1
|
Li B, Adam Eichhorn PJ, Chng WJ. Targeting the ubiquitin pathway in lymphoid malignancies. Cancer Lett 2024; 594:216978. [PMID: 38795760 DOI: 10.1016/j.canlet.2024.216978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Ubiquitination and related cellular processes control a variety of aspects in human cell biology, and defects in these processes contribute to multiple illnesses. In recent decades, our knowledge about the pathological role of ubiquitination in lymphoid cancers and therapeutic strategies to target the modified ubiquitination system has evolved tremendously. Here we review the altered signalling mechanisms mediated by the aberrant expression of cancer-associated E2s/E3s and deubiquitinating enzymes (DUBs), which result in the hyperactivation of oncoproteins or the frequently allied downregulation of tumour suppressors. We discuss recent highlights pertaining to the several different therapeutic interventions which are currently being evaluated to effectively block abnormal ubiquitin-proteasome pathway and the use of heterobifunctional molecules which recruit the ubiquitination system to degrade or stabilize non-cognate substrates. This review aids in comprehension of ubiquitination aberrance in lymphoid cancers and current targeting strategies and elicits further investigations to deeply understand the link between cellular ubiquitination and lymphoid pathogenesis as well as to ameliorate corresponding treatment interventions.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Pieter Johan Adam Eichhorn
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia; Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore; Department of Medicine, School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Sanati M, Afshari AR, Ahmadi SS, Moallem SA, Sahebkar A. Modulation of the ubiquitin-proteasome system by phytochemicals: Therapeutic implications in malignancies with an emphasis on brain tumors. Biofactors 2023; 49:782-819. [PMID: 37162294 DOI: 10.1002/biof.1958] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Li X, Yang S, Zhang H, Liu X, Gao Y, Chen Y, Liu L, Wang D, Liang Z, Liu S, Dai L, Xu Q, Yuan H, Chen C, Sun H, Wen X. Discovery of Orally Bioavailable N-Benzylpiperidinol Derivatives as Potent and Selective USP7 Inhibitors with In Vivo Antitumor Immunity Activity against Colon Cancer. J Med Chem 2022; 65:16622-16639. [PMID: 36454192 DOI: 10.1021/acs.jmedchem.2c01444] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
USP7 emerges as a potential therapeutic target for cancers, as it plays an important role in the development of tumorigenesis by stabilizing multiple cancer-relevant proteins. Nevertheless, the discovery of drug-like USP7 inhibitors remains challenging. Herein, we report a series of N-benzylpiperidinol derivatives as potent and selective USP7 inhibitors (e.g., X20 and X26: IC50 = 7.6 and 8.2 nM), whose binding modes were revealed by crystallographic studies to be distinct from the known N-acylpiperidinol USP7 inhibitors. Among them, X36 with good oral PK profiles (rat: F = 40.8% and T1/2 = 3.5 h) exhibited significant antitumor efficacy in the MC38 colon cancer syngeneic mouse model, at least partly through upregulating the tumor infiltration of CD8+ T, NK, and NKT cells and downregulating that of Tregs and MDSCs. These findings may further pave the way for the development of USP7 inhibitors as novel cancer immunotherapy drugs.
Collapse
Affiliation(s)
- Xing Li
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shanlin Yang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Honghan Zhang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xipeng Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuchen Gao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuqi Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Liu Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Dalin Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zijiang Liang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shengjie Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Qinglong Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Caiping Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, China.,Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, China.,Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| |
Collapse
|
4
|
Identification and validation of ecto-5' nucleotidase as an immunotherapeutic target in multiple myeloma. Blood Cancer J 2022; 12:50. [PMID: 35365613 PMCID: PMC8976016 DOI: 10.1038/s41408-022-00635-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/21/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Interaction of plasmacytoid dendritic cells (pDCs) with multiple myeloma (MM) cells, T- or NK-effector cells in the bone marrow (BM) microenvironment induces tumor cell growth, as well as inhibits innate and adaptive immune responses. Defining pDC-MM interaction-triggered immunosuppressive mechanism(s) will enable design of interventional therapies to augment anti-MM immunity. In the present study, we show that pDC-MM interactions induce metabolic enzyme Ecto-5' Nucleotidase/CD73 in both pDCs and MM cells. Gene expression database from MM patients showed that CD73 levels inversely correlate with overall survival. Using our pDC-MM coculture models, we found that blockade of CD73 with anti-CD73 Abs: decreases adenosine levels; activates MM patient pDCs; triggers cytotoxic T lymphocytes (CTL) activity against autologous patient MM cells. Combination of anti-CD73 Abs and an immune-stimulating agent TLR-7 agonist enhances autologous MM-specific CD8+ CTL activity. Taken together, our preclinical data suggest that the therapeutic targeting of CD73, alone or in combination with TLR-7 agonist, represents a promising novel strategy to restore host anti-MM immunity.
Collapse
|