1
|
Zhang W, Long J, Tang P, Chen K, Guo G, Yu Z, Lin J, Liu L, Zhan R, Xu Z. SYT7 regulates the progression of chronic lymphocytic leukemia through interacting and regulating KNTC1. Biomark Res 2023; 11:58. [PMID: 37280656 DOI: 10.1186/s40364-023-00506-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is one of the most frequent occurring types of leukemia. It typically occurs in elderly patients and has a highly variable clinical course. At present, the molecular mechanism driving the pathogenesis and progression of CLL is not fully understood. The protein Synaptotagmin 7 (SYT7) encoded by the SYT7 gene has been found to be closely related to the development of various solid tumors, but its role in CLL is unclear. In this study, we investigated the function and molecular mechanism of SYT7 in CLL. METHODS The expression level of SYT7 in CLL was determined by immunohistochemical staining and qPCR. The role of SYT7 in promoting CLL development was verified by in vivo and in vitro experiments. The molecular mechanism of SYT7 in CLL was elucidated by methods such as GeneChip analysis and Co-immunoprecipitation assay. RESULTS Malignant behaviors such as proliferation, migration, and anti-apoptosis of CLL cells were significantly inhibited after SYT7 gene knockdown. In contrast, SYT7 overexpression promoted CLL development in vitro. Consistently, the knockdown of SYT7 also inhibited xenograft tumor growth of CLL cells. Mechanistically, SYT7 promoted CLL development by inhibiting SYVN1-mediated KNTC1 ubiquitination. The KNTC1 knockdown also attenuated the effects of SYT7 overexpression on development of CLL. CONCLUSIONS SYT7 regulates the progression of CLL through SYVN1-mediated KNTC1 ubiquitination, which has potential value for molecular targeted therapy of CLL.
Collapse
Affiliation(s)
- Wenjie Zhang
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Jinlan Long
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Peixia Tang
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Kaili Chen
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Guangyao Guo
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Zezhong Yu
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Jie Lin
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Liping Liu
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Rong Zhan
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China
| | - Zhenshu Xu
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, China.
| |
Collapse
|
2
|
Zou Y, Tang H, Miao Y, Zhu H, Wang L, Fan L, Fu J, Xu W, Li J, Xia Y. Overexpression of c-Myc-dependent heterogeneous nuclear ribonucleoprotein A1 promotes proliferation and inhibits apoptosis in NOTCH1-mutated chronic lymphocytic leukemia cells. Chin Med J (Engl) 2022; 135:920-929. [PMID: 35730371 PMCID: PMC9276458 DOI: 10.1097/cm9.0000000000002037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND NOTCH1 mutation is an essential molecular biologic aberration in chronic lymphocytic leukemia (CLL). CLL patients with NOTCH1 mutation have shown an unfavorable survival and a poor response to chemoimmunotherapy. This study aims to present the mechanisms of adverse prognosis caused by NOTCH1 mutation from the perspective of the splicing factor heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1). METHODS The microarray data in Gene Expression Omnibus datasets were analyzed by bioinformatics and the function of hnRNPA1 was checked by testing the proliferation and apoptosis of CLL-like cell lines. Afterward, quantitative reverse transcription-polymerase chain reaction and Western blotting were applied to explore the relationship among NOTCH1, c-Myc, and hnRNPA1. RESULTS RNA splicing was found to play a vital part in NOTCH1-mutated CLL cells; hence, hnRNPA1 was selected as the focus of this study. Higher expression of hnRNPA1 validated in primary NOTCH1-mutated CLL samples could promote proliferation and inhibit apoptosis in CLL. The expression of hnRNPA1 increased when NOTCH1 signaling was activated by transfection with NOTCH1 intracellular domain (NICD)-overexpressed adenovirus vector and declined after NOTCH1 signaling was inhibited by NOTCH1-shRNA. Higher expression of c-Myc was observed in NICD-overexpressed cells and hnRNPA1 expression was downregulated after applying c-Myc inhibitor 10058-F4. Moreover, in NICD-overexpressed cells, hnRNPA1 expression decreased through c-Myc inhibition. CONCLUSION Overexpression of c-Myc-dependent hnRNPA1 could promote proliferation and inhibit apoptosis in NOTCH1-mutated CLL cells, which might partly account for the poor prognosis of patients with NOTCH1 mutation.
Collapse
Affiliation(s)
- Yixin Zou
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Hanning Tang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Yi Miao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Huayuan Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Lei Fan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Jianxin Fu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Yi Xia
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| |
Collapse
|
3
|
Hlozkova K, Hermanova I, Safrhansova L, Alquezar-Artieda N, Kuzilkova D, Vavrova A, Sperkova K, Zaliova M, Stary J, Trka J, Starkova J. PTEN/PI3K/Akt pathway alters sensitivity of T-cell acute lymphoblastic leukemia to L-asparaginase. Sci Rep 2022; 12:4043. [PMID: 35260738 PMCID: PMC8904819 DOI: 10.1038/s41598-022-08049-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Childhood T-cell acute lymphoblastic leukemia (T-ALL) still remains a therapeutic challenge due to relapses which are resistant to further treatment. l-asparaginase (ASNase) is a key therapy component in pediatric T-ALL and lower sensitivity of leukemia cells to this drug negatively influences overall treatment efficacy and outcome. PTEN protein deletion and/or activation of the PI3K/Akt signaling pathway leading to altered cell growth and metabolism are emerging as a common feature in T-ALL. We herein investigated the relationship amongst PTEN deletion, ASNase sensitivity and glucose metabolism in T-ALL cells. First, we found significant differences in the sensitivity to ASNase amongst T-ALL cell lines. While cell lines more sensitive to ASNase were PTEN wild type (WT) and had no detectable level of phosphorylated Akt (P-Akt), cell lines less sensitive to ASNase were PTEN-null with high P-Akt levels. Pharmacological inhibition of Akt in the PTEN-null cells rendered them more sensitive to ASNase and lowered their glycolytic function which then resembled PTEN WT cells. In primary T-ALL cells, although P-Akt level was not dependent exclusively on PTEN expression, their sensitivity to ASNase could also be increased by pharmacological inhibition of Akt. In summary, we highlight a promising therapeutic option for T-ALL patients with aberrant PTEN/PI3K/Akt signaling.
Collapse
Affiliation(s)
- Katerina Hlozkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Hermanova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucie Safrhansova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Natividad Alquezar-Artieda
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Daniela Kuzilkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adela Vavrova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristyna Sperkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Zaliova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,University Hospital Motol, Prague, Czech Republic
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,University Hospital Motol, Prague, Czech Republic
| | - Jan Trka
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,University Hospital Motol, Prague, Czech Republic
| | - Julia Starkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic. .,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic. .,University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
4
|
Ge M, Xu Q, Kang T, Li D, Wang R, Chen Z, Xie S, Wang W, Liu H. Deubiquitinating enzyme inhibitor alleviates cyclin A1-mediated proteasome inhibitor tolerance in mixed-lineage leukemia. Cancer Sci 2021; 112:2287-2298. [PMID: 33738896 PMCID: PMC8177811 DOI: 10.1111/cas.14892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Drug resistance is a significant obstacle to effective cancer treatment. Drug resistance develops from initially reversible drug-tolerant cancer cells, which offer therapeutic opportunities to impede cancer relapse. The mechanisms of resistance to proteasome inhibitor (PI) therapy have been investigated intensively, however the ways by which drug-tolerant cancer cells orchestrate their adaptive responses to drug challenges remain largely unknown. Here, we demonstrated that cyclin A1 suppression elicited the development of transient PI tolerance in mixed-lineage leukemia (MLL) cells. This adaptive process involved reversible downregulation of cyclin A1, which promoted PI resistance through cell-cycle arrest. PI-tolerant MLL cells acquired cyclin A1 dependency, regulated directly by MLL protein. Loss of cyclin A1 function resulted in the emergence of drug tolerance, which was associated with patient relapse and reduced survival. Combination treatment with PI and deubiquitinating enzyme (DUB) inhibitors overcame this drug resistance by restoring cyclin A1 expression through chromatin crosstalk between histone H2B monoubiquitination and MLL-mediated histone H3 lysine 4 methylation. These results reveal the importance of cyclin A1-engaged cell-cycle regulation in PI resistance in MLL cells, and suggest that cell-cycle re-entry by DUB inhibitors may represent a promising epigenetic therapeutic strategy to prevent acquired drug resistance.
Collapse
Affiliation(s)
- Maolin Ge
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyu Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Kang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shufeng Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Cheng X, Ge M, Zhu S, Li D, Wang R, Xu Q, Chen Z, Xie S, Liu H. mTORC1-mediated amino acid signaling is critical for cell fate determination under transplant-induced stress. FEBS Lett 2020; 595:462-475. [PMID: 33249578 DOI: 10.1002/1873-3468.14008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/17/2020] [Accepted: 11/21/2020] [Indexed: 01/05/2023]
Abstract
Transplantation of in vitro-manipulated cells is widely used in hematology. While transplantation is well recognized to impose severe stress on transplanted cells, the nature of transplant-induced stress remains elusive. Here, we propose that the lack of amino acids in serum is the major cause of transplant-induced stress. Mechanistically, amino acid deficiency decreases protein synthesis and nutrient consummation. However, in cells with overactive AKT and ERK, mTORC1 is not inhibited and protein synthesis remains relatively high. This impaired signaling causes nutrient depletion, cell cycle block, and eventually autophagy and cell death, which can be inhibited by cycloheximide or mTORC1 inhibitors. Thus, mTORC1-mediated amino acid signaling is critical in cell fate determination under transplant-induced stress, and protein synthesis inhibition can improve transplantation efficiency.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Maolin Ge
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Shouhai Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Dan Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Ruiheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Qiongyu Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Zhihong Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Shufeng Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|