cells. Therefore, the autocrine/paracrine IL-6 or LIF/gp130/STAT3 pathway in PDAC CSC-like cells may eventually facilitate invasion and metastasis, two hallmarks of malignancy. We propose that inhibition of the gp130/STAT3 pathway provides a promising strategy for targeting CSCs for the treatment of PDAC.
Collapse
|
16
|
Ping H, Jia X, Ke H. A Novel Ferroptosis-Related lncRNAs Signature Predicts Clinical Prognosis and Is Associated With Immune Landscape in Pancreatic Cancer. Front Genet 2022; 13:786689. [PMID: 35330729 PMCID: PMC8940287 DOI: 10.3389/fgene.2022.786689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies and currently therapies are severely lacking. In this study, we aimed to establish a novel ferroptosis-related lncRNAs signature to predict the prognosis of patients with pancreatic cancer and evaluate the predictive abilities of candidate lncRNAs. According to The Cancer Genome Atlas (TCGA) database, a total of 182 patients with pancreatic cancer were included in our study. Ferroptosis-related lncRNAs were screened by Pearson correlation analysis with 60 reported ferroptosis-related genes. Through univariate, least absolute shrinkage and selection operator (LASSO) regression and multivariate regression analyses, a novel signature based on five ferroptosis-related lncRNAs(ZNF236-DT, CASC8, PAN3-AS1, SH3PXD2A-AS1, LINP1) was constructed. Risk-related differentially expressed genes (DEGs) were subjected to enrichment analyses for Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The results revealed that immune cell infiltration, immune-related functions and checkpoints were factors to affect prognoisis of pancreatic cancer. In summary, we identified the prognostic ferroptosis-related lncRNAs(ZNF236-DT, CASC8, PAN3-AS1, SH3PXD2A-AS1, LINP1) in pancreatic cancer and these lncRNAs may serve as therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Haiqin Ping
- Department of Infectious Disease, Hubei AIDS Clinical Training Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Hengning Ke
- Department of Infectious Disease, Hubei AIDS Clinical Training Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.,Cancer Research Institute, General Hospital, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
17
|
Luo Y, Han S, Yan B, Ji H, Zhao L, Gladkich J, Herr I. UHMK1 Is a Novel Marker for Personalized Prediction of Pancreatic Cancer Prognosis. Front Oncol 2022; 12:834647. [PMID: 35359403 PMCID: PMC8960145 DOI: 10.3389/fonc.2022.834647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer mortality, and new therapeutic options are urgently needed. Long noncoding RNA H19 (H19) is known to promote PDAC progression, but the downstream genes of H19 are largely unknown. Five PDAC cell lines, nonmalignant pancreatic cells, TCGA, GEO-derived pancreatic tissues (malignant, n=413; nonmalignant, n=234), a pancreatic tissue array (n=96), and pancreatic tissues from our clinic (malignant, n=20; nonmalignant, n=20) were examined by a gene array, RT-qPCR, Western blotting, MTT, colony formation, wound-healing, siRNA-mediated gene silencing, bioinformatics, xenotransplantation, and immunohistochemistry assays. The cell cycle inhibitor, UHMK1, was identified to have the strongest correlation with H19. UHMK1 expression was enhanced in PDAC, and high UHMK1 expression correlated with tumor stage, and lower overall survival. siRNA-mediated UHMK1 downregulation inhibited progression signaling. siRNA-mediated downregulation of H19 or UHMK1 inhibited tumor proliferation and xenograft growth. Based on the correlation between UHMK1 expression and clinical parameters, we developed a nomogram that reliably predicts patient prognosis and overall survival. Together, we characterized UHMK1 as an H19-induced oncogene and verified it as a novel PDAC prognostic marker for overall survival.
Collapse
|
18
|
Dehghanian F, Azhir Z, Khalilian S, Grüning B. Non-coding RNAs underlying the pathophysiological links between type 2 diabetes and pancreatic cancer: A systematic review. J Diabetes Investig 2022; 13:405-428. [PMID: 34859606 PMCID: PMC8902405 DOI: 10.1111/jdi.13727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes is known as a risk factor for pancreatic cancer (PC). Various genetic and environmental factors cause both these global chronic diseases. The mechanisms that define their relationships are complex and poorly understood. Recent studies have implicated that metabolic abnormalities, including hyperglycemia and hyperinsulinemia, could lead to cell damage responses, cell transformation, and increased cancer risk. Hence, these kinds of abnormalities following molecular events could be essential to develop our understanding of this complicated link. Among different molecular events, focusing on shared signaling pathways including metabolic (PI3K/Akt/mTOR) and mitogenic (MAPK) pathways in addition to regulatory mechanisms of gene expression such as those involved in non-coding RNAs (miRNAs, circRNAs, and lncRNAs) could be considered as powerful tools to describe this association. A better understanding of the molecular mechanisms involved in the development of type 2 diabetes and pancreatic cancer would help us to find a new research area for developing therapeutic and preventive strategies. For this purpose, in this review, we focused on the shared molecular events resulting in type 2 diabetes and pancreatic cancer. First, a comprehensive literature review was performed to determine similar molecular pathways and non-coding RNAs; then, the final results were discussed in more detail.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Zahra Azhir
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Sheyda Khalilian
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Björn Grüning
- Department of Computer ScienceBioinformatics GroupUniversity of FreiburgFreiburgGermany
| |
Collapse
|
19
|
Ghafouri-Fard S, Fathi M, Zhai T, Taheri M, Dong P. LncRNAs: Novel Biomarkers for Pancreatic Cancer. Biomolecules 2021; 11:1665. [PMID: 34827663 PMCID: PMC8615627 DOI: 10.3390/biom11111665] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Pancreatic cancer is one of the most deadly neoplasms and the seventh major cause of cancer-related deaths among both males and females. This cancer has a poor prognosis due to the lack of appropriate methods for early detection of cancer. Long non-coding RNAs (lncRNAs) have been recently found to influence the progression and initiation of pancreatic cancer. MACC1-AS1, LINC00976, LINC00462, LINC01559, HOXA-AS2, LINC00152, TP73-AS1, XIST, SNHG12, LUCAT1, and UCA1 are among the oncogenic lncRNAs in pancreatic cancer. On the other hand, LINC01111, LINC01963, DGCR5, MEG3, GAS5, and LINC00261 are among tumor suppressor lncRNAs in this tissue. In the current review, we summarize the roles of these two classes of lncRNAs in pancreatic cancer and discuss their potential as attractive diagnostic and prognostic biomarkers for pancreatic cancer. We also identified that the low expression of MEG3, LINC01963, and LINC00261 and the high expression of MACC1-AS1, LINC00462, LINC01559, and UCA1 were significantly correlated with worse survival in pancreatic cancer patients. Further research on these lncRNAs will provide new clues that could potentially improve the early diagnosis, prognostic prediction, and personalized treatments of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Mohadeseh Fathi
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Tianyue Zhai
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 0608638, Japan;
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 0608638, Japan;
| |
Collapse
|
20
|
CRISPR/Cas9 small promoter deletion in H19 lncRNA is associated with altered cell morphology and proliferation. Sci Rep 2021; 11:18380. [PMID: 34526543 PMCID: PMC8443613 DOI: 10.1038/s41598-021-97058-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
The imprinted H19 long non-coding RNA, a knowing oncofetal gene, presents a controversial role during the carcinogenesis process since its tumor suppressor or oncogenic activity is not completely elucidated. Since H19 lncRNA is involved in many biological pathways related to tumorigenesis, we sought to develop a non-cancer lineage with CRISPR-Cas9-mediated H19 knockdown (H19-) and observe the changes in a cellular context. To edit the promoter region of H19, two RNA guides were designed, and the murine C2C12 myoblast cells were transfected. H19 deletion was determined by DNA sequencing and gene expression by qPCR. We observed a small deletion (~ 60 bp) in the promoter region that presented four predicted transcription binding sites. The deletion reduced H19 expression (30%) and resulted in increased proliferative activity, altered morphological patterns including cell size and intracellular granularity, without changes in viability. The increased proliferation rate in the H19- cell seems to facilitate chromosomal abnormalities. The H19- myoblast presented characteristics similar to cancer cells, therefore the H19 lncRNA may be an important gene during the initiation of the tumorigenic process. Due to CRISPR/Cas9 permanent edition, the C2C12 H19- knockdown cells allows functional studies of H19 roles in tumorigenesis, prognosis, metastases, as well as drug resistance and targeted therapy.
Collapse
|
21
|
Rinoldi C, Zargarian SS, Nakielski P, Li X, Liguori A, Petronella F, Presutti D, Wang Q, Costantini M, De Sio L, Gualandi C, Ding B, Pierini F. Nanotechnology-Assisted RNA Delivery: From Nucleic Acid Therapeutics to COVID-19 Vaccines. SMALL METHODS 2021; 5:e2100402. [PMID: 34514087 PMCID: PMC8420172 DOI: 10.1002/smtd.202100402] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/04/2021] [Indexed: 05/07/2023]
Abstract
In recent years, the main quest of science has been the pioneering of the groundbreaking biomedical strategies needed for achieving a personalized medicine. Ribonucleic acids (RNAs) are outstanding bioactive macromolecules identified as pivotal actors in regulating a wide range of biochemical pathways. The ability to intimately control the cell fate and tissue activities makes RNA-based drugs the most fascinating family of bioactive agents. However, achieving a widespread application of RNA therapeutics in humans is still a challenging feat, due to both the instability of naked RNA and the presence of biological barriers aimed at hindering the entrance of RNA into cells. Recently, material scientists' enormous efforts have led to the development of various classes of nanostructured carriers customized to overcome these limitations. This work systematically reviews the current advances in developing the next generation of drugs based on nanotechnology-assisted RNA delivery. The features of the most used RNA molecules are presented, together with the development strategies and properties of nanostructured vehicles. Also provided is an in-depth overview of various therapeutic applications of the presented systems, including coronavirus disease vaccines and the newest trends in the field. Lastly, emerging challenges and future perspectives for nanotechnology-mediated RNA therapies are discussed.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Pawel Nakielski
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Xiaoran Li
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Anna Liguori
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of BolognaUniversity of BolognaVia Selmi 2Bologna40126Italy
| | - Francesca Petronella
- Institute of Crystallography CNR‐ICNational Research Council of ItalyVia Salaria Km 29.300Monterotondo – Rome00015Italy
| | - Dario Presutti
- Institute of Physical ChemistryPolish Academy of Sciencesul. M. Kasprzaka 44/52Warsaw01‐224Poland
| | - Qiusheng Wang
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Marco Costantini
- Institute of Physical ChemistryPolish Academy of Sciencesul. M. Kasprzaka 44/52Warsaw01‐224Poland
| | - Luciano De Sio
- Department of Medico‐Surgical Sciences and BiotechnologiesResearch Center for BiophotonicsSapienza University of RomeCorso della Repubblica 79Latina04100Italy
- CNR‐Lab. LicrylInstitute NANOTECArcavacata di Rende87036Italy
| | - Chiara Gualandi
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of BolognaUniversity of BolognaVia Selmi 2Bologna40126Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials TechnologyCIRI‐MAMUniversity of BolognaViale Risorgimento 2Bologna40136Italy
| | - Bin Ding
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Filippo Pierini
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| |
Collapse
|
22
|
Yang J, Qi M, Fei X, Wang X, Wang K. LncRNA H19: A novel oncogene in multiple cancers. Int J Biol Sci 2021; 17:3188-3208. [PMID: 34421359 PMCID: PMC8375239 DOI: 10.7150/ijbs.62573] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a series of non-coding RNAs that lack open reading frameworks. Accumulating evidence suggests important roles for lncRNAs in various diseases, including cancers. Recently, lncRNA H19 (H19) became a research focus due to its ectopic expression in human malignant tumors, where it functioned as an oncogene. Subsequently, H19 was confirmed to be involved in tumorigenesis and malignant progression in many tumors and had been implicated in promoting cell growth, invasion, migration, epithelial-mesenchymal transition, metastasis, and apoptosis. H19 also sequesters some microRNAs, facilitating a multilayer molecular regulatory mechanism. In this review, we summarize the abnormal overexpression of H19 in human cancers, which suggests wide prospects for further research into the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Jun Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Manlong Qi
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
23
|
Non-Coding RNAs in Pancreatic Cancer Diagnostics and Therapy: Focus on lncRNAs, circRNAs, and piRNAs. Cancers (Basel) 2021; 13:cancers13164161. [PMID: 34439315 PMCID: PMC8392713 DOI: 10.3390/cancers13164161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Pancreatic cancer is the seventh leading cause of cancer related death worldwide. In the United States, pancreatic cancer remains the fourth leading cause of cancer related death. The lack of early diagnosis and effective therapy contributes to the high mortality of pancreatic cancer. Therefore, there is an urgent need to find novel and effective biomarkers for the diagnosis and treatment of pancreatic cancer. Long noncoding RNA, circular RNAs and piwi-interacting RNA are non-coding RNAs and could become new biomarkers for the diagnosis, prognosis, and treatment of pancreatic cancer. We summarize the new findings on the roles of these non-coding RNAs in pancreatic cancer diagnosis, prognosis and targeted therapy. Abstract Pancreatic cancer is an aggressive malignance with high mortality. The lack of early diagnosis and effective therapy contributes to the high mortality of this deadly disease. For a long time being, the alterations in coding RNAs have been considered as major targets for diagnosis and treatment of pancreatic cancer. However, with the advances in high-throughput next generation of sequencing more alterations in non-coding RNAs (ncRNAs) have been discovered in different cancers. Further mechanistic studies have demonstrated that ncRNAs such as long noncoding RNAs (lncRNA), circular RNAs (circRNA) and piwi-interacting RNA (piRNA) play vital roles in the regulation of tumorigenesis, tumor progression and prognosis. In recent years, increasing studies have focused on the roles of ncRNAs in the development and progression of pancreatic cancer. Novel findings have demonstrated that lncRNA, circRNA, and piRNA are critically involved in the regulation of gene expression and cellular signal transduction in pancreatic cancer. In this review, we summarize the current knowledge of roles of lncRNA, circRNA, and piRNA in the diagnosis and prognosis of pancreatic cancer, and molecular mechanisms underlying the regulation of these ncRNAs and related signaling in pancreatic cancer therapy. The information provided here will help to find new strategies for better treatment of pancreatic cancer.
Collapse
|
24
|
Tang Y, Song G, Liu H, Yang S, Yu X, Shi L. Silencing of Long Non-Coding RNA HOTAIR Alleviates Epithelial-Mesenchymal Transition in Pancreatic Cancer via the Wnt/β-Catenin Signaling Pathway. Cancer Manag Res 2021; 13:3247-3257. [PMID: 33883938 PMCID: PMC8053715 DOI: 10.2147/cmar.s265578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose Pancreatic cancer (PC) is a malignancy with poor prognosis and controversial treatment options. Long non-coding RNA (lncRNA) is a significant factor in the development of PC. In the current study, the possible effects of HOTAIR on the epithelial-mesenchymal transition (EMT) of PC and the related mechanisms were investigated. Methods The PC models were induced by 10 mg/100 g dimethylbenzoanthracene (DMBA) in pancreas. Mice were injected with the HOTAIR mimic and HOTAIR shRNA to determine the role of HOTAIR in PC. Subsequently, the expression of HOTAIR in PC cells was assayed. To determine the mechanism of HOTAIR in PC, human PC cell line PANC-1, Miapaca-2 and human normal pancreatic ductal epithelial cell line HPDE6-C7 were transfected with the HOTAIR mimic, the shRNA against HOTAIR, the Wnt/b-catenin activator (LiCl), and the Wnt/b-catenin inhibitor (XAV939), respectively. Moreover, the expressions of the Wnt/β-catenin signaling pathway-related genes (β-catenin, cyclinD1, c-myc, LEF-1 and c-Jun) and the levels of the EMT markers (E-cadherin, N-cadherin and Vimentin) were determined. Finally, the cell biological processes were evaluated by functional experiments. Results HOTAIR was found to be highly expressed in the PC cells in mice. The expression of β-catenin, cyclinD1, c-myc, LEF-1 and c-Jun, N-cadherin and Vimentin was found to be decreased, while the expression of E-cadherin was found to be increased subsequent to the silencing of HOTAIR in human PC cell lines PANC-1 and Miapaca-2. Additionally, it was observed that the silencing of HOTAIR could inhibit the Wnt/β-catenin signaling pathway to alleviate EMT of tumor cells and inhibit the capacities of cell proliferation, migration, and invasion. Conclusion The key finding of the present study is that the silencing of HOTAIR could potentially inhibit EMT and growth of PC through the Wnt/β-catenin signaling pathway, providing a novel therapy for PC.
Collapse
Affiliation(s)
- Yinhua Tang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Guang Song
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Hongcheng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Shuang Yang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xiaoyi Yu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Lijun Shi
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| |
Collapse
|
25
|
Sun L, Li J, Yan W, Yao Z, Wang R, Zhou X, Wu H, Zhang G, Shi T, Chen W. H19 promotes aerobic glycolysis, proliferation, and immune escape of gastric cancer cells through the microRNA-519d-3p/lactate dehydrogenase A axis. Cancer Sci 2021; 112:2245-2259. [PMID: 33756038 PMCID: PMC8177792 DOI: 10.1111/cas.14896] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been investigated in multiple human cancers including gastric cancer (GC). Our research aims to explore the role of H19 in aerobic glycolysis, proliferation, and immune escape of GC cells. The expression of H19 in GC samples was analyzed using Gene Expression Profiling Interactive Analysis, Gene Expression Omnibus data, and real‐time quantitative PCR analysis. Relative quantification of glucose consumption and lactate production from cell supernatant were applied to assess the aerobic glycolysis of GC cells. Subcellular fractionation, luciferase reporter, and western blot assays certified the binding between genes. Cell Counting Kit‐8 and colony formation assays were used to determine GC cell proliferation. Flow cytometry, ELISA, and real‐time quantitative PCR assays were applied to analyze the immunosuppressive effect of H19. H19 was highly expressed in samples of patients with GC, and associated with tumor growth in vivo. H19 knockdown suppressed glucose consumption, lactate production, and proliferation of GC cells by regulating the microRNA (miR)‐519d‐3p/lactate dehydrogenase A (LDHA) axis. Both miR‐519d‐3p depletion and LDHA overexpression could reverse the H19 knockdown‐induced decrease in aerobic glycolysis and proliferation. Moreover, conditioned medium from stable knockdown H19 GC cells modulated the activity of immune cells including γδT cells, Jurkat cells, and tumor‐associated macrophages in a miR‐519d‐3p/LDHA/lactate axis‐dependent manner. The H19/miR‐519d‐3p/LDHA axis mainly contributed to aerobic glycolysis, proliferation, and immune escape of GC cells.
Collapse
Affiliation(s)
- Linqing Sun
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juntao Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenying Yan
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Zhendong Yao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruoqin Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojun Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongya Wu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weichang Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Morphofunctional analysis of human pancreatic cancer cell lines in 2- and 3-dimensional cultures. Sci Rep 2021; 11:6775. [PMID: 33762591 PMCID: PMC7990961 DOI: 10.1038/s41598-021-86028-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022] Open
Abstract
Genetic, transcriptional, and morphological differences have been reported in pancreatic ductal adenocarcinoma (PDAC) cases. We recently found that epithelial or mesenchymal features were enhanced in three-dimensional (3D) cultures compared to two-dimensional (2D) cultures. In this study, we examined the differences in the morphological and functional characteristics of eight PDAC cell lines in 2D and 3D cultures. Most PDAC cells showed similar pleomorphic morphologies in 2D culture. Under 3D culture, PDAC cells with high E-cadherin and low vimentin expression levels (epithelial) formed small round spheres encircled with flat lining cells, whereas those with high vimentin and low E-cadherin expression levels (mesenchymal) formed large grape-like spheres without lining cells and were highly proliferative. In 3D culture, gemcitabine was more effective for the spheres formed by PDAC cells with epithelial features, while abraxane was more effective on those with mesenchymal features. The expression levels of drug transporters were highest PDAC cells with high vimentin expression levels. These findings indicate that PDAC cells possess various levels of epithelial and mesenchymal characteristics. The 3D-culture method is useful for investigating the diversity of PDAC cell lines and may play important roles in the development of personalized early diagnostic methods and anticancer drugs for PDAC.
Collapse
|
27
|
Sulforaphane Inhibits the Expression of Long Noncoding RNA H19 and Its Target APOBEC3G and Thereby Pancreatic Cancer Progression. Cancers (Basel) 2021; 13:cancers13040827. [PMID: 33669381 PMCID: PMC7920255 DOI: 10.3390/cancers13040827] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is extremely malignant and the therapeutic options available usually have little impact on survival. Great hope is placed on new therapeutic targets, including long noncoding RNAs (lncRNAs), and on the development of new drugs, based on e.g., broccoli-derived sulforaphane, which meanwhile has shown promise in pilot studies in patients. We examined whether sulforaphane interferes with lncRNA signaling and analyzed five PDAC and two nonmalignant cell lines, patient tissues (n = 30), and online patient data (n = 350). RT-qPCR, Western blotting, MTT, colony formation, transwell and wound healing assays; gene array analysis; bioinformatics; in situ hybridization; immunohistochemistry and xenotransplantation were used. Sulforaphane regulated the expression of all of five examined lncRNAs, but basal expression, biological function and inhibition of H19 were of highest significance. H19 siRNA prevented colony formation, migration, invasion and Smad2 phosphorylation. We identified 103 common sulforaphane- and H19-related target genes and focused to the virus-induced tumor promoter APOBEC3G. APOBEC3G siRNA mimicked the previously observed H19 and sulforaphane effects. In vivo, sulforaphane- or H19 or APOBEC3G siRNAs led to significantly smaller tumor xenografts with reduced expression of Ki67, APOBEC3G and phospho-Smad2. Together, we identified APOBEC3G as H19 target, and both are inhibited by sulforaphane in prevention of PDAC progression.
Collapse
|
28
|
Li W, Hua R, Wang M, Zhang D, Zhu J, Zhang S, Yang Y, Cheng J, Zhou H, Zhang J, He J. H19 gene polymorphisms and Wilms tumor risk in Chinese children: a four-center case-control study. Mol Genet Genomic Med 2021; 9:e1584. [PMID: 33403826 PMCID: PMC8077085 DOI: 10.1002/mgg3.1584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/05/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Wilms tumor is the most common pediatric renal cancer. However, genetic bases behind Wilms tumor remain largely unknown. H19 is a critical maternally imprinted gene. Previous studies indicated that single nucleotide polymorphisms (SNPs) in the H19 can modify the risk of several human malignancies. Epigenetic errors at the H19 locus lead to biallelic silencing in Wilms tumors. Genetic variations in the H19 may be related to Wilms tumor susceptibility. METHODS We conducted a four-center study to investigate whether H19 SNP was a predisposing factor to Wilms tumor. Three polymorphisms in the H19 (rs2839698 G > A, rs3024270 C > G, rs217727 G > A) were genotyped in 355 cases and 1070 cancer-free controls, using Taqman method. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the associations. RESULTS We found that all of these three polymorphisms were significantly associated with Wilms tumor risk alterations. The rs2839698 G > A polymorphism (AG vs. GG: adjusted OR = 0.74, 95% CI = 0.57-0.96, p = 0.024; AA vs. GG: adjusted OR = 1.52, 95% CI = 1.05-2.22, p = 0.027), the rs3024270 C > G polymorphism (CG vs. CC: adjusted OR = 0.61, 95% CI = 0.46-0.81, p = 0.0007; and the rs217727 polymorphism (AG vs. GG: adjusted OR = 0.76, 95% CI = 0.58-0.99, p = 0.035). The Carriers of 1, 2, and 1-2 risk genotypes were inclined to develop Wilms tumor compared with those without risk genotype (adjusted OR = 1.36, 95% CI = 1.02-1.80, p = 0.037; adjusted OR = 1.84, 95% CI = 1.27-2.67, p = 0.001; adjusted OR = 1.50, 95% CI = 1.17-1.92, p = 0.002, respectively). The stratified analysis further revealed that rs2839698 AA, rs217727 AA, and 1-2 risk genotypes could strongly increase Wilms tumor risk among children above 18 months of age, males, and with clinical stage I+II disease. CONCLUSION Our findings indicate that genetic variations in the H19 may confer Wilms tumor risk.
Collapse
Affiliation(s)
- Wenya Li
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Rui‐Xi Hua
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Mi Wang
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Da Zhang
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jinhong Zhu
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
- Department of Clinical LaboratoryBiobankHarbin Medical University Cancer HospitalHarbinChina
| | - Songyang Zhang
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yang Yang
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiwen Cheng
- Department of Pediatric Surgerythe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Haixia Zhou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jiao Zhang
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jing He
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
29
|
LncRNA H19 regulates smooth muscle cell functions and participates in the development of aortic dissection through sponging miR-193b-3p. Biosci Rep 2021; 41:227493. [PMID: 33403385 PMCID: PMC7823186 DOI: 10.1042/bsr20202298] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multiple studies showed that long-chain noncoding RNA H19 (LncRNA H19) is high-expressed in human and mouse abdominal aortic aneurysms (AAAs). We speculated that it plays an important role in arterial disease, and therefore studied the role and mechanism of H19 in aortic dissection (AD). METHODS The expressions of related genes in human aortic smooth muscle cells (HASMCs) induced by platelet-derived growth factor BB (PDGF-BB) or in the aortic tissue of AD patients/mice were identified by Western blot and quantitative real-time polymerase chain reaction. The targeting relationship between H19 and miR-193b-3p was predicted and verified by bioinformatics analysis, dual luciferase assay, RNA pull-down assay, RNA immunoprecipitation (RIP), and Pearson correlation coefficient. The H19 and miR-193b-3p effects on the biological functions of tissues and cells were examined by MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, thiazolyl blue tetrazolium bromide) assay, wound-healing assay, and Hematoxylin-Eosin (HE) staining. RESULTS LncRNA H19 was abnormally high-expressed in thoracic aorta tissues of AD patients, and it could competitively bind to and inhibit miR-193b-3p. In the PDGF-BB group, the expressions of H19, matrix metallopeptidase (MMP) 2 (MMP-2) and MMP-9 were up-regulated and the expressions of miR-193b-3p, α-SMA, and SM22α were down-regulated; moreover, the proliferation and migration rate of HASMCs were increased. However, H19 silencing reversed the regulation of PDGF-BB on HASMCs. More interestingly, miR-193b-3p inhibitor could partially reverse the effect of H19 silencing. In addition, the above results were verified by animal experiments, showing that shH19 and up-regulated miR-193b-3p could significantly reduce the thoracic aorta pathological damage in AD mice. CONCLUSION LncRNA H19 regulated smooth muscle cell function by sponging miR-193b-3p and it participated in the development of AD.
Collapse
|
30
|
Xu Y, Jiang E, Shao Z, Shang Z. Long Noncoding RNAs in the Metastasis of Oral Squamous Cell Carcinoma. Front Oncol 2021; 10:616717. [PMID: 33520725 PMCID: PMC7845733 DOI: 10.3389/fonc.2020.616717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignant tumor worldwide. Metastasis is the main cause of the death of OSCC patients. Long noncoding RNAs (lncRNAs), one of the key factors affecting OSCC metastasis, are a subtype of RNA with a length of more than 200 nucleotides that has little or no coding potential. In recent years, the important role played by lncRNAs in biological processes, such as chromatin modification, transcription regulation, RNA stability regulation, and mRNA translation, has been gradually revealed. More and more studies have shown that lncRNAs can regulate the metastasis of various tumors including OSCC at epigenetic, transcriptional, and post-transcriptional levels. In this review, we mainly discussed the role and possible mechanisms of lncRNAs in OSCC metastasis. Most lncRNAs act as oncogenes and only a few lncRNAs have been shown to inhibit OSCC metastasis. Besides, we briefly introduced the research status of cancer-associated fibroblasts-related lncRNAs in OSCC metastasis. Finally, we discussed the research prospects of lncRNAs-mediated crosstalk between OSCC cells and the tumor microenvironment in OSCC metastasis, especially the potential research value of exosomes and lymphangiogenesis. In general, lncRNAs are expected to be used for screening, treatment, and prognosis monitoring of OSCC metastasis, but more work is still required to better understand the biological function of lncRNAs.
Collapse
Affiliation(s)
- Yuming Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Lee HY, Son SW, Moeng S, Choi SY, Park JK. The Role of Noncoding RNAs in the Regulation of Anoikis and Anchorage-Independent Growth in Cancer. Int J Mol Sci 2021; 22:ijms22020627. [PMID: 33435156 PMCID: PMC7827914 DOI: 10.3390/ijms22020627] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a global health concern, and the prognosis of patients with cancer is associated with metastasis. Multistep processes are involved in cancer metastasis. Accumulating evidence has shown that cancer cells acquire the capacity of anoikis resistance and anchorage-independent cell growth, which are critical prerequisite features of metastatic cancer cells. Multiple cellular factors and events, such as apoptosis, survival factors, cell cycle, EMT, stemness, autophagy, and integrins influence the anoikis resistance and anchorage-independent cell growth in cancer. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are dysregulated in cancer. They regulate cellular signaling pathways and events, eventually contributing to cancer aggressiveness. This review presents the role of miRNAs and lncRNAs in modulating anoikis resistance and anchorage-independent cell growth. We also discuss the feasibility of ncRNA-based therapy and the natural features of ncRNAs that need to be contemplated for more beneficial therapeutic strategies against cancer.
Collapse
|
32
|
Wang J, Ma X, Si H, Ma Z, Ma Y, Wang J, Cao B. Role of long non-coding RNA H19 in therapy resistance of digestive system cancers. Mol Med 2021; 27:1. [PMID: 33402118 PMCID: PMC7786989 DOI: 10.1186/s10020-020-00255-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022] Open
Abstract
Digestive system cancers are associated with high morbidity and mortality. Chemotherapy and radiotherapy are the main treatment modalities for these cancers. However, the development of therapy resistance leads to high rates of tumor recurrence and metastasis, resulting in dismal prognosis. Long non-coding RNA (LncRNA) H19, one of the most intriguing non-coding RNAs, has been shown to play a key role in the development and therapy resistance of various digestive system cancers (including hepatocellular carcinoma, colorectal cancer, pancreatic ductal adenocarcinoma, esophageal carcinoma, gastric cancer, and biliary system cancer) by regulating the abnormal expression of genes. In this review, we discuss the potential mechanisms of LncRNA H19 related therapy resistance in the context of digestive system cancers. LncRNA H19 is a potential novel therapeutic target for amelioration of cancer therapy resistance.
Collapse
Affiliation(s)
- Jingting Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Xicheng District, Beijing, 100050, China
| | - Xiao Ma
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Xicheng District, Beijing, 100050, China
| | - Hai Si
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Xicheng District, Beijing, 100050, China
| | - Zhongjun Ma
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Xicheng District, Beijing, 100050, China
| | - Yan Ma
- Department of Comprehensive Medicine, Beijing Shijingshan Hospital, #24 Shijingshan Road, Shijingshan District, Beijing, 100043, China
| | - Jing Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Xicheng District, Beijing, 100050, China. .,Yale School of Medicine, New Haven, CT, USA.
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Xicheng District, Beijing, 100050, China
| |
Collapse
|
33
|
Heidari R, Akbariqomi M, Asgari Y, Ebrahimi D, Alinejad-Rokny H. A systematic review of long non-coding RNAs with a potential role in breast cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 787:108375. [PMID: 34083033 DOI: 10.1016/j.mrrev.2021.108375] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
The human transcriptome contains many non-coding RNAs (ncRNAs), which play important roles in gene regulation. Long noncoding RNAs (lncRNAs) are an important class of ncRNAs with lengths between 200 and 200,000 bases. Unlike mRNA, lncRNA lacks protein-coding features, specifically, open-reading frames, and start and stop codons. LncRNAs have been reported to play a role in the pathogenesis and progression of many cancers, including breast cancer (BC), acting as tumor suppressors or oncogenes. In this review, we systematically mined the literature to identify 65 BC-related lncRNAs. We then perform an integrative bioinformatics analysis to identify 14 lncRNAs with a potential regulatory role in BC. The biological function of these 14 lncRNAs, their regulatory mechanisms, and roles in the initiation and progression of BC are discussed in this review. Additionally, we elaborate on the current and future applications of lncRNAs as diagnostic and/or therapeutic biomarkers in BC.
Collapse
Affiliation(s)
- Reza Heidari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Akbariqomi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Diako Ebrahimi
- Biomedical Informatics Lab, Texas Biomedical Research Institute, San Antonio, TX, 78227, United States
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia; Core Member of UNSW Data Science Hub, The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia; Health Data Analytics Program Leader, AI-enabled Processes (AIP) Research Centre, Macquarie University, Sydney, 2109, Australia.
| |
Collapse
|
34
|
Cáceres-Durán MÁ, Ribeiro-dos-Santos Â, Vidal AF. Roles and Mechanisms of the Long Noncoding RNAs in Cervical Cancer. Int J Mol Sci 2020; 21:ijms21249742. [PMID: 33371204 PMCID: PMC7766288 DOI: 10.3390/ijms21249742] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer (CC) continues to be one of the leading causes of death for women across the world. Although it has been determined that papillomavirus infection is one of the main causes of the etiology of the disease, genetic and epigenetic factors are also required for its progression. Among the epigenetic factors are included the long noncoding RNAs (lncRNAs), transcripts of more than 200 nucleotides (nt) that generally do not code for proteins and have been associated with diverse functions such as the regulation of transcription, translation, RNA metabolism, as well as stem cell maintenance and differentiation, cell autophagy and apoptosis. Recently, studies have begun to characterize the aberrant regulation of lncRNAs in CC cells and tissues, including Homeobox transcript antisense RNA (HOTAIR), H19, Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), Cervical Carcinoma High-Expressed 1 (CCHE1), Antisense noncoding RNA in the inhibitors of cyclin-dependent kinase 4 (ANRIL), Growth arrest special 5 (GAS5) and Plasmacytoma variant translocation 1 (PVT1). They have been associated with several disease-related processes such as cell growth, cell proliferation, cell survival, metastasis and invasion as well as therapeutic resistance, and are novel potential biomarkers for diagnosis and prognosis in CC. In this review, we summarize the current literature regarding the knowledge we have about the roles and mechanisms of the lncRNAs in cervical neoplasia.
Collapse
Affiliation(s)
- Miguel Ángel Cáceres-Durán
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Researches, Federal University of Pará, Belém 66073-005, Brazil
| | - Amanda Ferreira Vidal
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
- Correspondence: ; Tel.: +55-91-3201-7843
| |
Collapse
|
35
|
Wang Y, Wu Z, Li Y, Zheng Z, Yan J, Tian S, Han L. Long Non-Coding RNA H19 Promotes Proliferation, Migration and Invasion and Inhibits Apoptosis of Breast Cancer Cells by Targeting miR-491-5p/ZNF703 Axis. Cancer Manag Res 2020; 12:9247-9258. [PMID: 33061615 PMCID: PMC7532042 DOI: 10.2147/cmar.s246009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer is one of the most common cancers worldwide. Long non-coding RNAs and microRNAs act as important regulators in human cancers. This study aims to explore the molecular mechanism among H19, miR-491-5p and zinc finger 703 (ZNF703) in breast cancer. Materials and Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the expression of H19, miR-491-5p and ZNF703. Cell Counting Kit 8 (CCK-8) assay was performed to evaluate cell proliferation. Cell apoptosis was assessed by flow cytometry assay. The number of migrated and invaded cells was counted by transwell assay. Dual luciferase reporter assay was carried out to test luciferase activity. Protein level of ZNF703 was measured by Western blot assay. Results H19 was highly expressed in breast tissues and cells. H19 knockdown inhibited proliferation, induced apoptosis and blocked migration and invasion. Moreover, H19 bound to miR-491-5p and negatively regulated miR-491-5p expression. MiR-491-5p inhibition abrogated the activities of proliferation, apoptosis, migration and invasion affected by H19 knockdown. Furthermore, miR-491-5p directly targeted ZNF703 and inversely modulated ZNF703 expression. ZNF703 up-regulation rescued the effects of miR-491-5p overexpression on proliferation, apoptosis, migration and invasion. In addition, H19 knockdown reduced ZNF703 expression by targeting miR-491-5p/ZNF703 axis. Conclusion H19 promoted proliferation, migration and invasion and retarded apoptosis of breast cancer cells via sponging miR-491-5p to down-regulate ZNF703 expression.
Collapse
Affiliation(s)
- Yongkun Wang
- Department of Thyroid Surgery, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Zhen Wu
- Department of Thyroid Surgery, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Yingxue Li
- Department of Pathology, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Zheng Zheng
- Department of Pathology, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Jinqiang Yan
- Department of Pathology, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Shuyan Tian
- Department of Pathology, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Lin Han
- Department of Pathology, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| |
Collapse
|
36
|
Alipoor B, Parvar SN, Sabati Z, Ghaedi H, Ghasemi H. An updated review of the H19 lncRNA in human cancer: molecular mechanism and diagnostic and therapeutic importance. Mol Biol Rep 2020; 47:6357-6374. [PMID: 32743775 DOI: 10.1007/s11033-020-05695-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022]
Abstract
Accumulating evidence has reported that H19 long non-coding RNA (lncRNA) expression level is deregulated in human cancer. It has been also demonstrated that de-regulated levels of H19 could affect cancer biology by various mechanisms including microRNA (miRNA) production (like miR-675), miRNA sponging and epigenetic modifications. Furthermore, lncRNA could act as a potential diagnosis and prognosis biomarkers and also a candidate therapeutic approach for different human cancers. In this narrative review, we shed light on the molecular mechanism of H19 in cancer development and pathogenesis. Moreover, we discussed the expression pattern and diagnostic and therapeutic importance of H19 as a potential biomarker in a range of human malignancies from breast to osteosarcoma cancer.
Collapse
Affiliation(s)
- Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyedeh Nasrin Parvar
- Department of Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Zolfaghar Sabati
- Student Research Committee, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan Faculty of Medical Sciences, Abadan, Iran.
| |
Collapse
|
37
|
Yang X, Wu S, Li X, Yin Y, Chen R. MAGI2-AS3 rs7783388 polymorphism contributes to colorectal cancer risk through altering the binding affinity of the transcription factor GR to the MAGI2-AS3 promoter. J Clin Lab Anal 2020; 34:e23431. [PMID: 32533587 PMCID: PMC7595890 DOI: 10.1002/jcla.23431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/29/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Background It has been indicated that the single nuclear polymorphisms (SNPs) in the long noncoding RNA (lncRNA) have association with colorectal cancer (CRC) susceptibility. Methods We enrolled 1078 cases with CRC and 1175 age‐ and gender‐matched cancer‐free controls to explore whether the polymorphisms in MAGI2‐AS3 have associations with CRC risk. qRT‐PCR, expression quantitative trait loci (eQTL) analyses, dual‐luciferase reporter assay, chromatin immunoprecipitation (ChIP), flow cytometry, and transwell assays were performed to explore the specific mechanisms in which MAGI2‐AS3 rs7783388 variation influenced the tumorigenesis of CRC. Results Subjects carrying rs7783388 GG genotype presented a higher risk of CRC compared with the AG/AA genotypes. Mechanistically, we found that the functional genetic variant of rs7783388 A > G decreased binding affinity of transcription factor glucocorticoid receptor (GR) to the MAGI2‐AS3 promoter, resulting in decreased transcriptional activity that subsequently downregulated MAGI2‐AS3 expression. Furthermore, functional experiments elucidated that MAGI2‐AS3 overexpression suppressed CRC cell proliferation, migration, and invasion capacities, arrested cell cycle at G0/G1 phase, and promoted cell apoptosis. Conclusion Taken together, our study demonstrated that the potential function of MAGI2‐AS3 as a tumor suppressor for CRC, and the MAGI2‐AS3 rs7783388 polymorphism is associated with the increased susceptibility to CRC by altering the binding ability of GR to the MAGI2‐AS3 promoter.
Collapse
Affiliation(s)
- Xi Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shenshen Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ying Yin
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
38
|
Wang F, Rong L, Zhang Z, Li M, Ma L, Ma Y, Xie X, Tian X, Yang Y. LncRNA H19-Derived miR-675-3p Promotes Epithelial-Mesenchymal Transition and Stemness in Human Pancreatic Cancer Cells by targeting the STAT3 Pathway. J Cancer 2020; 11:4771-4782. [PMID: 32626524 PMCID: PMC7330704 DOI: 10.7150/jca.44833] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: The functional role and mechanism of the long noncoding RNA (lncRNA) H19 in regulating human pancreatic cancer (PC) cell stemness and invasion have not been completely elucidated. This study aimed to evaluate the role of H19 in regulating the stemness, epithelial-mesenchymal transition (EMT), invasion and chemosensitivity of PC cells. Methods: The sphere-forming ability was assessed using serum-free floating-culture systems. Chemosensitivity was evaluated via CCK-8 and flow cytometry assays in vitro. Migration and invasion were evaluated by transwell assays. The expression of stemness and EMT markers was detected by flow cytometry, qRT-PCR and western blot analyses. Xenograft initiation, growth and sensitivity were examined; Ki-67 nuclear staining intensity was evaluated by immunohistochemistry; and in situ apoptosis was evaluated by a TUNEL assay. Results: H19 played an important role in maintaining PC cell stemness. Upregulated H19 expression in CAPAN-1 cells promoted tumor cell migration, invasion, EMT and chemoresistance. In contrast, downregulated H19 expression in PANC-1 cells yielded the opposite results. These effects were mediated by positively modulating the STAT3 pathway. Furthermore, SOCS5, an endogenous inhibitor of the STAT3 pathway, was a direct target of miR-675-3p, which was positively regulated by H19 in PC cells. Conclusions: The H19/miR-675-3p signaling axis plays a critical role in maintaining the EMT process and stemness of PC cells by directly targeting SOCS5 to activate the STAT3 pathway. These data provide new insights into the oncogenic function of H19 in human PC and reveal potential targets for the development of optimal treatment approaches for this disease.
Collapse
Affiliation(s)
- Feng Wang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China.,Department of Endoscopy Center, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Long Rong
- Department of Endoscopy Center, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Zhengkui Zhang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Mingzhe Li
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Ling Ma
- Department of Surgical Oncology, Peking University Ninth School of Clinical Medicine (Beijing Shijitan Hospital, Capital Medical University), Beijing 100038, People's Republic of China
| | - Yongsu Ma
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Xuehai Xie
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Xiaodong Tian
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| |
Collapse
|
39
|
Wang J, Zhao L, Shang K, Liu F, Che J, Li H, Cao B. Long non-coding RNA H19, a novel therapeutic target for pancreatic cancer. Mol Med 2020; 26:30. [PMID: 32272875 PMCID: PMC7146949 DOI: 10.1186/s10020-020-00156-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high mortality, which threats peoples’ health. Unfortunately, the pathogenesis of PDAC remains unclear. Recent studies have indicated that long non-coding RNAs (lncRNAs) can regulate the development and progression of malignant tumors through varying mechanisms. LncRNA H19 has a unique expression profile and can act as a sponger of specific miRNAs to regulate the pathogenic process of many diseases, including PDAC and several other types of cancers. Here, we review the research approaches to understanding the regulatory role of H19 and potential mechanisms in the progression of PDAC and other types of cancers and diseases. These studies suggest that H19 may be a novel therapeutic target for PDAC and our findings may open new revenues for scientific researches and development of valuable therapies for these diseases in the future.
Collapse
Affiliation(s)
- Jing Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Beijing, Xicheng District, China.,Yale School of Medicine, New Haven, CT, USA
| | - Lei Zhao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Beijing, Xicheng District, China
| | - Kun Shang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Beijing, Xicheng District, China
| | - Fang Liu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Beijing, Xicheng District, China.,Yale School of Medicine, New Haven, CT, USA.,Department of Cardiology, Chaoyang Hospital, Capital Medical University, Beijing, Chaoyang District, China
| | - Juanjuan Che
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Beijing, Xicheng District, China
| | - Huihui Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Beijing, Xicheng District, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Beijing, Xicheng District, China.
| |
Collapse
|
40
|
Zhou W, Chen L, Li C, Huang R, Guo M, Ning S, Ji J, Guo X, Lou G, Jia X, Zhao J, Luo F, Li C, Qu Z, Yu S, Tai S. The multifaceted roles of long noncoding RNAs in pancreatic cancer: an update on what we know. Cancer Cell Int 2020; 20:41. [PMID: 32042268 PMCID: PMC7003405 DOI: 10.1186/s12935-020-1126-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of cancer-related deaths worldwide. Due to the shortage of effective biomarkers for predicting survival and diagnosing PC, the underlying mechanism is still intensively investigated but poorly understood. Long noncoding RNAs (lncRNAs) provide biological functional diversity and complexity in protein regulatory networks. Scientific studies have revealed the emerging functions and regulatory roles of lncRNAs in PC behaviors. It is worth noting that some in-depth studies have revealed that lncRNAs are significantly associated with the initiation and progression of PC. As lncRNAs have good properties for both diagnostic and prognostic prediction due to their translation potential, we herein address the current understanding of the multifaceted roles of lncRNAs as regulators in the molecular mechanism of PC. We also discuss the possibility of using lncRNAs as survival biomarkers and their contributions to the development of targeted therapies based on the literature. The present review, based on what we know about current research findings, may help us better understand the roles of lncRNAs in PC.
Collapse
Affiliation(s)
- Wenjia Zhou
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Lu Chen
- 2Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Chao Li
- 3Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Huang
- 4Department of Colorectal Surgery, The second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mian Guo
- 5Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangwei Ning
- 6College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jingjing Ji
- 2Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Xiaorong Guo
- 2Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Ge Lou
- 2Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Xinqi Jia
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Junjie Zhao
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Feng Luo
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Chunlong Li
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Zhaowei Qu
- 7Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shan Yu
- 2Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Sheng Tai
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| |
Collapse
|
41
|
Ye Y, Guo J, Xiao P, Ning J, Zhang R, Liu P, Yu W, Xu L, Zhao Y, Yu J. Macrophages-induced long noncoding RNA H19 up-regulation triggers and activates the miR-193b/MAPK1 axis and promotes cell aggressiveness in hepatocellular carcinoma. Cancer Lett 2020; 469:310-322. [PMID: 31705929 DOI: 10.1016/j.canlet.2019.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/13/2019] [Accepted: 11/01/2019] [Indexed: 02/05/2023]
Abstract
Dysregulation of long noncoding RNA (lncRNA) H19 has been implicated in hepatocellular carcinoma (HCC), but the concrete regulatory mechanism is lack of research. We mined gene expression profiles of 457 HCC samples from TCGA and TJMUCH cohorts and further validated in 64 FFPE HCC tissues. LncRNA H19 overexpression in situ was significantly correlated with poor prognosis of HCC patients, which induced EMT, promoted stemness and accelerated invasion of HCC cells in vitro. Co-expression network analysis indicated lncRNA H19 negatively correlated with miR-193b and positively correlated with MAPK1 gene, which implicated that lncRNA H19 served as a sponge molecule to hijack miR-193b and protect MAPK1. Forced overexpression of H19 attenuated miR-193b-mediated inhibition on multiple driver oncogenes (EGFR, KRAS, PTEN and IGF1R) and MAPK1 gene, thus triggered EMT and stem cell transformation in HCC. LncRNA H19 positively correlated with CD68 + TAMs in situ. TAMs-induced lncRNA H19 promotes HCC aggressiveness via triggering and activating the miR-193b/MAPK1 axis, mediates the crosstalk between HCC and immunological microenvironment, and causes poor clinical outcomes. LncRNA H19 is a valuable predictive biomarker and potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Jincheng Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, PR China.
| | - Pei Xiao
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Junya Ning
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| | - Liyan Xu
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, PR China.
| | - Yi Zhao
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, PR China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| |
Collapse
|
42
|
Sasaki N, Hirabayashi K, Michishita M, Takahashi K, Hasegawa F, Gomi F, Itakura Y, Nakamura N, Toyoda M, Ishiwata T. Ganglioside GM2, highly expressed in the MIA PaCa-2 pancreatic ductal adenocarcinoma cell line, is correlated with growth, invasion, and advanced stage. Sci Rep 2019; 9:19369. [PMID: 31852956 PMCID: PMC6920443 DOI: 10.1038/s41598-019-55867-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/03/2019] [Indexed: 12/28/2022] Open
Abstract
Gangliosides, a group of glycosphingolipids, are known to be cell surface markers and functional factors in several cancers. However, the association between gangliosides and pancreatic ductal adenocarcinoma (PDAC) has not been well elucidated. In this study, we examined the expression and roles of ganglioside GM2 in PDAC. GM2+ cells showed a higher growth rate than GM2− cells in the adherent condition. When GM2– and GM2+ cells were cultured three-dimensionally, almost all cells in the spheres expressed GM2, including cancer stem cell (CSC)-like cells. A glycolipid synthesis inhibitor reduced GM2 expression and TGF-β1 signaling in these CSC-like cells, presumably by inhibiting the interaction between GM2 and TGFβ RII and suppressing invasion. Furthermore, suppression of GM2 expression by MAPK inhibition also reduced TGF-β1 signaling and suppressed invasion. GM2+ cells formed larger subcutaneous tumors at a high incidence in nude mice than did GM2– cells. In PDAC cases, GM2 expression was significantly associated with younger age, larger tumor size, advanced stage and higher histological grade. These findings suggest that GM2 could be used as a novel diagnostic and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.
| | - Kenichi Hirabayashi
- Department of Pathology, Tokai University School of Medicine, Kanagawa, 259-1193, Japan
| | - Masaki Michishita
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan
| | - Kimimasa Takahashi
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan
| | - Fumio Hasegawa
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Fujiya Gomi
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Yoko Itakura
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Kanagawa, 259-1193, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.
| |
Collapse
|
43
|
Ye Y, Shen A, Liu A. Long non-coding RNA H19 and cancer: A competing endogenous RNA. Bull Cancer 2019; 106:1152-1159. [PMID: 31753509 DOI: 10.1016/j.bulcan.2019.08.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/29/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
Long non-coding RNA (lncRNA) is a class of non-coding RNA with a length of more than 200 nucleotides, which has become a hotspot in the research of tumorigenesis and development in recent years. Accumulating studies have indicated that H19 is abnormally expressed in human malignant tumors, and regulates cell proliferation, migration, invasion, anti-apoptosis and epithelial-mesenchymal transition through various mechanisms, thus playing a carcinogenic or anti-cancer role. H19 has been found to act as a microRNA sponge to indirectly regulate the expression of microRNA downstream target genes thus mediating cancer progression in several cancer types. Even in the same cancer, H19 also sponges various microRNAs to mediate diverse regulatory mechanisms. Tissue-specific expression of H19 suggests that it may be an early diagnostic marker or prognostic indicator of cancers. In this review, we summarize the latest original researches, mainly focusing on the role of H19 sponging microRNAs in cancers. We hope this article can facilitate readers obtain the molecular mechanisms of H19 sponging miRNAs in cancers and provide a broad perspective for further research on cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yafen Ye
- Nanchang University, The Second Clinical Medical College, 461, Bayi Road, Nanchang, Jiangxi, China; Jiangxi key laboratory of clinical translational cancer research, 1, Minde Road, Nanchang, Jiangxi, China
| | - Ao Shen
- Nanchang University, The Second Clinical Medical College, 461, Bayi Road, Nanchang, Jiangxi, China
| | - Anwen Liu
- The Second Affiliated Hospital of Nanchang University, Department of Oncology, 1, Minde Road, Nanchang, Jiangxi, China; Jiangxi key laboratory of clinical translational cancer research, 1, Minde Road, Nanchang, Jiangxi, China.
| |
Collapse
|
44
|
High level of lncRNA H19 expression is associated with shorter survival in esophageal squamous cell cancer patients. Pathol Res Pract 2019; 215:152638. [PMID: 31551175 DOI: 10.1016/j.prp.2019.152638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/25/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023]
Abstract
AIM Long non-coding RNA (lncRNA) is currently considered to play an important regulatory role in various diseases, including tumors, at present a hot topic in research. As a non-coding transcription product of imprinted gene, LncRNA H19 is expressed as a parent imprinted maternal allele without protein-coding ability. Increasing evidence indicates that LncH19 may be a new tumor marker for early clinical diagnosis and prognosis judgment. In this study, LncH19 expression was investigated by RNA in situ hybridization for further exploring the clinicopathological role of its expression in esophageal squamous cell cancer (ESCC). METHODS 121 tumor samples and seven cases of adjacent non-tumor tissues from esophageal cancer patients were detected by RNA in situ hybridization (ISH) and the ISH staining was graded with modified Allred scoring. RESULTS While no LncH19 expression in the tumor adjacent to normal epithelia was disclosed with the technology, significantly higher levels of LncH19 expression were detected in the tumors obtained from the patients who died within one year after surgery, compared to the expression in those tumors from the patients who survived longer than five years after the same treatment regimen (P = 0.001). In addition, LncH19 expression was verified to correlate with a larger tumor size (P = 0.002) and a higher UICC stage (P = 0.001). CONCLUSION Our LncH19 ISH data verify the involvement of LncH19 in ESCC. Higher levels of LncH19 expression were not only detected in tumors with larger size and in clinical late stage, but also significantly associated with shorter survival, strongly indicating its clinical significance in the malignant progression of ESCC and useful value as a poor prognostic factor for the patients.
Collapse
|
45
|
Qin W, Wang X, Wang Y, Li Y, Chen Q, Hu X, Wu Z, Zhao P, Li S, Zhao H, Yao W, Ding J, Wei M, Wu H. Functional polymorphisms of the lncRNA H19 promoter region contribute to the cancer risk and clinical outcomes in advanced colorectal cancer. Cancer Cell Int 2019; 19:215. [PMID: 31452627 PMCID: PMC6702740 DOI: 10.1186/s12935-019-0895-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/29/2019] [Indexed: 01/15/2023] Open
Abstract
Background The long non-coding RNA H19 plays critical roles in cancer occurrence, development, and progression. The present study is for the first time to evaluate the association of genetic variations in the H19 promoter region with advanced colorectal cancer (CRC) susceptibility, environmental factors, and clinical outcomes. Methods 16 single-nucleotide polymorphisms (SNPs) were identified in the H19 gene promoter by DNA sequencing, and 3 SNPs among which including rs4930101, rs11042170, and rs2735970 further expanded samples with 572 advanced CRC patients and 555 healthy controls. Results We found that harboring SNP [rs4930101 (P = 0.009), rs2735970 (P = 0.003), and rs11042170 (P = 0.003)] or carrying more than one combined risk genotypes significantly increased the risk for CRC [P < 0.0001, adjusted OR (95% CI) 6.48 (2.97–14.15)]. In the correlation analysis with environmental factors, rs2735970 and gender, combined risk genotypes (> 1 vs. ≤ 1) and family history of cancer demonstrated significant interactions. Furthermore, a remarkably worse clinical outcome was found in combined risk genotypes (> 1 vs. ≤ 1), especially in CRC patients with body weight ≥ 61 kg, smoking, and first-degree family history of cancer (Log-rank test: P = 0.006, P = 0.018, and P = 0.013, respectively). More importantly, the multivariate Cox regression analyses further verified that combined risk genotypes > 1 showed a prognostic risk factor for CRC patients with body weight ≥ 61 kg (P = 0.002), smoking (P = 0.008), and family history of cancer (P = 0.006). In addition, MDR analysis consistently revealed that the combination of selected SNPs and nine known risk factors showed a better prediction prognosis and represented the best model to predict advanced CRC prognosis. Conclusion 3 SNPs of rs4930101, rs11042170, and rs27359703 among 16 identified SNPs of H19 gene remarkably increased CRC risk. Furthermore, the combined risk genotypes had a significant impact on environmental factors and clinical outcomes in the advanced CRC patients with body weight ≥ 61 kg, ever-smoking, and first-degree family history of cancer. These data suggest that H19 promoter SNPs, especially these combined SNPs might be more potentially functional biomarkers in the prediction of advanced CRC risk and prognosis. Electronic supplementary material The online version of this article (10.1186/s12935-019-0895-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenyan Qin
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Xiaodong Wang
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Yilin Wang
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Yalun Li
- 2Department of Anorectal Surgery, First Hospital of China Medical University, Shenyang, 110001 People's Republic of China
| | - Qiuchen Chen
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Xiaoyun Hu
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Zhikun Wu
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Pengfei Zhao
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Shanqiong Li
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Haishan Zhao
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Weifan Yao
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Jian Ding
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China.,3Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Minjie Wei
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| | - Huizhe Wu
- 1Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122 People's Republic of China
| |
Collapse
|
46
|
Qin L, Huang CC, Yan XM, Wang Y, Li ZY, Wei XC. Long non-coding RNA H19 is associated with polycystic ovary syndrome in Chinese women: a preliminary study. Endocr J 2019; 66:587-595. [PMID: 30982795 DOI: 10.1507/endocrj.ej19-0004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) represents a serious reproductive and endocrine condition and is associated with high incidence rates. H19 is a compelling long noncoding RNA (lncRNA) which carries out a range of biological functions. However, prior to this study, little was known as to whether there was an association between lncRNA H19 and PCOS. In the current study, we used quantitative real-time polymerase chain reaction (qRT-PCR) to determine lncRNA H19 expression levels in peripheral blood leukocytes from patients with PCOS and compared this data with that derived from normal controls. We also screened data for potential relationships between lncRNA H19 and a range of endocrine variables in PCOS. The expression of lncRNA H19 was significantly higher in cases of PCOS than in controls. Individuals exhibiting higher expression levels of lncRNA H19 were associated with a significantly higher risk of PCOS than those with lower expression levels. Moreover, lncRNA H19 expression was positively correlated with fasting plasma glucose levels; this was the case with both raw data, and after adjustment for age and BMI in the PCOS group. However, lncRNA H19 expression showed no significant correlation with total testosterone or insulin resistance in either PCOS cases or the controls. In conclusion, we demonstrate the first evidence to indicate that lncRNA H19 is associated with PCOS, suggesting that elevated lncRNA H19 levels are a risk factor for PCOS. For susceptible individuals, lncRNA H19 may represent a useful biomarker of the early stages of endocrine and metabolic disorders in PCOS.
Collapse
Affiliation(s)
- Li Qin
- Department of Obstetrics and Gynecology, the First Clinical Medical College of Jinan University, Guangzhou, Guangdong 510632, China
- Center for Reproductive Medicine, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Chui-Can Huang
- Department of Obstetrics and Gynecology, the First Clinical Medical College of Jinan University, Guangzhou, Guangdong 510632, China
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiu-Min Yan
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yao Wang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhong-Yi Li
- Department of Obstetrics and Gynecology, the First Clinical Medical College of Jinan University, Guangzhou, Guangdong 510632, China
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiang-Cai Wei
- Department of Obstetrics and Gynecology, the First Clinical Medical College of Jinan University, Guangzhou, Guangdong 510632, China
- Guangdong Women and Children Hospital, Guangzhou, Guangdong 510000, China
| |
Collapse
|
47
|
Perrera V, Martello G. How Does Reprogramming to Pluripotency Affect Genomic Imprinting? Front Cell Dev Biol 2019; 7:76. [PMID: 31143763 PMCID: PMC6521591 DOI: 10.3389/fcell.2019.00076] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/18/2019] [Indexed: 01/14/2023] Open
Abstract
Human induced Pluripotent Stem Cells (hiPSCs) have the capacity to generate a wide range of somatic cells, thus representing an ideal tool for regenerative medicine. Patient-derived hiPSCs are also used for in vitro disease modeling and drug screenings. Several studies focused on the identification of DNA mutations generated, or selected, during the derivation of hiPSCs, some of which are known to drive cancer formation. Avoiding such stable genomic aberrations is paramount for successful use of hiPSCs, but it is equally important to ensure that their epigenetic information is correct, given the critical role of epigenetics in transcriptional regulation and its involvement in a plethora of pathologic conditions. In this review we will focus on genomic imprinting, a prototypical epigenetic mechanism whereby a gene is expressed in a parent-of-origin specific manner, thanks to the differential methylation of specific DNA sequences. Conventional hiPSCs are thought to be in a pluripotent state primed for differentiation. They display a hypermethylated genome with an unexpected loss of DNA methylation at imprinted loci. Several groups recently reported the generation of hiPSCs in a more primitive developmental stage, called naïve pluripotency. Naïve hiPSCs share several features with early human embryos, such as a global genome hypomethylation, which is also accompanied by a widespread loss of DNA methylation at imprinted loci. Given that loss of imprinting has been observed in genetic developmental disorders as well as in a wide range of cancers, it is fundamental to make sure that hiPSCs do not show such epigenetic aberrations. We will discuss what specific imprinted genes, associated with human pathologies, have been found commonly misregulated in hiPSCs and suggest strategies to effectively detect and avoid such undesirable epigenetic abnormalities.
Collapse
Affiliation(s)
- Valentina Perrera
- Department of Molecular Medicine, School of Medicine and Surgery, University of Padova, Padua, Italy
| | - Graziano Martello
- Department of Molecular Medicine, School of Medicine and Surgery, University of Padova, Padua, Italy
| |
Collapse
|
48
|
Long non-coding RNA H19 promotes corneal neovascularization by targeting microRNA-29c. Biosci Rep 2019; 39:BSR20182394. [PMID: 30948500 PMCID: PMC6499455 DOI: 10.1042/bsr20182394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/17/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNA (lncRNA) H19 has been implicated in tumor angiogenesis. However, whether H19 regulates the progression of corneal neovascularization (CNV) is unclear. The present study aimed to determine the function of H19 in CNV and its possible molecular mechanism. Here, we found that the H19 levels were remarkably increased in vascularized corneas and basic fibroblast growth factor (bFGF)-treated human umbilical vein endothelial cells (HUVECs). In vitro, H19 up-regulation promoted proliferation, migration, tube formation and vascular endothelial growth factor A (VEGFA) expression in HUVECs, and it was found to down-regulate microRNA-29c (miR-29c) expression. Bioinformatics analysis revealed that H19 mediated the above effects by binding directly to miR-29c. In addition, miR-29c expression was markedly reduced in vascularized corneas and its expression also decreased in bFGF-treated HUVECs in vitro. MiR-29c targeted the 3′ untranslated region (3′-UTR) of VEGFA and decreased its expression. These data suggest that H19 can enhance CNV progression by inhibiting miR-29c, which negatively regulates VEGFA. This novel regulatory axis may serve as a potential therapeutic target for CNV.
Collapse
|
49
|
Zhang Y, Zhang D, Lv J, Wang S, Zhang Q. LncRNA SNHG15 acts as an oncogene in prostate cancer by regulating miR-338-3p/FKBP1A axis. Gene 2019; 705:44-50. [PMID: 30981837 DOI: 10.1016/j.gene.2019.04.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) are crucial regulators in the progression of various diseases. Although the role of lncRNAs in prostate cancer (PCa) has been studied in recent years, there are still numerous lncRNAs need to be elucidated. This study aims to detect the role of lncRNA small nucleolar RNA host gene 15 (SNHG15) in human prostate cancer. Using qRT-PCR analysis, we identified the upregulation of SNHG15 in PCa cell lines. Loss-of function assays were conducted to determine the regulatory effect of SNHG15 on PCa cell proliferation, migration and epithelial-mesenchymal transition (EMT). According to the results of functional assays, we found that knockdown of SNHG15 impaired cell viability, suppressed cell proliferation, inhibited cell migration and invasion, reversed EMT progress. All these findings revealed the oncogenic function of SNHG15 in PCa. Mechanism investigation revealed that SNHG15 was located in the cytoplasm of PCa cells and acted as a molecular sponge of microRNA-338-3p (miR-338-3p). Moreover, FKBP prolyl isomerase 1A (FKBP1A) was a target of miR-338-3p. This investigation demonstrated that SNHG15 may serve as a competing endogenous RNA (ceRNA) to regulate miR-338-3p and FKBP1A. Finally, the involvement of miR-338-3p and FKBP1A in SNHG15-mediated biological function was demonstrated by performing rescue assays. In summary, our study revealed the function of a novel pathway in PCa.
Collapse
Affiliation(s)
- Yuelong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jia Lv
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Shuai Wang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Qi Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
50
|
H19 long non-coding RNA contributes to sphere formation and invasion through regulation of CD24 and integrin expression in pancreatic cancer cells. Oncotarget 2018; 9:34719-34734. [PMID: 30410672 PMCID: PMC6205177 DOI: 10.18632/oncotarget.26176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022] Open
Abstract
The long non-coding RNA H19 is highly expressed in several cancers, and the functions of H19 vary among cancer cell types. Recently, we reported that H19 contributes to the metastasis of pancreatic ductal adenocarcinoma (PDAC) cells and that inhibition of H19 reduces metastasis in vivo. However, the molecular mechanisms underlying the metastasis-promoting role of H19 in PDAC cells remain poorly elucidated. In this study, we clarified the mechanisms by which H19 regulates PDAC metastasis, with a focus on cancer stem cells (CSCs), by using H19-overexpressing and knockdown PDAC cells. Whereas the sphere-formation and invasion abilities of PDAC cells depended on H19 expression levels, other CSC characteristics of the cells, including stemness-marker expression and anticancer-drug resistance, were unaffected by H19 levels. Furthermore, metalloproteinase activity, a key mediator of invasion, was also independent of H19 expression. By contrast, H19 promoted cell adhesion through regulation of integrin and CD24 expression. Notably, the increased adhesion of H19-overexpressing cells was blocked by an anti-β1-integrin antibody, and this resulted in the inhibition of sphere formation and invasion. Thus, H19 plays critical roles in the CSC self-renewal and cell adhesion of PDAC that lead to invasion and metastasis. Our findings suggest that H19 represents a novel therapeutic target for the metastasis of pancreatic cancer.
Collapse
|