1
|
Corinaldesi C, Holmes AB, Martire G, Tosato A, Rizzato D, Lovisa F, Gallingani I, Shen Q, Ferrone L, Harris M, Davies K, Molinaro L, Mortara U, Dei Tos AP, Ofori K, D'Amore ESG, Chiarle R, Ngan B, Carraro E, Pillon M, Hussein S, Bhagat G, Pizzi M, Mussolin L, Basso K. Single-cell transcriptomics of pediatric Burkitt lymphoma reveals intra-tumor heterogeneity and markers of therapy resistance. Leukemia 2024:10.1038/s41375-024-02431-3. [PMID: 39424708 DOI: 10.1038/s41375-024-02431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/08/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Burkitt lymphoma (BL) is the most frequent B-cell lymphoma in pediatric patients. While most patients are cured, a fraction of them are resistant to therapy. To investigate BL heterogeneity and the features distinguishing therapy responders (R) from non-responders (NR), we analyzed by single-cell (sc)-transcriptomics diagnostic EBV-negative BL specimens. Analysis of the non-tumor component revealed a predominance of immune cells and a small representation of fibroblasts, enriched in NR. Tumors displayed patient-specific features, as well as shared subpopulations that expressed transcripts related to cell cycle, signaling pathways and cell-of-origin signatures. Several transcripts were differentially expressed in R versus NR. The top candidate, Tropomyosin 2 (TPM2), a member of the tropomyosin actin filament binding protein family, was confirmed to be significantly higher in NR both at the transcript and protein level. Stratification of patients based on TPM2 expression at diagnosis significantly correlated with prognosis, independently of TP53 mutations. These results indicate that BL displays transcriptional heterogeneity and identify candidate biomarkers of therapy resistance.
Collapse
Affiliation(s)
| | - Antony B Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Gaia Martire
- Maternal and Child Health Department, University-Hospital of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Citta' della Speranza, Padova, Italy
| | - Anna Tosato
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- Maternal and Child Health Department, University-Hospital of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Citta' della Speranza, Padova, Italy
| | - Domenico Rizzato
- Maternal and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Federica Lovisa
- Istituto di Ricerca Pediatrica Citta' della Speranza, Padova, Italy
| | - Ilaria Gallingani
- Maternal and Child Health Department, University-Hospital of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Citta' della Speranza, Padova, Italy
| | - Qiong Shen
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Lavinia Ferrone
- Maternal and Child Health Department, University-Hospital of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Citta' della Speranza, Padova, Italy
| | - Marian Harris
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Luca Molinaro
- Department of Medical Science, University of Torino, Torino, Italy
| | - Umberto Mortara
- Department of Medical Science, University of Torino, Torino, Italy
| | - Angelo Paolo Dei Tos
- General Pathology and Cytopathology Unit, Department of Medicine-DMED, University-Hospital of Padova, Padova, Italy
| | - Kenneth Ofori
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | | | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- European Institute of Oncology IRCCS, Division of Hematopathology, Milan, Italy
| | - Bo Ngan
- Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - Elisa Carraro
- Maternal and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Marta Pillon
- Maternal and Child Health Department, University-Hospital of Padova, Padova, Italy
| | - Shafinaz Hussein
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Govind Bhagat
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Marco Pizzi
- General Pathology and Cytopathology Unit, Department of Medicine-DMED, University-Hospital of Padova, Padova, Italy
| | - Lara Mussolin
- Maternal and Child Health Department, University-Hospital of Padova, Padova, Italy.
- Istituto di Ricerca Pediatrica Citta' della Speranza, Padova, Italy.
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Malfona F, Testi AM, Chiaretti S, Moleti ML. Refractory Burkitt Lymphoma: Diagnosis and Interventional Strategies. Blood Lymphat Cancer 2024; 14:1-15. [PMID: 38510818 PMCID: PMC10949171 DOI: 10.2147/blctt.s407804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Despite excellent results in frontline therapy, particularly in pediatric age, refractory Burkitt lymphoma still remains a therapeutic challenge, with dismal outcome. The prognosis is very poor, ranging from less than 10% to 30-40%, with longer survival only in transplanted patients. On account of the paucity of data, mostly reporting on small series of patients, with heterogeneous characteristics and salvage treatments, at present it is impossible to draw definitive conclusions on the treatment of choice for this difficult to treat subset of patients. New insights into Burkitt lymphoma/leukemia cell biology have led to the development of new drugs, currently being tested, directed at different specific targets. Herein, we describe the results so far reported in refractory Burkitt lymphoma/leukemia, with standard treatments and hematopoietic stem cell transplant, and we review the new targeted drugs currently under evaluation.
Collapse
Affiliation(s)
- Francesco Malfona
- Department of Translational and Precision Medicine, ‘Sapienza’ University, Rome, Italy
| | - Anna Maria Testi
- Department of Translational and Precision Medicine, ‘Sapienza’ University, Rome, Italy
| | - Sabina Chiaretti
- Department of Translational and Precision Medicine, ‘Sapienza’ University, Rome, Italy
| | - Maria Luisa Moleti
- Department of Translational and Precision Medicine, ‘Sapienza’ University, Rome, Italy
| |
Collapse
|
3
|
Schichman SA, Penton AL, Ghanta SN, Konda M, Papenhausen PR. B-lymphoblastic leukemia/lymphoma with MYC and BCL2 gene rearrangements shows evidence for clonal evolution and mitotic recombination. J Hematop 2023; 16:111-117. [PMID: 38175445 PMCID: PMC10766798 DOI: 10.1007/s12308-023-00541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/17/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND B-lymphoblastic leukemia/lymphomas (B-ALL/LBL) are uncommon neoplasms that may be associated with a variety of cytogenetic and molecular changes. The mechanisms by which these changes arise have not been fully described. AIMS/PURPOSE This report describes an unusual case of B-ALL/LBL with complex clonal evolution that includes BCL2 and MYC gene rearrangements. METHODS Immunophenotyping was performed by immunohistochemistry and flow cytometry. Traditional G-band karyotyping was accompanied by fluorescence in-situ hybridization (FISH) using break-apart and dual fusion probes. Single nucleotide polymorphisms were assessed using a high-density DNA microarray. RESULTS The karyotype of the blasts showed reciprocal translocation of chromosomes 4 and 18, reciprocal translocation of chromosomes 8 and 14 with two copies of the oncogenic translocation derivative(14)t(8;14), and no normal chromosome 14. FISH studies showed complex IGH-BCL2 and IGH-MYC fusion signals. CONCLUSIONS A clonal evolution model involving multiple chromosomal translocations and mitotic recombination is postulated to account for the karyotype, FISH, and microarray results but leaves unresolved the exact order of the evolutionary changes.
Collapse
Affiliation(s)
- Steven A Schichman
- Central Arkansas Veterans Healthcare System, Pathology and Laboratory Medicine Service, and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Andrea L Penton
- Cytogenetics Department, Laboratory Corporation of America, Research Triangle Park, NC, USA
| | - Sai Nikhila Ghanta
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Manojna Konda
- Department of Internal Medicine, Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Peter R Papenhausen
- Cytogenetics Department, Laboratory Corporation of America, Research Triangle Park, NC, USA
| |
Collapse
|
4
|
Sandmann S, Richter S, Jiang X, Varghese J. Reconstructing Clonal Evolution-A Systematic Evaluation of Current Bioinformatics Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5128. [PMID: 36982036 PMCID: PMC10049679 DOI: 10.3390/ijerph20065128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The accurate reconstruction of clonal evolution, including the identification of newly developing, highly aggressive subclones, is essential for the application of precision medicine in cancer treatment. Reconstruction, aiming for correct variant clustering and clonal evolution tree reconstruction, is commonly performed by tedious manual work. While there is a plethora of tools to automatically generate reconstruction, their reliability, especially reasons for unreliability, are not systematically assessed. We developed clevRsim-an approach to simulate clonal evolution data, including single-nucleotide variants as well as (overlapping) copy number variants. From this, we generated 88 data sets and performed a systematic evaluation of the tools for the reconstruction of clonal evolution. The results indicate a major negative influence of a high number of clones on both clustering and tree reconstruction. Low coverage as well as an extreme number of time points usually leads to poor clustering results. An underlying branched independent evolution hampers correct tree reconstruction. A further major decline in performance could be observed for large deletions and duplications overlapping single-nucleotide variants. In summary, to explore the full potential of reconstructing clonal evolution, improved algorithms that can properly handle the identified limitations are greatly needed.
Collapse
Affiliation(s)
- Sarah Sandmann
- Institute of Medical Informatics, University of Münster, 48149 Münster, Germany
| | - Silja Richter
- Institute of Medical Informatics, University of Münster, 48149 Münster, Germany
| | - Xiaoyi Jiang
- Department of Computer Science, University of Münster, 48149 Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, 48149 Münster, Germany
| |
Collapse
|
5
|
Beishuizen A, Mellgren K, Andrés M, Auperin A, Bacon CM, Bomken S, Burke GAA, Burkhardt B, Brugieres L, Chiang AKS, Damm-Welk C, d'Amore E, Horibe K, Kabickova E, Khanam T, Kontny U, Klapper W, Lamant L, Le Deley MC, Loeffen J, Macintyre E, Mann G, Meyer-Wentrup F, Michgehl U, Minard-Colin V, Mussolin L, Oschlies I, Patte C, Pillon M, Reiter A, Rigaud C, Roncery L, Salaverria I, Simonitsch-Klupp I, Uyttebroeck A, Verdu-Amoros J, Williams D, Woessmann W, Wotherspoon A, Wrobel G, Zimmermann M, Attarbaschi A, Turner SD. Improving outcomes of childhood and young adult non-Hodgkin lymphoma: 25 years of research and collaboration within the framework of the European Intergroup for Childhood Non-Hodgkin Lymphoma. Lancet Haematol 2023; 10:e213-e224. [PMID: 36858678 DOI: 10.1016/s2352-3026(22)00374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 03/03/2023]
Abstract
The European Intergroup for Childhood Non-Hodgkin Lymphoma (EICNHL) was established 25 years ago with the goal to facilitate clinical trials and research collaborations in the field both within Europe and worldwide. Since its inception, much progress has been made whereby major improvements in outcomes have been achieved. In this Review, we describe the different diagnostic entities of non-Hodgkin lymphoma in children and young adults describing key features of each entity and outlining clinical achievements made in the context of the EICNHL framework. Furthermore, we provide an overview of advances in biopathology with an emphasis on the role of biological studies and how they have shaped available treatments. Finally, for each entity, we describe future goals, upcoming clinical trials, and highlight areas of research that require our focus going forward.
Collapse
Affiliation(s)
- Auke Beishuizen
- Division of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; The Netherlands and Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Karin Mellgren
- Department of Paediatric Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Andrés
- Department of Pediatric Oncology, University Hospital Le Fe, Valencia, Spain
| | - Anne Auperin
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Chris M Bacon
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Simon Bomken
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - G A Amos Burke
- Department of Paediatric Haematology, Oncology and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Birgit Burkhardt
- Department of Pediatric Hematology, Oncology, and BMT, University Hospital Muenster, Münster, Germany
| | - Laurence Brugieres
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Alan K S Chiang
- Department of Pediatrics & AdolescentMedicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Christine Damm-Welk
- Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Emanuele d'Amore
- Department of Pathological Anatomy, San Bortolo Hospital, Vicenza, Italy
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Edita Kabickova
- Department of Pediatric Hematology and Oncology, Charles University & University Hospital Motol, Prague, Czech Republic
| | - Tasneem Khanam
- Department of Paediatric Haematology, Oncology and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Udo Kontny
- Section of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatric and Adolescent Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Wolfram Klapper
- Institute of Pathology, Hematopathology Section, University of Schleswig-Holstein, Kiel, Germany
| | - Laurence Lamant
- Université Toulouse III-Paul Sabatier, Laboratoire d'Excellence Toulouse Cancer-TOUCAN, Équipe Labellisée La Ligue Contre Le Cancer, Inserm, Toulouse, France
| | | | - Jan Loeffen
- Division of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elizabeth Macintyre
- Onco-hematology, Université Paris Cité and Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Georg Mann
- Pediatric Hematology and Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Friederike Meyer-Wentrup
- Division of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Ulf Michgehl
- Department of Paediatric Haematology, Oncology and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Veronique Minard-Colin
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Lara Mussolin
- Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy; Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, Padova University Hospital, Padova, Italy
| | - Ilske Oschlies
- Institute of Pathology, Hematopathology Section, University of Schleswig-Holstein, Kiel, Germany
| | - Catherine Patte
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marta Pillon
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, Padova University Hospital, Padova, Italy
| | - Alfred Reiter
- Department of Pediatric Hematology and Oncology, Justus Liebig-University Giessen, Giessen, Germany
| | - Charlotte Rigaud
- Department of Pediatric Hematology, Oncology, and BMT, University Hospital Muenster, Münster, Germany
| | - Leila Roncery
- St Anna Children's Hospital, Department of Paediatric Haematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Anne Uyttebroeck
- Department of Pediatric Hematology and Oncology, University Hospital Leuven,KU Leuven, Leuven, Belgium
| | - Jaime Verdu-Amoros
- Department of Pediatric Hematology and Oncology, University Hospital Valencia, Valencia, Spain
| | - Denise Williams
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Wilhelm Woessmann
- Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Grazyna Wrobel
- Bone Marrow Transplantation and Pediatric Hematology and Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Martin Zimmermann
- Hannover Medical School, Department of Pediatric Hematology and Oncology, Hannover, Germany
| | - Andishe Attarbaschi
- St Anna Children's Hospital, Department of Paediatric Haematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK; Central European Institute for Technology, Masaryk University, Brno, Czech Republic.
| | | |
Collapse
|
6
|
Sandmann S, Inserte C, Varghese J. clevRvis: visualization techniques for clonal evolution. Gigascience 2022; 12:giad020. [PMID: 37039116 PMCID: PMC10087014 DOI: 10.1093/gigascience/giad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/23/2023] [Accepted: 03/08/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND A thorough analysis of clonal evolution commonly requires integration of diverse sources of data (e.g., karyotyping, next-generation sequencing, and clinical information). Subsequent to actual reconstruction of clonal evolution, detailed analysis and interpretation of the results are essential. Often, however, only few tumor samples per patient are available. Thus, information on clonal development and therapy effect may be incomplete. Furthermore, analysis of biallelic events-considered of high relevance with respect to disease course-can commonly only be realized by time-consuming analysis of the raw results and even raw sequencing data. RESULTS We developed clevRvis, an R/Bioconductor package providing an extensive set of visualization techniques for clonal evolution. In addition to common approaches for visualization, clevRvis offers a unique option for allele-aware representation: plaice plots. Biallelic events may be visualized and inspected at a glance. Analyzing 4 public datasets, we show that plaice plots help to gain new insights into tumor development and investigate hypotheses on disease progression and therapy resistance. In addition to a graphical user interface, automatic phylogeny-aware color coding of the plots, and an approach to explore alternative trees, clevRvis provides 2 algorithms for fully automatic time point interpolation and therapy effect estimation. Analyzing 2 public datasets, we show that both approaches allow for valid approximation of a tumor's development in between measured time points. CONCLUSIONS clevRvis represents a novel option for user-friendly analysis of clonal evolution, contributing to gaining new insights into tumor development.
Collapse
Affiliation(s)
- Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster 48149, Germany
| | - Clara Inserte
- Institute of Medical Informatics, University of Münster, Münster 48149, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster 48149, Germany
| |
Collapse
|
7
|
López C, Burkhardt B, Chan JKC, Leoncini L, Mbulaiteye SM, Ogwang MD, Orem J, Rochford R, Roschewski M, Siebert R. Burkitt lymphoma. Nat Rev Dis Primers 2022; 8:78. [PMID: 36522349 DOI: 10.1038/s41572-022-00404-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/16/2022]
Abstract
Burkitt lymphoma (BL) is an aggressive form of B cell lymphoma that can affect children and adults. The study of BL led to the identification of the first recurrent chromosomal aberration in lymphoma, t(8;14)(q24;q32), and subsequent discovery of the central role of MYC and Epstein-Barr virus (EBV) in tumorigenesis. Most patients with BL are cured with chemotherapy but those with relapsed or refractory disease usually die of lymphoma. Historically, endemic BL, non-endemic sporadic BL and the immunodeficiency-associated BL have been recognized, but differentiation of these epidemiological variants is confounded by the frequency of EBV positivity. Subtyping into EBV+ and EBV- BL might better describe the biological heterogeneity of the disease. Phenotypically resembling germinal centre B cells, all types of BL are characterized by dysregulation of MYC due to enhancer activation via juxtaposition with one of the three immunoglobulin loci. Additional molecular changes commonly affect B cell receptor and sphingosine-1-phosphate signalling, proliferation, survival and SWI-SNF chromatin remodelling. BL is diagnosed on the basis of morphology and high expression of MYC. BL can be effectively treated in children and adolescents with short durations of high dose-intensity multiagent chemotherapy regimens. Adults are more susceptible to toxic effects but are effectively treated with chemotherapy, including modified versions of paediatric regimens. The outcomes in patients with BL are good in high-income countries with low mortality and few late effects, but in low-income and middle-income countries, BL is diagnosed late and is usually treated with less-effective regimens affecting the overall good outcomes in patients with this lymphoma.
Collapse
Affiliation(s)
- Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Birgit Burkhardt
- Non-Hodgkin's Lymphoma Berlin-Frankfurt-Münster (NHL-BFM) Study Center and Paediatric Hematology, Oncology and BMT, University Hospital Muenster, Muenster, Germany
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Lorenzo Leoncini
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | | | | | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
8
|
Affiliation(s)
- Mark Roschewski
- From the Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Louis M Staudt
- From the Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Wyndham H Wilson
- From the Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Sandmann S, Behrens YL, Davenport C, Thol F, Heuser M, Dörfel D, Löhr F, Castrup A, Steinemann D, Varghese J, Schlegelberger B, Dugas M, Göhring G. Clonal Evolution at First Sight: A Combined Visualization of Diverse Diagnostic Methods Improves Understanding of Leukemic Progression. Front Oncol 2022; 12:888114. [PMID: 35875134 PMCID: PMC9305660 DOI: 10.3389/fonc.2022.888114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with myeloid neoplasia are classified by the WHO classification systems. Besides clinical and hematological criteria, cytogenetic and molecular genetic alterations highly impact treatment stratification. In routine diagnostics, a combination of methods is used to decipher different types of genetic variants. Eight patients were comprehensively analyzed using karyotyping, fluorescence in situ hybridization, array-CGH and a custom NGS panel. Clonal evolution was reconstructed manually, integrating all mutational information on single nucleotide variants (SNVs), insertions and deletions (indels), structural variants and copy number variants (CNVs). To allow a correct integration, we differentiate between three scenarios: 1) CNV occurring prior to the SNV/indel, but in the same cells. 2) SNV/indel occurring prior to the CNV, but in the same cells. 3) SNV/indel and CNV existing in parallel, independent of each other. Applying this bioinformatics approach, we reconstructed clonal evolution for all patients. This generalizable approach offers the possibility to integrate various data to analyze identification of driver and passenger mutations as well as possible targets for personalized medicine approaches. Furthermore, this model can be used to identify markers to assess the minimal residual disease.
Collapse
Affiliation(s)
- Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Yvonne Lisa Behrens
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- *Correspondence: Yvonne Lisa Behrens,
| | - Claudia Davenport
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Daniela Dörfel
- Department of Hematology, Oncology and Immunology, Klinikum Region Hannover (KRH) Klinikum Siloah, Hannover, Germany
| | - Friederike Löhr
- Department of Hematology and Oncology, Klinikum Braunschweig, Braunschweig, Germany
| | - Agnes Castrup
- Hämato-Onkologische Praxis, Hämato-Onkologische Praxis im Medicum, Bremen, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | | | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, Germany
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Burkhardt B, Michgehl U, Rohde J, Erdmann T, Berning P, Reutter K, Rohde M, Borkhardt A, Burmeister T, Dave S, Tzankov A, Dugas M, Sandmann S, Fend F, Finger J, Mueller S, Gökbuget N, Haferlach T, Kern W, Hartmann W, Klapper W, Oschlies I, Richter J, Kontny U, Lutz M, Maecker-Kolhoff B, Ott G, Rosenwald A, Siebert R, von Stackelberg A, Strahm B, Woessmann W, Zimmermann M, Zapukhlyak M, Grau M, Lenz G. Clinical relevance of molecular characteristics in Burkitt lymphoma differs according to age. Nat Commun 2022; 13:3881. [PMID: 35794096 PMCID: PMC9259584 DOI: 10.1038/s41467-022-31355-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
While survival has improved for Burkitt lymphoma patients, potential differences in outcome between pediatric and adult patients remain unclear. In both age groups, survival remains poor at relapse. Therefore, we conducted a comparative study in a large pediatric cohort, including 191 cases and 97 samples from adults. While TP53 and CCND3 mutation frequencies are not age related, samples from pediatric patients showed a higher frequency of mutations in ID3, DDX3X, ARID1A and SMARCA4, while several genes such as BCL2 and YY1AP1 are almost exclusively mutated in adult patients. An unbiased analysis reveals a transition of the mutational profile between 25 and 40 years of age. Survival analysis in the pediatric cohort confirms that TP53 mutations are significantly associated with higher incidence of relapse (25 ± 4% versus 6 ± 2%, p-value 0.0002). This identifies a promising molecular marker for relapse incidence in pediatric BL which will be used in future clinical trials.
Collapse
Affiliation(s)
- Birgit Burkhardt
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany.
| | - Ulf Michgehl
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Jonas Rohde
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Tabea Erdmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Philipp Berning
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Katrin Reutter
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Marius Rohde
- Pediatric Hematology and Oncology, University Hospital Giessen, Giessen, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Burmeister
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandeep Dave
- Center for Genomic and Computational Biology and Department of Medicine, Duke University, Durham, NC, USA
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Martin Dugas
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Centre Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| | - Jasmin Finger
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Stephanie Mueller
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Nicola Gökbuget
- Department of Medicine II, Goethe University, Frankfurt, Germany
| | | | | | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital of Münster, Münster, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ilske Oschlies
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Julia Richter
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Udo Kontny
- Section of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatric and Adolescent Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Mathias Lutz
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Britta Maecker-Kolhoff
- Hannover Medical School, Department of Pediatric Hematology and Oncology, Hannover, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Universität Würzburg and Comprehensive Cancer Centre Mainfranken (CCCMF), Würzburg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Arend von Stackelberg
- Department of Pediatric Oncology Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Brigitte Strahm
- Department of Pediatrics and Adolescent Medicine Division of Pediatric Hematology and Oncology, Medical Center Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wilhelm Woessmann
- Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Zimmermann
- Hannover Medical School, Department of Pediatric Hematology and Oncology, Hannover, Germany
| | - Myroslav Zapukhlyak
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Michael Grau
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| |
Collapse
|
11
|
Summerauer AM, Jäggi V, Ogwang R, Traxel S, Colombo L, Amundsen E, Eyer T, Subramanian B, Fehr J, Mantel P, Idro R, Bürgler S. Epstein-Barr virus and malaria upregulate AID and APOBEC3 enzymes, but only AID seems to play a major mutagenic role in Burkitt lymphoma. Eur J Immunol 2022; 52:1273-1284. [PMID: 35503749 PMCID: PMC7613445 DOI: 10.1002/eji.202249820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022]
Abstract
Endemic Burkitt lymphoma (eBL) is characterized by an oncogenic IGH/c‐MYC translocation and Epstein–Barr virus (EBV) positivity, and is epidemiologically linked to Plasmodium falciparum malaria. Both EBV and malaria are thought to contribute to eBL by inducing the expression of activation‐induced cytidine deaminase (AID), an enzyme involved in the IGH/c‐MYC translocation. AID/apolipoprotein B mRNA editing catalytic polypeptide‐like (AID/APOBEC) family enzymes have recently emerged as potent mutagenic sources in a variety of cancers, but apart from AID, their involvement in eBL and their regulation by EBV and P. falciparum is unknown. Here, we show that upon inoculation with EBV, human B cells strongly upregulate the expression of enzymatically active APOBEC3B and APOBEC3G. In addition, we found significantly increased levels of APOBEC3A in B cells of malaria patients, which correlated with parasite load. Interestingly, despite the fact that APOBEC3A, APOBEC3B, and APOBEC3G caused c‐MYC mutations when overexpressed in HEK293T cells, a mutational enrichment in eBL tumors was only detected in AID motifs. This suggests that even though the EBV‐ and P. falciparum‐directed immune response triggers the expression and activity of several AID/APOBEC members, only the upregulation of AID has oncogenic consequences, while the induction of the APOBEC3 subfamily may primarily have immunoprotective functions.
Collapse
Affiliation(s)
- Andrea M. Summerauer
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichZurichSwitzerland
| | - Vera Jäggi
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Rodney Ogwang
- College of Health SciencesMakerere UniversityKampalaUganda
- Centre of Tropical NeuroscienceKitgum SiteKampalaUganda
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
| | - Sabrina Traxel
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Lorenzo Colombo
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Eivind Amundsen
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Tatjana Eyer
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| | - Bibin Subramanian
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Jan Fehr
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichZurichSwitzerland
| | - Pierre‐Yves Mantel
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and MedicineUniversity of FribourgFribourgSwitzerland
| | - Richard Idro
- College of Health SciencesMakerere UniversityKampalaUganda
- Centre of Tropical NeuroscienceKitgum SiteKampalaUganda
| | - Simone Bürgler
- Experimental Infectious Diseases and Cancer Research, Children's Research CenterUniversity Children's Hospital ZurichZurichSwitzerland
| |
Collapse
|
12
|
Ruether C, Wuensch C, Randau G, Michgehl U, Trautmann M, Hartmann W, Sandmann S, Dugas M, Khanam T, Burkhardt B. Design of a targeted next-generation DNA sequencing panel for pediatric T-cell lymphoblastic lymphoma to unravel biology and optimize treatment. Genes Chromosomes Cancer 2022; 61:459-470. [PMID: 35278000 DOI: 10.1002/gcc.23037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 11/09/2022] Open
Abstract
Low incidence and molecular heterogeneity of pediatric T-cell lymphoblastic lymphoma (T-LBL) require an international, large-scale effort to identify novel clinical biomarkers. The ongoing international clinical trial LBL2018 (NCT04043494) represents an ideal opportunity to implement a common analytic approach. Targeted next-generation sequencing is well-suited for this purpose; however, selection of relevant target genes for T-LBL remains subject of ongoing debates. Our group has recently designed and evaluated a first target panel of 80 candidate genes for T-LBL. The present study aimed at developing a novel optimized gene panel for large-scale application and to promote an international agreement on a common core panel. Small sequence variants obtained from our former study were systematically analyzed and classified with regards to pathogenic relevance, to prioritize candidate genes. Additional genes were curated from literature and online databases for a more comprehensive analysis of relevant functions and signaling pathways. The new target panel TGP-T-LBL entails 84 candidate genes which are key actors in NOTCH, PI3K-AKT, JAK-STAT, RAS signaling, epigenetic regulation, transcription, DNA repair, cell cycle regulation and ribosomal function. From our former gene panel, 35 out of 80 candidate genes were selected for the novel panel. Forty-six out of 84 genes are currently being analyzed in the ongoing international trial LBL2018. Exploratory analysis of prognostic relevance on mutation-level suggested a potential association of PIK3CA variants c.1624G > A(p.Glu542Lys) and c.1633G > A(p.Glu545Lys) to occurrence of relapse, emphasizing particular relevance of mutation analysis in PI3K-AKT signaling. Our approach promotes comprehensive and clinically relevant mutational profiling of pediatric T-LBL. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Charlotte Ruether
- Paediatric Hematology and Oncology, University Hospital Muenster, Germany
| | | | - Gerrit Randau
- Paediatric Hematology and Oncology, University Hospital Muenster, Germany
| | - Ulf Michgehl
- Paediatric Hematology and Oncology, University Hospital Muenster, Germany
| | - Marcel Trautmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, Muenster University, Germany
| | - Martin Dugas
- Institute of Medical Informatics, Muenster University, Germany
| | - Tasneem Khanam
- Paediatric Hematology and Oncology, University Hospital Muenster, Germany
| | - Birgit Burkhardt
- Paediatric Hematology and Oncology, University Hospital Muenster, Germany
| |
Collapse
|
13
|
Sandmann S, Richter S, Jiang X, Varghese J. Exploring Current Challenges and Perspectives for Automatic Reconstruction of Clonal Evolution. Cancer Genomics Proteomics 2022; 19:194-204. [PMID: 35181588 DOI: 10.21873/cgp.20314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM In the field of cancer research, reconstructing clonal evolution is of major interest. The technique provides new insights for analysis and prediction of tumor development. However, reconstruction based on mutational data is characterized by several challenges. MATERIALS AND METHODS By performing extensive literature research, we identified 51 currently available tools for reconstructing clonal evolution. By analyzing two cancer data sets (n=21), we investigated the applicability and performance of each tool. RESULTS Seventeen out of 51 tools could be applied to our data. Correct clustering of variants can be observed for 4 patients in the presence of ≤3 clusters and ≥5 time points. Correct phylogenetic trees are determined for 10 patients. Accurate visualization is possible, by applying adjustments to the original algorithms. CONCLUSION Despite bearing considerable potential, automatic reconstruction of clonal evolution remains challenging. To replace tedious manual reconstruction, further research including systematic error analyses using simulation tools needs to be conducted.
Collapse
Affiliation(s)
- Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany;
| | - Silja Richter
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Xiaoyi Jiang
- Department of Computer Science, University of Münster, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| |
Collapse
|
14
|
Genomic abnormalities of TP53 define distinct risk groups of paediatric B-cell non-Hodgkin lymphoma. Leukemia 2022; 36:781-789. [PMID: 34675373 PMCID: PMC8885412 DOI: 10.1038/s41375-021-01444-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022]
Abstract
Children with B-cell non-Hodgkin lymphoma (B-NHL) have an excellent chance of survival, however, current clinical risk stratification places as many as half of patients in a high-risk group receiving very intensive chemo-immunotherapy. TP53 alterations are associated with adverse outcome in many malignancies; however, whilst common in paediatric B-NHL, their utility as a risk classifier is unknown. We evaluated the clinical significance of TP53 abnormalities (mutations, deletion and/or copy number neutral loss of heterozygosity) in a large UK paediatric B-NHL cohort and determined their impact on survival. TP53 abnormalities were present in 54.7% of cases and were independently associated with a significantly inferior survival compared to those without a TP53 abnormality (PFS 70.0% vs 100%, p < 0.001, OS 78.0% vs 100%, p = 0.002). Moreover, amongst patients clinically defined as high-risk (stage III with high LDH or stage IV), those without a TP53 abnormality have superior survival compared to those with TP53 abnormalities (PFS 100% vs 55.6%, p = 0.005, OS 100% vs 66.7%, p = 0.019). Biallelic TP53 abnormalities were either maintained from the presentation or acquired at progression in all paired diagnosis/progression Burkitt lymphoma cases. TP53 abnormalities thus define clinical risk groups within paediatric B-NHL and offer a novel molecular risk stratifier, allowing more personalised treatment protocols.
Collapse
|
15
|
Treatment and Outcome Analysis of 639 Relapsed Non-Hodgkin Lymphomas in Children and Adolescents and Resulting Treatment Recommendations. Cancers (Basel) 2021; 13:cancers13092075. [PMID: 33923026 PMCID: PMC8123268 DOI: 10.3390/cancers13092075] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Despite very poor survival, controversies remain in the treatment for refractory or relapsed non-Hodgkin lymphoma (r/r NHL) in children and adolescents. The current project identifies and reports international experience on re-induction treatment of r/r NHL, hematopoietic stem cell transplantation, risk factors associated with outcome, and suggests treatment recommendations. Abstract Despite poor survival, controversies remain in the treatment for refractory or relapsed pediatric non-Hodgkin lymphoma (r/r NHL). The current project aimed to collect international experience on the re-induction treatment of r/r NHL, hematopoietic stem cell transplantation (HSCT), risk factors associated with outcome, and to suggest treatment recommendations. Inclusion criteria were (i) refractory disease, disease progression or relapse of any NHL subtype except anaplastic large cell lymphoma, (ii) age < 18 years at initial diagnosis, (iii) diagnosis in/after January 2000. Data from 639 eligible patients were evaluable. The eight-year probability of overall survival was 34 ± 2% with highly significant differences according to NHL subtypes: 28 ± 3% for 254 Burkitt lymphoma/leukemia, 50 ± 6% for 98 diffuse large B-cell lymphomas, 57 ± 8% for 41 primary mediastinal large B-cell lymphomas, 27 ± 3% for 177 T-lymphoblastic lymphomas, 52 ± 10% for 34 precursor-B-cell lymphoblastic lymphomas and 30 ± 9% for 35 patients with rare NHL subtypes. Subtype-specific factors associated with survival and treatment recommendations are suggested. There were no survivors without HSCT, except in few very small subgroups. Conclusions: There is an urgent need to further improve survival in r/r NHL. The current study provides the largest real-world series, which underlines the role of HSCT and suggests treatment recommendations.
Collapse
|
16
|
Sandmann S, Wöste M, de Graaf AO, Burkhardt B, Jansen JH, Dugas M. CopyDetective: Detection threshold-aware copy number variant calling in whole-exome sequencing data. Gigascience 2020; 9:giaa118. [PMID: 33135740 PMCID: PMC7604644 DOI: 10.1093/gigascience/giaa118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/17/2020] [Accepted: 10/02/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Copy number variants (CNVs) are known to play an important role in the development and progression of several diseases. However, detection of CNVs with whole-exome sequencing (WES) experiments is challenging. Usually, additional experiments have to be performed. FINDINGS We developed a novel algorithm for somatic CNV calling in matched WES data called "CopyDetective". Different from other approaches, CNV calling with CopyDetective consists of a 2-step procedure: first, quality analysis is performed, determining individual detection thresholds for every sample. Second, actual CNV calling on the basis of the previously determined thresholds is performed. Our algorithm evaluates the change in variant allele frequency of polymorphisms and reports the fraction of affected cells for every CNV. Analyzing 4 WES data sets (n = 100) we observed superior performance of CopyDetective compared with ExomeCNV, VarScan2, ControlFREEC, ExomeDepth, and CNV-seq. CONCLUSIONS Individual detection thresholds reveal that not every WES data set is equally apt for CNV calling. Initial quality analyses, determining individual detection thresholds-as realized by CopyDetective-can and should be performed prior to actual variant calling.
Collapse
Affiliation(s)
- Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Albert-Schweitzer-Campus 1, Building A11, Münster 48149, Germany
| | - Marius Wöste
- Institute of Medical Informatics, University of Münster, Albert-Schweitzer-Campus 1, Building A11, Münster 48149, Germany
| | - Aniek O de Graaf
- Laboratory Hematology, RadboudUMC, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, Netherlands
| | - Birgit Burkhardt
- Paediatric Hematology & Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, Münster 48149, Germany
| | - Joop H Jansen
- Laboratory Hematology, RadboudUMC, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, Netherlands
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Albert-Schweitzer-Campus 1, Building A11, Münster 48149, Germany
| |
Collapse
|