1
|
Lv J, Liu G, Gao H, He Y, Tang X, Wang Z, Sun K, Bayazitova K, Jiang Z. miR-221-5p_R-4 regulates internalized trehalose-induced autophagy by targeting NRBF2 in porcine granulosa cells. Int J Biol Macromol 2024; 282:136718. [PMID: 39447807 DOI: 10.1016/j.ijbiomac.2024.136718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/20/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Trehalose, as a food and feed additive, can regulate physiological and pathological processes by activating autophagy, yet the molecular mechanism of trehalose dominated a rise in autophagy has not been elucidated. This study investigated the mechanisms of trehalose-induced autophagy in porcine granulosa cells (PGCs). Trehalose was internalized into PGCs by endocytosis and caused a temporary change of the lysosome pH, ultimately inducing autophagy. Furthermore, miRNA-seq analysis of PGCs indicated that trehalose upregulated the expression of miR-221-5p_R-4, which can target nuclear receptor binding factor 2 (NRBF2) to induce autophagy of PGCs. In summary, this study reveals that miR-221-5p_R-4 targeting NRBF2 was involved in the autophagy of PGCs challenged by trehalose, which was taken up by PGCs through endocytosis.
Collapse
Affiliation(s)
- Jing Lv
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guangyu Liu
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huimin Gao
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yutao He
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaorong Tang
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziqi Wang
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaikai Sun
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kulbaram Bayazitova
- Department of Food Security, Agrotechnological Faculty, M. Kozybayev North Kazakhstan University, Petropavlovsk, 150000, Kazakhstan
| | - Zhongliang Jiang
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Ouyang X, Collu R, Benavides GA, Tian R, Darley-Usmar V, Xia W, Zhang J. ROCK Inhibitor Fasudil Attenuates Neuroinflammation and Associated Metabolic Dysregulation in the Tau Transgenic Mouse Model of Alzheimer's Disease. Curr Alzheimer Res 2024; 21:183-200. [PMID: 38910422 DOI: 10.2174/0115672050317608240531130204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND The pathological manifestations of Alzheimer's disease (AD) include not only brain amyloid β protein (Aβ) containing neuritic plaques and hyperphosphorylated tau (p-- tau) containing neurofibrillary tangles but also microgliosis, astrocytosis, and neurodegeneration mediated by metabolic dysregulation and neuroinflammation. METHODS While antibody-based therapies targeting Aβ have shown clinical promise, effective therapies targeting metabolism, neuroinflammation, and p-tau are still an urgent need. Based on the observation that Ras homolog (Rho)-associated kinases (ROCK) activities are elevated in AD, ROCK inhibitors have been explored as therapies in AD models. This study determines the effects of fasudil, a ROCK inhibitor, on neuroinflammation and metabolic regulation in the P301S tau transgenic mouse line PS19 that models neurodegenerative tauopathy and AD. Using daily intraperitoneal (i.p.) delivery of fasudil in PS19 mice, we observed a significant hippocampal-specific decrease of the levels of phosphorylated tau (pTau Ser202/Thr205), a decrease of GFAP+ cells and glycolytic enzyme Pkm1 in broad regions of the brain, and a decrease in mitochondrial complex IV subunit I in the striatum and thalamic regions. RESULTS Although no overt detrimental phenotype was observed, mice dosed with 100 mg/kg/day for 2 weeks exhibited significantly decreased mitochondrial outer membrane and electron transport chain (ETC) protein abundance, as well as ETC activities. CONCLUSION Our results provide insights into dose-dependent neuroinflammatory and metabolic responses to fasudil and support further refinement of ROCK inhibitors for the treatment of AD.
Collapse
Affiliation(s)
- Xiaosen Ouyang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Roberto Collu
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Ran Tian
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biological Sciences, University of Massachusetts Kennedy College of Science, Lowell, MA, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| |
Collapse
|
3
|
Passols M, Llobet-Cabau F, Sebastià C, Castelló A, Valdés-Hernández J, Criado-Mesas L, Sánchez A, Folch JM. Identification of genomic regions, genetic variants and gene networks regulating candidate genes for lipid metabolism in pig muscle. Animal 2023; 17:101033. [PMID: 38064855 DOI: 10.1016/j.animal.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
The intramuscular fat content and fatty acid composition of porcine meat have a significant impact on its quality and nutritional value. This research aimed to investigate the expression of 45 genes involved in lipid metabolism in the longissimus dorsi muscle of three experimental pig backcrosses, with a 25% of Iberian background. To achieve this objective, we conducted an expression Genome-Wide Association Study (eGWAS) using gene expression levels in muscle measured by high-throughput real-time qPCR for 45 target genes and genotypes from the PorcineSNP60 BeadChip or Axiom Porcine Genotyping Array and 65 single nucleotide polymorphisms (SNPs) located in 20 genes genotyped by a custom-designed Taqman OpenArray in a cohort of 354 animals. The eGWAS analysis identified 301 eSNPs associated with 18 candidate genes (ANK2, APOE, ARNT, CIITA, CPT1A, EGF, ELOVL6, ELOVL7, FADS3, FASN, GPAT3, NR1D2, NR1H2, PLIN1, PPAP2A, RORA, RXRA and UCP3). Three cis-eQTL (expression quantitative trait loci) were identified for GPAT3, RXRA, and UCP3 genes, which indicates that a genetic polymorphism proximal to the same gene is affecting its expression. Furthermore, 24 trans-eQTLs were detected, and eight candidate regulatory genes were located in these genomic regions. Additionally, two trans-regulatory hotspots in Sus scrofa chromosomes 13 and 15 were identified. Moreover, a co-expression analysis performed on 89 candidate genes and the fatty acid composition revealed the regulatory role of four genes (FABP5, PPARG, SCD, and SREBF1). These genes modulate the levels of α-linolenic, arachidonic, and oleic acids, as well as regulating the expression of other candidate genes associated with lipid metabolism. The findings of this study offer novel insights into the functional regulatory mechanism of genes involved in lipid metabolism, thereby enhancing our understanding of this complex biological process.
Collapse
Affiliation(s)
- M Passols
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España.
| | - F Llobet-Cabau
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - C Sebastià
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - A Castelló
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - J Valdés-Hernández
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - L Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España
| | - A Sánchez
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - J M Folch
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| |
Collapse
|
4
|
Ouyang X, Wani WY, Benavides GA, Redmann MJ, Vo H, van Groen T, Darley-Usmar VM, Zhang J. Cathepsin D overexpression in the nervous system rescues lethality and A β42 accumulation of cathepsin D systemic knockout in vivo. Acta Pharm Sin B 2023; 13:4172-4184. [PMID: 37799377 PMCID: PMC10547960 DOI: 10.1016/j.apsb.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
The lysosome is responsible for protein and organelle degradation and homeostasis and the cathepsins play a key role in maintaining protein quality control. Cathepsin D (CTSD), is one such lysosomal protease, which when deficient in humans lead to neurolipofuscinosis (NCL) and is important in removing toxic protein aggregates. Prior studies demonstrated that CTSD germ-line knockout-CtsdKO (CDKO) resulted in accumulation of protein aggregates, decreased proteasomal activities, and postnatal lethality on Day 26 ± 1. Overexpression of wildtype CTSD, but not cathepsin B, L or mutant CTSD, decreased α-synuclein toxicity in worms and mammalian cells. In this study we generated a mouse line expressing human CTSD with a floxed STOP cassette between the ubiquitous CAG promoter and the cDNA. After crossing with Nestin-cre, the STOP cassette is deleted in NESTIN + cells to allow CTSD overexpression-CTSDtg (CDtg). The CDtg mice exhibited normal behavior and similar sensitivity to sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced neurodegeneration. By breeding CDtg mice with CDKO mice, we found that over-expression of CTSD extended the lifespan of the CDKO mice, partially rescued proteasomal deficits and the accumulation of Aβ42 in the CDKO. This new transgenic mouse provides supports for the key role of CTSD in protecting against proteotoxicity and offers a new model to study the role of CTSD enhancement in vivo.
Collapse
Affiliation(s)
- Xiaosen Ouyang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Willayat Y. Wani
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gloria A. Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew J. Redmann
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hai Vo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Zhang C, Chen H, Rodriguez Y, Ma X, Swerdlow RH, Zhang J, Ding WX. A perspective on autophagy and transcription factor EB in Alcohol-Associated Alzheimer's disease. Biochem Pharmacol 2023; 213:115576. [PMID: 37127251 PMCID: PMC11009931 DOI: 10.1016/j.bcp.2023.115576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Alzheimer's disease (AD) is the most common form of progressive dementia and there is no truly efficacious treatment. Accumulating evidence indicates that impaired autophagic function for removal of damaged mitochondria and protein aggregates such as amyloid and tau protein aggregates may contribute to the pathogenesis of AD. Epidemiologic studies have implicated alcohol abuse in promoting AD, yet the underlying mechanisms are poorly understood. In this review, we discuss mechanisms of selective autophagy for mitochondria and protein aggregates and how these mechanisms are impaired by aging and alcohol consumption. We also discuss potential genetic and pharmacological approaches for targeting autophagy/mitophagy, as well as lysosomal and mitochondrial biogenesis, for the potential prevention and treatment of AD.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hao Chen
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yssa Rodriguez
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Russell H Swerdlow
- Department of Neurology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jianhua Zhang
- Department of Pathology, Division of Molecular Cellular Pathology, University of Alabama at Birmingham, 901 19th street South, Birmingham, AL 35294, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Internal Medicine, Division of Gastroenterology, Hepatology & Motility, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
6
|
Yang C, Su C, Iyaswamy A, Krishnamoorthi SK, Zhu Z, Yang S, Tong BC, Liu J, Sreenivasmurthy SG, Guan X, Kan Y, Wu AJ, Huang AS, Tan J, Cheung K, Song J, Li M. Celastrol enhances transcription factor EB (TFEB)-mediated autophagy and mitigates Tau pathology: Implications for Alzheimer’s disease therapy. Acta Pharm Sin B 2022; 12:1707-1722. [PMID: 35847498 PMCID: PMC9279716 DOI: 10.1016/j.apsb.2022.01.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD), characterized by the accumulation of protein aggregates including phosphorylated Tau aggregates, is the most common neurodegenerative disorder with limited therapeutic agents. Autophagy plays a critical role in the degradation of phosphorylated Tau aggregates, and transcription factor EB (TFEB) is a master regulator of autophagy and lysosomal biogenesis. Thus, small-molecule autophagy enhancers targeting TFEB hold promise for AD therapy. Here, we found that celastrol, an active ingredient isolated from the root extracts of Tripterygium wilfordii (Lei Gong Teng in Chinese) enhanced TFEB-mediated autophagy and lysosomal biogenesis in vitro and in mouse brains. Importantly, celastrol reduced phosphorylated Tau aggregates and attenuated memory dysfunction and cognitive deficits in P301S Tau and 3xTg mice, two commonly used AD animal models. Mechanistical studies suggest that TFEB-mediated autophagy-lysosomal pathway is responsible for phosphorylated Tau degradation in response to celastrol. Overall, our findings indicate that Celastrol is a novel TFEB activator that promotes the degradation of phosphorylated Tau aggregates and improves memory in AD animal models. Therefore, Celastrol shows potential as a novel agent for the treatment and/or prevention of AD and other tauopathies.
Collapse
|
7
|
Wu MY, Cai CZ, Yang C, Yue Z, Chen Y, Bian ZX, Li M, Lu JH. Emerging roles of NRBF2/PI3KC3 axis in maintaining homeostasis of brain and guts. Neural Regen Res 2022; 17:323-324. [PMID: 34269201 PMCID: PMC8463979 DOI: 10.4103/1673-5374.317973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ming-Yue Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region, China
| | - Cui-Zan Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region, China
| | - Chuanbin Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Zhenyu Yue
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region, China
| |
Collapse
|
8
|
Ohashi Y. Class III phosphatidylinositol 3-kinase complex I subunit NRBF2/Atg38 - from cell and structural biology to health and disease. Autophagy 2021; 17:3897-3907. [PMID: 33459128 PMCID: PMC8726667 DOI: 10.1080/15548627.2021.1872240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Macroautophagy/autophagy is triggered by various starvation and stress conditions. The phospholipid phosphatidylinositol-3-phosphate (PtdIns3P) is essential for the formation of the autophagosome both in yeast and mammals. The class III phosphatidylinositol 3-kinase, PIK3C3C in humans or Vps34 in yeast, produces PtdIns3P by phosphorylating the 3'-OH position of phosphatidylinositol (PtdIns). In order to synthesize PtdIns3P for the initiation of autophagy, PIK3C3/Vps34 has a heterotetrameric core, the PIK3C3 complex I (hereafter complex I) composed of PIK3C3/Vps34, PIK3R4/Vps15, BECN1/Vps30, and ATG14/Atg14. A fifth component of complex I, NRBF2 in mammals and Atg38 in yeast, was found and has been characterized in the past decade. The field has been expanding from cell and structural biology to mouse model and cohort studies. Here I will summarize the structures and models of complex I binding NRBF2/Atg38, its intracellular roles, and its involvement in health and disease. Along with this expansion of the field, different conclusions have been drawn in several topics. I will clarify what has and has not been agreed, and what is to be clarified in the future.
Collapse
Affiliation(s)
- Yohei Ohashi
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
9
|
Melo-Baez B, Wong YS, Aguilera CJ, Cabezas J, Mançanares ACF, Riadi G, Castro FO, Rodriguez-Alvarez L. MicroRNAs from Extracellular Vesicles Secreted by Bovine Embryos as Early Biomarkers of Developmental Competence. Int J Mol Sci 2020; 21:ijms21238888. [PMID: 33255183 PMCID: PMC7727673 DOI: 10.3390/ijms21238888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
During early development, embryos secrete extracellular vesicles (EVs) that participate in embryo–maternal communication. Among other molecules, EVs carry microRNAs (miRNAs) that interfere with gene expression in target cells; miRNAs participate in embryo–maternal communication. Embryo selection based on secreted miRNAs may have an impact on bovine breeding programs. This research aimed to evaluate the size, concentration, and miRNA content of EVs secreted by bovine embryos with different developmental potential, during the compaction period (days 3.5–5). Individual culture media from in vitro–produced embryos were collected at day 5, while embryos were further cultured and classified at day 7, as G1 (conditioned-culture media by embryos arrested in the 8–16-cells stage) and G2 (conditioned-culture media by embryos that reached blastocyst stages at day 7). Collected nanoparticles from embryo conditioned culture media were cataloged as EVs by their morphology and the presence of classical molecular markers. Size and concentration of EVs from G1 were higher than EVs secreted by G2. We identified 95 miRNAs; bta-miR-103, bta-miR-502a, bta-miR-100, and bta-miR-1 were upregulated in G1, whereas bta-miR-92a, bta-miR-140, bta-miR-2285a, and bta-miR-222 were downregulated. The most significant upregulated pathways were fatty acid biosynthesis and metabolism, lysine degradation, gap junction, and signaling pathways regulating pluripotency of stem cells. The characteristics of EVs secreted by bovine embryos during the compaction period vary according to embryo competence. Embryos that reach the blastocyst stage secrete fewer and smaller vesicles. Furthermore, the loading of specific miRNAs into the EVs depends on embryo developmental competence.
Collapse
Affiliation(s)
- Bárbara Melo-Baez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile; (B.M.-B.); (Y.S.W.); (C.J.A.); (J.C.); (A.C.F.M.); (F.O.C.)
| | - Yat S. Wong
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile; (B.M.-B.); (Y.S.W.); (C.J.A.); (J.C.); (A.C.F.M.); (F.O.C.)
| | - Constanza J. Aguilera
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile; (B.M.-B.); (Y.S.W.); (C.J.A.); (J.C.); (A.C.F.M.); (F.O.C.)
| | - Joel Cabezas
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile; (B.M.-B.); (Y.S.W.); (C.J.A.); (J.C.); (A.C.F.M.); (F.O.C.)
| | - Ana C. F. Mançanares
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile; (B.M.-B.); (Y.S.W.); (C.J.A.); (J.C.); (A.C.F.M.); (F.O.C.)
| | - Gonzalo Riadi
- ANID-Millennium Science Initiative Program Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Center for Bioinformatics, Simulation and Modeling, CBSM, Department of Bioinformatics, Faculty of Engineering, Campus Talca, University of Talca, Talca 3460000, Chile;
| | - Fidel O. Castro
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile; (B.M.-B.); (Y.S.W.); (C.J.A.); (J.C.); (A.C.F.M.); (F.O.C.)
| | - Lleretny Rodriguez-Alvarez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile; (B.M.-B.); (Y.S.W.); (C.J.A.); (J.C.); (A.C.F.M.); (F.O.C.)
- Correspondence: ; Tel.: +56-242208835
| |
Collapse
|
10
|
Brinza I, Abd-Alkhalek AM, El-Raey MA, Boiangiu RS, Eldahshan OA, Hritcu L. Ameliorative Effects of Rhoifolin in Scopolamine-Induced Amnesic Zebrafish ( Danio rerio) Model. Antioxidants (Basel) 2020; 9:antiox9070580. [PMID: 32635149 PMCID: PMC7401873 DOI: 10.3390/antiox9070580] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Rhoifolin (Rho) exerts many biological activities such as anticancer, antidiabetic, hepatoprotective, antirheumatic, antibacterial, and antiviral properties. The neuroprotective action of this compound has not been studied. The goal of this study was to investigate the improvement impact of Rho on scopolamine (Sco)-induced zebrafish anxiety, amnesia, and brain oxidative stress and to elucidate the underlying mechanisms involved. Zebrafish were treated with Rho (1, 3, and 5 μg/L) for nine consecutive days and were subsequently subjected to Sco (100 μM) 30 min before behavioral tests (novel tank diving test, Y-maze, and novel object recognition tests). Rho was isolated from Chorisia crispiflora (Malvaceae) leaves and identified by different spectroscopic techniques. To further assess the possible mechanisms of Rho in enhancing the memory capacities in zebrafish, the in vivo antioxidant status and acetylcholinesterase (AChE) activity was also evaluated. Rho from Chorisia crispiflora leaves was identified. Rho could alleviate anxiety, memory deficits, and brain oxidative stress in Sco-treated zebrafish and could regulate the cholinergic function by inhibiting the AChE activity. Our results demonstrated that Rho could be a promising candidate compound against anxiety and amnesia by restoring the cholinergic activity and the amelioration of brain oxidative stress.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.)
| | | | - Mohamed A. El-Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.)
| | - Omayma A. Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (L.H.); (O.A.E.); Tel.: +40-232-201-666 (L.H.); +20-101-184-1951 (O.A.E.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (I.B.); (R.S.B.)
- Correspondence: (L.H.); (O.A.E.); Tel.: +40-232-201-666 (L.H.); +20-101-184-1951 (O.A.E.)
| |
Collapse
|