1
|
Ma N, Tan J, Chen Y, Yang L, Li M, He Y. MicroRNAs in metabolic dysfunction-associated diseases: Pathogenesis and therapeutic opportunities. FASEB J 2024; 38:e70038. [PMID: 39250169 DOI: 10.1096/fj.202401464r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Metabolic dysfunction-associated diseases often refer to various diseases caused by metabolic problems such as glucose and lipid metabolism disorders. With the improvement of living standards, the increasing prevalence of metabolic diseases has become a severe public health problem, including metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver disease (ALD), diabetes and obesity. These diseases are both independent and interdependent, with complex and diverse molecular mechanisms. Therefore, it is urgent to explore the molecular mechanisms and find effective therapeutic targets of these diseases. MicroRNAs (miRNAs) have emerged as key regulators of metabolic homoeostasis due to their multitargets and network regulatory properties within the past few decades. In this review, we discussed the latest progress in the roles of miRNA-mediated regulatory networks in the development and progression of MASLD, ALD, diabetes and obesity.
Collapse
Affiliation(s)
- Ningning Ma
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Tan
- Laboratory of Cellular Immunity, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingfen Chen
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Man Li
- Laboratory of Cellular Immunity, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Deng J, Qin L, Qin S, Wu R, Huang G, Fang Y, Huang L, Zhou Z. NcRNA Regulated Pyroptosis in Liver Diseases and Traditional Chinese Medicine Intervention: A Narrative Review. J Inflamm Res 2024; 17:2073-2088. [PMID: 38585470 PMCID: PMC10999193 DOI: 10.2147/jir.s448723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Pyroptosis is a novel pro-inflammatory mode of programmed cell death that differs from ferroptosis, necrosis, and apoptosis in terms of its onset and regulatory mechanisms. Pyroptosis is dependent on cysteine aspartate protein hydrolase (caspase)-mediated activation of GSDMD, NLRP3, and the release of pro-inflammatory cytokines, interleukin-1 (IL-1β), and interleukin-18 (IL-18), ultimately leading to cell death. Non-coding RNA (ncRNA) is a type of RNA that does not encode proteins in gene transcription but plays an important regulatory role in other post-transcriptional links. NcRNA mediates pyroptosis by regulating various related pyroptosis factors, which we termed the pyroptosis signaling pathway. Previous researches have manifested that pyroptosis is closely related to the development of liver diseases, and is essential for liver injury, alcoholic fatty liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver fibrosis, and liver cancer. In this review, we attempt to address the role of the ncRNA-mediated pyroptosis pathway in the above liver diseases and their pathogenesis in recent years, and briefly outline that TCM (Traditional Chinese Medicine) intervene in liver diseases by modulating ncRNA-mediated pyroptosis, which will provide a strategy to find new therapeutic targets for the prevention and treatment of liver diseases in the future.
Collapse
Affiliation(s)
- Jiasheng Deng
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
| | - Le Qin
- Department of Pharmacy, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Sulang Qin
- School of Graduate Studies, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Ruisheng Wu
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
| | - Guidong Huang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
| | - Yibin Fang
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, 545006, People’s Republic of China
| | - Lanlan Huang
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, 545006, People’s Republic of China
| | - Zhipin Zhou
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, 545006, People’s Republic of China
| |
Collapse
|
3
|
Soto A, Spongberg C, Martinino A, Giovinazzo F. Exploring the Multifaceted Landscape of MASLD: A Comprehensive Synthesis of Recent Studies, from Pathophysiology to Organoids and Beyond. Biomedicines 2024; 12:397. [PMID: 38397999 PMCID: PMC10886580 DOI: 10.3390/biomedicines12020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a widespread contributor to chronic liver disease globally. A recent consensus on renaming liver disease was established, and metabolic dysfunction-associated steatotic liver disease, MASLD, was chosen as the replacement for NAFLD. The disease's range extends from the less severe MASLD, previously known as non-alcoholic fatty liver (NAFL), to the more intense metabolic dysfunction-associated steatohepatitis (MASH), previously known as non-alcoholic steatohepatitis (NASH), characterized by inflammation and apoptosis. This research project endeavors to comprehensively synthesize the most recent studies on MASLD, encompassing a wide spectrum of topics such as pathophysiology, risk factors, dietary influences, lifestyle management, genetics, epigenetics, therapeutic approaches, and the prospective trajectory of MASLD, particularly exploring its connection with organoids.
Collapse
Affiliation(s)
- Allison Soto
- Department of Surgery, University of Illinois College of Medicine, Chicago, IL 60607, USA;
| | - Colby Spongberg
- Touro College of Osteopathic Medicine, Great Falls, MT 59405, USA
| | | | - Francesco Giovinazzo
- General Surgery and Liver Transplant Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
4
|
Ding FF, Li M, Wang T, Zhou NN, Qiao F, Du ZY, Zhang ML. Influence of dietary sodium taurocholate on the growth performance and liver health of Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:319-330. [PMID: 36044098 DOI: 10.1007/s10695-022-01116-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Bile acids (BAs) are a class of cholesterol-derived amphipathic molecules approved as new animal feed additives. However, the functional researches mainly focused on BAs mixture, and the influence of the individual BA on fishes was still limited. In the present study, Nile tilapia were fed basal diet with three levels of sodium taurocholate at 0 mg/kg (CON), 300 mg/kg (TCAL), and 600 mg/kg (TCAH) for 8 weeks. The results indicated that addition of sodium taurocholate did not significantly influence the growth performance. Instead, TCAH group had higher cholesterol accumulation with liver fibrosis. In TCAH group, the level of nuclear factor E2-related factor 2 (nrf2) signaling-associated oxidative stress factors significantly increased in the liver. Additionally, fish in TCAH group had the highest expression level of genes encoding endoplasmic reticulum (ER) stress and inflammatory cytokines in the liver. In conclusion, 300 mg/kg of sodium taurocholate did not significantly influence the growth performance of fish, while 600 mg/kg of sodium taurocholate markedly induced cholesterol accumulation and liver injury, suggesting that the application of taurocholic acid in aquafeed should be re-evaluated.
Collapse
Affiliation(s)
- Fei-Fei Ding
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Miao Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Tong Wang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Nan-Nan Zhou
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
5
|
Bala S, Zhuang Y, Nagesh PT, Catalano D, Zivny A, Wang Y, Xie J, Gao G, Szabo G. Therapeutic inhibition of miR-155 attenuates liver fibrosis via STAT3 signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:413-427. [PMID: 37547286 PMCID: PMC10403732 DOI: 10.1016/j.omtn.2023.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Most chronic liver diseases progress to liver fibrosis, which, when left untreated, can lead to cirrhosis and hepatocellular carcinoma. MicroRNA (miRNA)-targeted therapeutics have become attractive approaches to treat diseases. In this study, we investigated the therapeutic effect of miR-155 inhibition in the bile duct ligation (BDL) mouse model of liver fibrosis and evaluated the role of miR-155 in chronic liver fibrosis using miR-155-deficient (miR-155 knockout [KO]) mice. We found increased hepatic miR-155 expression in patients with cirrhosis and in the BDL- and CCl4-induced mouse models of liver fibrosis. Liver fibrosis was significantly reduced in miR-155 KO mice after CCl4 administration or BDL. To assess the therapeutic potential of miR-155 inhibition, we administered an rAAV8-anti-miR-155 tough decoy in vivo that significantly reduced liver damage and fibrosis in BDL. BDL-induced protein levels of transforming growth factor β (TGF-β), p-SMAD2/3, and p-STAT3 were attenuated in anti-miR-155-treated compared with control mice. Hepatic stellate cells from miR-155 KO mice showed attenuation in activation and mesenchymal marker expression. In vitro, miR-155 gain- and loss-of-function studies revealed that miR-155 regulates activation of stellate cells partly via STAT3 signaling. Our study suggests that miR-155 is the key regulator of liver fibrosis and might be a potential therapeutic target to attenuate fibrosis progression.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Yuan Zhuang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Adam Zivny
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Yanbo Wang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
6
|
Qiao J, Li H, Jinxiang C, Shi Y, Li N, Zhu P, Zhang S, Miao M. Mulberry fruit repairs alcoholic liver injury by modulating lipid metabolism and the expression of miR-155 and PPARα in rats. Funct Integr Genomics 2023; 23:261. [PMID: 37530875 DOI: 10.1007/s10142-023-01131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 08/03/2023]
Abstract
As alcohol consumption increases, alcoholic liver disease (ALD) has become more popular and is threating our human life. In this study, we found mulberry fruit extract (MFE) repaired alcohol-caused liver diseases by regulating hepatic lipid biosynthesis pathway and oxidative singling in alcoholically liver injured (ALI) rats. MFE administration inhibited hepatic lipid accumulation and improved liver steatosis in ALI rats. MFE also enhanced the antioxidant capacity and alleviated the inflammatory response by increasing the activities of antioxidant enzymes and decreasing the contents of interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Additionally, MFE regulated the expression of miRNA-155 and lipid metabolism-related PPARα protein in rats. Both miR-155 and PPARα play important roles in liver function. The results indicate that MFE has hepatoprotective effects against ALI in rats.
Collapse
Affiliation(s)
- Jingyi Qiao
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- People's Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Hanwei Li
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Chen Jinxiang
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yanmei Shi
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ning Li
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Pingsheng Zhu
- College of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Sisen Zhang
- People's Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Mingsan Miao
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Shen Y, Cheng L, Xu M, Wang W, Wan Z, Xiong H, Guo W, Cai M, Xu F. SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis. Metabolism 2023:155657. [PMID: 37422021 DOI: 10.1016/j.metabol.2023.155657] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND AND RATIONALE Activation of hepatic stellate cells (HSCs), the central event of fibrosis, indicates the severe stage of non-alcoholic fatty liver disease (NAFLD). MicroRNAs (miRNAs) participate in this process. Treatment with a sodium-glucose cotransporter 2 inhibitor (SGLT2i) alleviates liver fibrosis in patients with type 2 diabetes and NAFLD; however, the role of SGLT2i in ameliorating liver fibrosis in NAFLD by regulating miRNAs remains unclear. APPROACH AND RESULTS We monitored the expression of NAFLD-associated miRNAs in the livers of two NAFLD models and observed high expression of miR-34a-5p. miR-34a-5p was highly expressed in mouse primary liver non-parenchymal cells and LX-2 HSCs, and this miRNA was positively correlated with alanine transaminase levels in NAFLD models. Overexpression of miR-34a-5p enhanced LX-2 activation, whereas its inhibition prevented HSCs activation by regulating the TGFβ signaling pathway. The SGLT2i empagliflozin significantly downregulated miR-34a-5p, inhibited the TGFβ signaling pathway, and ameliorated hepatic fibrosis in NAFLD models. Subsequently, GREM2 was identified as a direct target of miR-34a-5p through database prediction and a dual-luciferase reporter assay. In LX-2 HSCs, the miR-34a-5p mimic and inhibitor directly downregulated and upregulated GREM2, respectively. Overexpressing GREM2 inactivated the TGFβ pathway whereas GREM2 knockdown activated it. Additionally, empagliflozin upregulated Grem2 expression in NAFLD models. In methionine- and choline-deficient diet-fed ob/ob mice, a fibrosis model, empagliflozin downregulated miR-34a-5p and upregulated Grem2 to improve liver fibrosis. CONCLUSIONS Empagliflozin ameliorates NAFLD-associated fibrosis by downregulating miR-34a-5p and targeting GREM2 to inhibit the TGFβ pathway in HSCs.
Collapse
Affiliation(s)
- Yunfeng Shen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; Branch of National Clinical Research Center for Metabolic Diseases, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Lidan Cheng
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China; Department of Endocrinology and Metabolism, Jiujiang University Affiliated Hospital, Jiujiang 330300, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China; Department of Gastroenterology, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
| | - Zhiping Wan
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China; Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Haixia Xiong
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; Branch of National Clinical Research Center for Metabolic Diseases, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Wanrong Guo
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Mengyin Cai
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China.
| | - Fen Xu
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China.
| |
Collapse
|
8
|
Khanmohammadi S, Ramos-Molina B, Kuchay MS. NOD-like receptors in the pathogenesis of metabolic (dysfunction)-associated fatty liver disease: Therapeutic agents targeting NOD-like receptors. Diabetes Metab Syndr 2023; 17:102788. [PMID: 37302383 DOI: 10.1016/j.dsx.2023.102788] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS In metabolic (dysfunction)-associated fatty liver disease (MAFLD), activation of inflammatory processes marks the transition of simple steatosis to steatohepatitis, which can further evolve to advanced fibrosis or hepatocellular carcinoma. Under the stress of chronic overnutrition, the innate immune system orchestrates hepatic inflammation through pattern recognition receptors (PRRs). Cytosolic PRRs that include NOD-like receptors (NLRs) are crucial for inducing inflammatory processes in the liver. METHODS A literature search was performed with Medline (PubMed), Google Scholar and Scopus electronic databases till January 2023, using relevant keywords to extract studies describing the role of NLRs in the pathogenesis of MAFLD. RESULTS Several NLRs operate through the formation of inflammasomes, which are multimolecular complexes that generate pro-inflammatory cytokines and induce pyroptotic cell death. A multitude of pharmacological agents target NLRs and improve several aspects of MAFLD. In this review, we discuss the current concepts related to the role of NLRs in the pathogenesis of MAFLD and its complications. We also discuss the latest research on MAFLD therapeutics functioning through NLRs. CONCLUSIONS NLRs play a significant role in the pathogenesis of MAFLD and its consequences, especially through generation of inflammasomes, such as NLRP3 inflammasomes. Lifestyle changes (exercise, coffee consumption) and therapeutic agents (GLP-1 receptor agonists, sodium-glucose cotransporter-2 inhibitors, obeticholic acid) improve MAFLD and its complications partly through blockade of NLRP3 inflammasome activation. New studies are required to explore these inflammatory pathways fully for the treatment of MAFLD.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Mohammad Shafi Kuchay
- Divison of Endocrinology and Diabetes, Medanta the Medicity Hospital, Gurugram 122001, Haryana, India.
| |
Collapse
|
9
|
Zhu Y, Tan JK, Wong SK, Goon JA. Therapeutic Effects of microRNAs on Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24119168. [PMID: 37298120 DOI: 10.3390/ijms24119168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a global health problem that affects people even at young ages due to unhealthy lifestyles. Without intervention, NAFLD will develop into nonalcoholic steatohepatitis (NASH) and eventually liver cirrhosis and hepatocellular carcinoma. Although lifestyle interventions are therapeutic, effective implementation remains challenging. In the efforts to establish effective treatment for NAFLD/NASH, microRNA (miRNA)-based therapies began to evolve in the last decade. Therefore, this systematic review aims to summarize current knowledge on the promising miRNA-based approaches in NAFLD/NASH therapies. A current systematic evaluation and a meta-analysis were conducted according to the PRISMA statement. In addition, a comprehensive exploration of PubMed, Cochrane, and Scopus databases was conducted to perform article searches. A total of 56 different miRNAs were reported as potential therapeutic agents in these studies. miRNA-34a antagonist/inhibitor was found to be the most studied variant (n = 7), and it significantly improved the hepatic total cholesterol, total triglyceride, Aspartate Aminotransferase (AST), and Alanine Transaminase (ALT) levels based on a meta-analysis. The biological processes mediated by these miRNAs involved hepatic fat accumulation, inflammation, and fibrosis. miRNAs have shown enormous therapeutic potential in the management of NAFLD/NASH, wherein miRNA-34a antagonist has been found to be an exceptional potential agent for the treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Yuezhi Zhu
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Gao Y, Wang R, Li L, He Y, Yuan D, Zhang Y, Hu Y, Wang S, Yuan C. Total saponins from Panax japonicus reduce inflammation in adipocytes through the miR155/SOCS1/NFκB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154827. [PMID: 37087792 DOI: 10.1016/j.phymed.2023.154827] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The rising incidence of metabolic diseases due to chronic inflammation in the adipose tissue has been attributed to factors such as high fat diet (HFD). Previous studies have demonstrated that the total saponins from Panax japonicus (TSPJ) can reduce HFD-induced adipocyte inflammation, but the underlying mechanism remains unclear. In this work, we explored the molecular mechanism by which TSPJ reduces inflammation response in adipocytes. METHODS We first established C57BL/6 mouse and 3T3-L1 adipocyte models. Lentiviruses packaged with the plasmids were injected into mice through the tail vein or into adipocytes to generate the in vivo and in vitro models with miR155 knockdown and overexpression. The mice were fed with HFD to trigger inflammation and administered TSPJ (25 mg/kg∙d and 75 mg/kg∙d) by gavage. The adipocytes were treated with palmitic acid (PA) to trigger inflammation response, then treated with TSPJ (25 μg/ml and 50 μg/ml). Finally, the expression of miR155, inflammatory factors, SOCS1, and NFκB pathway-related proteins was explored. RESULTS TSPJ significantly inhibited the expression of inflammation-related genes and the miR155 expression in adipocytes both in vitro and in vivo. The dual luciferase reporter gene assay revealed that miR155 mediated the downregulation of SOCS1. TSPJ significantly inhibited and upregulated the phosphorylation of the NFκB protein and the SOCS1 proteins, respectively. CONCLUSION TSPJ inhibits miR155 to upregulate the SOCS1 expression, which subsequently inhibits the NFκB signaling pathway, thereby mitigating the inflammatory response in the adipocytes of HFD mice.
Collapse
Affiliation(s)
- Yan Gao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Luoying Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yumin He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
11
|
Chen KQ, Ke BY, Cheng L, Yu XQ, Wang ZB, Wang SZ. Research and progress of inflammasomes in nonalcoholic fatty liver disease. Int Immunopharmacol 2023; 118:110013. [PMID: 36931172 DOI: 10.1016/j.intimp.2023.110013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
With the development of the social economy, unhealthy living habits and eating styles are gradually affecting people's health in recent years. As a chronic liver disease, NAFLD is deeply affected by unhealthy living habits and eating styles and has gradually become an increasingly serious public health problem. As a protein complex in clinical research, the inflammasomes play a crucial role in the development of NAFLD, atherosclerosis, and other diseases. This paper reviews the types, composition, characteristics of inflammasomes, and molecular mechanism of the inflammasome in NAFLD. Meanwhile, the paper reviews the drugs and non-drugs that target NLRP3 inflammasome in the treatment of NAFLD in the past decades. we also analyzed and summarized the related experimental models, mechanisms, and results of NAFLD. Although current therapeutic strategies for NAFLD are not effective, we expect that we will be able to find an appropriate treatment to address this problem in the future with further research on inflammasome.
Collapse
Affiliation(s)
- Ke-Qian Chen
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Bo-Yi Ke
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Lu Cheng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xiao-Qing Yu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
12
|
Sarangi R, Mishra S, Das S, Mishra A. Nonalcoholic Fatty Liver Disease and MicroRNAs: A Weighty Consideration. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2023. [DOI: 10.4103/bbrj.bbrj_319_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
13
|
Yu W, Wang S, Wang Y, Chen H, Nie H, Liu L, Zou X, Gong Q, Zheng B. MicroRNA: role in macrophage polarization and the pathogenesis of the liver fibrosis. Front Immunol 2023; 14:1147710. [PMID: 37138859 PMCID: PMC10149999 DOI: 10.3389/fimmu.2023.1147710] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Macrophages, as central components of innate immunity, feature significant heterogeneity. Numerus studies have revealed the pivotal roles of macrophages in the pathogenesis of liver fibrosis induced by various factors. Hepatic macrophages function to trigger inflammation in response to injury. They induce liver fibrosis by activating hepatic stellate cells (HSCs), and then inflammation and fibrosis are alleviated by the degradation of the extracellular matrix and release of anti-inflammatory cytokines. MicroRNAs (miRNAs), a class of small non-coding endogenous RNA molecules that regulate gene expression through translation repression or mRNA degradation, have distinct roles in modulating macrophage activation, polarization, tissue infiltration, and inflammation regression. Considering the complex etiology and pathogenesis of liver diseases, the role and mechanism of miRNAs and macrophages in liver fibrosis need to be further clarified. We first summarized the origin, phenotypes and functions of hepatic macrophages, then clarified the role of miRNAs in the polarization of macrophages. Finally, we comprehensively discussed the role of miRNAs and macrophages in the pathogenesis of liver fibrotic disease. Understanding the mechanism of hepatic macrophage heterogeneity in various types of liver fibrosis and the role of miRNAs on macrophage polarization provides a useful reference for further research on miRNA-mediated macrophage polarization in liver fibrosis, and also contributes to the development of new therapies targeting miRNA and macrophage subsets for liver fibrosis.
Collapse
Affiliation(s)
- Wen Yu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Shu Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yangyang Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Hui Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Lian Liu
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Xiaoting Zou
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
- *Correspondence: Xiaoting Zou, ; Quan Gong, ; Bing Zheng,
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
- *Correspondence: Xiaoting Zou, ; Quan Gong, ; Bing Zheng,
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
- *Correspondence: Xiaoting Zou, ; Quan Gong, ; Bing Zheng,
| |
Collapse
|
14
|
Zaiou M. Noncoding RNAs as additional mediators of epigenetic regulation in nonalcoholic fatty liver disease. World J Gastroenterol 2022; 28:5111-5128. [PMID: 36188722 PMCID: PMC9516672 DOI: 10.3748/wjg.v28.i35.5111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common cause of chronic liver disorder worldwide. It represents a spectrum that includes a continuum of different clinical entities ranging from simple steatosis to nonalcoholic steatohepatitis, which can evolve to cirrhosis and in some cases to hepatocellular carcinoma, ultimately leading to liver failure. The pathogenesis of NAFLD and the mechanisms underlying its progression to more pathological stages are not completely understood. Besides genetic factors, evidence indicates that epigenetic mechanisms occurring in response to environmental stimuli also contribute to the disease risk. Noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs, and circular RNAs, are one of the epigenetic factors that play key regulatory roles in the development of NAFLD. As the field of ncRNAs is rapidly evolving, the present review aims to explore the current state of knowledge on the roles of these RNA species in the pathogenesis of NAFLD, highlight relevant mechanisms by which some ncRNAs can modulate regulatory networks implicated in NAFLD, and discuss key challenges and future directions facing current research in the hopes of developing ncRNAs as next-generation non-invasive diagnostics and therapies in NAFLD and subsequent progression to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mohamed Zaiou
- Institut Jean Lamour, UMR CNRS 7198, CNRS, University of Lorraine, Nancy 54011, France
| |
Collapse
|
15
|
Zhu J, Ding J, Li S, Jin J. Ganoderic acid A ameliorates non‑alcoholic streatohepatitis (NASH) induced by high‑fat high‑cholesterol diet in mice. Exp Ther Med 2022; 23:308. [PMID: 35340879 PMCID: PMC8931630 DOI: 10.3892/etm.2022.11237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is becoming a huge global health problem. Previous studies have revealed that ganoderic acids have hepatoprotective and hypocholesterolemic effects. In the present study, to evaluate the anti-NASH activity of ganoderic acid A (GAA), male 6-week-old C57BL/6J mice were divided into the following four groups, which were administered different diets: Normal diet (ND group), high-fat high-cholesterol diet (HFHC group), HFHC diet supplemented with 25 mg/kg/day (GAAL group) or 50 mg/kg/day of GAA (GAAH group). After 12 weeks of GAA treatment, histopathological results revealed that compared with that of the HFHC group, GAA significantly inhibited fat accumulation, steatosis, inflammation and fibrosis in the liver. GAA effectively reduced serum aspartate transaminase and alanine transaminase levels compared with the HFHC model. Furthermore, the endoplasmic reticulum (ER) stress-responsive proteins, including glucose-regulated protein 78, phosphorylated (p)-eukaryotic initiation factor-2α and p-JNK, were significantly suppressed by GAA, while ERp57, p-MAPK and p-AKT were significantly increased after GAA treatment. Taken together, it was concluded that GAA could resist HFHC diet-induced NASH. In terms of its underlying mechanism, GAA could improve liver inflammation and fibrosis by inhibiting hepatic oxidative stress and the ER stress response induced by HFHC.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Infectious Diseases, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jiexia Ding
- Department of Infectious Diseases, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Siying Li
- Department of Infectious Diseases, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jie Jin
- Department of Infectious Diseases, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
16
|
Lin H, Mercer KE, Ou X, Mansfield K, Buchmann R, Børsheim E, Tas E. Circulating microRNAs Are Associated With Metabolic Markers in Adolescents With Hepatosteatosis. Front Endocrinol (Lausanne) 2022; 13:856973. [PMID: 35498403 PMCID: PMC9047938 DOI: 10.3389/fendo.2022.856973] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Altered hepatic microRNA (miRNA) expression may play a role in the development of insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD). Circulating miRNAs could mirror the liver metabolism. OBJECTIVE This study aimed to assess the relationship between serum miRNA profile in children with obesity, IR, and NAFLD. METHODS Adolescents with obesity (n = 31) were stratified based on insulin resistance and NAFLD status. One-hundred seventy-nine miRNAs were determined in the serum by quantitative RT-PCR. Differentially expressed miRNAs were compared between groups, and log-transformed levels correlated with metabolic markers and intrahepatic triglyceride. RESULTS Serum miR-21-5p, -22-3p, -150-5p, and -155-5p levels were higher in children with IR and NAFLD, and their expression levels correlated with hepatic fat and serum triglyceride. In patients with NAFLD, miR-155-5p correlated with ALT (r = 0.68, p<0.01) and AST (r = 0.64, p<0.01) and miR-21-5p and -22-3p levels correlated with plasma adiponectin (r = -0.71 and r = -0.75, respectively, p<0.05) and fibroblast growth factor-21 (r = -0.73 and r = -0.89, respectively, p<0.01). miR-27-3a level was higher in children without IR and NAFLD. CONCLUSIONS Several miRNAs are differentially expressed in children with IR and NAFLD. Determining their mechanistic roles may provide newer diagnostic tools and therapeutic targets for pediatric NAFLD.
Collapse
Affiliation(s)
- Haixia Lin
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kelly E. Mercer
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Center for Childhood Obesity and Prevention, Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Xiawei Ou
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Center for Childhood Obesity and Prevention, Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kori Mansfield
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Robert Buchmann
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Elisabet Børsheim
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Center for Childhood Obesity and Prevention, Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Emir Tas
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Center for Childhood Obesity and Prevention, Arkansas Children’s Research Institute, Little Rock, AR, United States
- Endocrinology and Diabetes, Arkansas Children’s Hospital, Little Rock, AR, United States
- *Correspondence: Emir Tas,
| |
Collapse
|
17
|
Yang M, Khoukaz L, Qi X, Kimchi ET, Staveley-O’Carroll KF, Li G. Diet and Gut Microbiota Interaction-Derived Metabolites and Intrahepatic Immune Response in NAFLD Development and Treatment. Biomedicines 2021; 9:biomedicines9121893. [PMID: 34944709 PMCID: PMC8698669 DOI: 10.3390/biomedicines9121893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) with pathogenesis ranging from nonalcoholic fatty liver (NAFL) to the advanced form of nonalcoholic steatohepatitis (NASH) affects about 25% of the global population. NAFLD is a chronic liver disease associated with obesity, type 2 diabetes, and metabolic syndrome, which is the most increasing factor that causes hepatocellular carcinoma (HCC). Although advanced progress has been made in exploring the pathogenesis of NAFLD and penitential therapeutic targets, no therapeutic agent has been approved by Food and Drug Administration (FDA) in the United States. Gut microbiota-derived components and metabolites play pivotal roles in shaping intrahepatic immunity during the progression of NAFLD or NASH. With the advance of techniques, such as single-cell RNA sequencing (scRNA-seq), each subtype of immune cells in the liver has been studied to explore their roles in the pathogenesis of NAFLD. In addition, new molecules involved in gut microbiota-mediated effects on NAFLD are found. Based on these findings, we first summarized the interaction of diet-gut microbiota-derived metabolites and activation of intrahepatic immunity during NAFLD development and progression. Treatment options by targeting gut microbiota and important molecular signaling pathways are then discussed. Finally, undergoing clinical trials are selected to present the potential application of treatments against NAFLD or NASH.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.); (L.K.); (X.Q.); (E.T.K.)
| | - Lea Khoukaz
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.); (L.K.); (X.Q.); (E.T.K.)
| | - Xiaoqiang Qi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.); (L.K.); (X.Q.); (E.T.K.)
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.); (L.K.); (X.Q.); (E.T.K.)
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.); (L.K.); (X.Q.); (E.T.K.)
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
- Correspondence: (K.F.S.-O.); (G.L.)
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.); (L.K.); (X.Q.); (E.T.K.)
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
- Correspondence: (K.F.S.-O.); (G.L.)
| |
Collapse
|