1
|
Jakobsen T, Pløen GG, Behsen AD, Møller HJ, Plesner T, Dybkær K, Andersen MN, Misund K, Kristensen LS. The Prognostic Potential of circRNAs in Multiple Myeloma: Insights From Whole Bone Marrow and Purified Plasma Cells. J Cell Mol Med 2024; 28:e70215. [PMID: 39601341 PMCID: PMC11600292 DOI: 10.1111/jcmm.70215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Multiple myeloma (MM) is a haematological malignancy with abnormal proliferation of plasma cells in the bone marrow (BM), and MM patients with highly proliferative plasma cells have reduced overall survival. Circular RNAs (circRNAs) are endogenous, non-coding molecules that are promising biomarkers in cancer. Here, we present the largest study of circRNAs in MM to date and explore the prognostic potential of circRNAs and the link between proliferation and circRNA expression in MM. We performed deep total RNA sequencing (RNA-seq) on two cohorts: one cohort consisting of 45 whole BM MM patient samples and 13 healthy controls (HCs), and another cohort consisting of 43 CD138-purified plasma cell MM patient samples. We found that circRNAs are globally upregulated in the whole BM of MM patients compared to HCs. In whole BM, low proliferation and high circRNA levels were associated with a poor prognosis, while in purified plasma cells, low proliferation and high circRNA levels were associated with a favourable prognosis. Individual circRNAs from purified plasma cells were found to be significantly associated with MM patient outcomes and provide additional prognostic value to the proliferative indexes. Together, our findings emphasise the potential of circRNAs as prognostic biomarkers in MM.
Collapse
Affiliation(s)
| | | | - Alenka Djarmila Behsen
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Holger Jon Møller
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Clinical BiochemistryAarhus University HospitalAarhusDenmark
| | - Torben Plesner
- Institute of Regional Health ScienceUniversity of Southern DenmarkVejleDenmark
- Department of Internal Medicine, Section of Hematology, Lillebaelt HospitalUniversity Hospital of Southern DenmarkVejleDenmark
| | - Karen Dybkær
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
- Department of Hematology, Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark
| | - Morten Nørgaard Andersen
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Molecular Medicine (MOMA)Aarhus University HospitalAarhusDenmark
- Department of HematologyAarhus University HospitalAarhusDenmark
| | - Kristine Misund
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Medical GeneticsSt. Olavs HospitalTrondheimNorway
| | | |
Collapse
|
2
|
Xu Y, Gao Z, Sun X, Li J, Ozaki T, Shi D, Yu M, Zhu Y. The role of circular RNA during the urological cancer metastasis: exploring regulatory mechanisms and potential therapeutic targets. Cancer Metastasis Rev 2024; 43:1055-1074. [PMID: 38558156 DOI: 10.1007/s10555-024-10182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Metastasis is a major contributor to treatment failure and death in urological cancers, representing an important biomedical challenge at present. Metastases form as a result of cancer cells leaving the primary site, entering the vasculature and lymphatic vessels, and colonizing clones elsewhere in the body. However, the specific regulatory mechanisms of action underlying the metastatic process of urological cancers remain incompletely elucidated. With the deepening of research, circular RNAs (circRNAs) have been found to not only play a significant role in tumor progression and prognosis but also show aberrant expression in various tumor metastases, consequently impacting tumor metastasis through multiple pathways. Therefore, circRNAs are emerging as potential tumor markers and treatment targets. This review summarizes the research progress on elucidating how circRNAs regulate the urological cancer invasion-metastasis cascade response and related processes, as well as their role in immune microenvironment remodeling and circRNA vaccines. This body of work highlights circRNA regulation as an emerging therapeutic target for urological cancers, which should motivate further specific research in this regard.
Collapse
Affiliation(s)
- Yan Xu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhipeng Gao
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110001, China
| | - Jun Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Du Shi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Meng Yu
- Department of Laboratory Animal Science, China Medical University, No. 77 Puhe Road, Shenyang, 110122, Liaoning, China.
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
3
|
Conn VM, Chinnaiyan AM, Conn SJ. Circular RNA in cancer. Nat Rev Cancer 2024; 24:597-613. [PMID: 39075222 DOI: 10.1038/s41568-024-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/31/2024]
Abstract
Over the past decade, circular RNA (circRNA) research has evolved into a bona fide research field shedding light on the functional consequence of this unique family of RNA molecules in cancer. Although the method of formation and the abundance of circRNAs can differ from their cognate linear mRNA, the spectrum of interacting partners and their resultant cellular functions in oncogenesis are analogous. However, with 10 times more diversity in circRNA variants compared with linear RNA variants, combined with their hyperstability in the cell, circRNAs are equipped to influence every stage of oncogenesis. This is an opportune time to address the breadth of circRNA in cancer focused on their spatiotemporal expression, mutations in biogenesis factors and contemporary functions through each stage of cancer. In this Review, we highlight examples of functional circRNAs in specific cancers, which satisfy critical criteria, including their physical co-association with the target and circRNA abundance at stoichiometrically valid quantities. These considerations are essential to develop strategies for the therapeutic exploitation of circRNAs as biomarkers and targeted anticancer agents.
Collapse
Affiliation(s)
- Vanessa M Conn
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Simon J Conn
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia.
| |
Collapse
|
4
|
Wang J, Ku X, Ma Q, Li H, Huang S, Mao L, Yu F, Jin J, Yan W. Hsa_circ_0007099 and PIP4K2A coexpressed in diffuse large B-cell lymphoma with clinical significance. Genes Dis 2024; 11:101056. [PMID: 38510476 PMCID: PMC10950802 DOI: 10.1016/j.gendis.2023.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 03/22/2024] Open
Affiliation(s)
- Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang 310003, China
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang 310003, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xin Ku
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuling Ma
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Haikuo Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang 310003, China
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang 310003, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Liping Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang 310003, China
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang 310003, China
| | - Fang Yu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang 310003, China
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang 310003, China
| | - Wei Yan
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Zhang X, Ma L, Wan L, Wang H, Wang Z. Circ_0003945: an emerging biomarker and therapeutic target for human diseases. Front Oncol 2024; 14:1275009. [PMID: 38711855 PMCID: PMC11070578 DOI: 10.3389/fonc.2024.1275009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Due to the rapid development of RNA sequencing techniques, a circular non-coding RNA (ncRNA) known as circular RNAs (circRNAs) has gradually come into focus. As a distinguished member of the circRNA family, circ_0003945 has garnered attention for its aberrant expression and biochemical functions in human diseases. Subsequent studies have revealed that circ_0003945 could regulate tumor cells proliferation, migration, invasion, apoptosis, autophagy, angiogenesis, drug resistance, and radio resistance through the molecular mechanism of competitive endogenous RNA (ceRNA) during tumorigenesis. The expression of circ_0003945 is frequently associated with some clinical parameters and implies a poorer prognosis in the majority of cancers. In non-malignant conditions, circ_0003945 also holds considerable importance in diseases pathogenesis. This review aims to recapitulate molecular mechanism of circ_0003945 and elucidates its potential as a diagnostic and therapeutic target in neoplasms and other diseases.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Wan
- Department of Oncology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Haoran Wang
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Liu Y, Zhao X, Seitz A, Hooijsma AA, Ravanbakhsh R, Sheveleva S, de Jong D, Koerts J, Dzikiewicz-Krawczyk A, van den Berg A, Ziel-Swier LJYM, Kluiver J. Circular ZDHHC11 supports Burkitt lymphoma growth independent of its miR-150 binding capacity. Sci Rep 2024; 14:8730. [PMID: 38627588 PMCID: PMC11021472 DOI: 10.1038/s41598-024-59443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
We previously showed that MYC promoted Burkitt lymphoma (BL) growth by inhibiting the tumor suppressor miR-150, resulting in release of miR-150 targets MYB and ZDHHC11. The ZDHHC11 gene encodes three different transcripts including a mRNA (pcZDHHC11), a linear long non-coding RNA (lncZDHHC11) and a circular RNA (circZDHHC11). All transcripts contain the same region with 18 miR-150 binding sites. Here we studied the relevance of circZDHHC11, including this miR-150 binding site region, for growth of BL cells. CircZDHHC11 was mainly present in the cytoplasmic fraction in BL cells and its localization was not altered upon miR-150 overexpression. Knockdown of circZDHHC11 caused a strong inhibition of BL growth without affecting the expression levels of MYC, MYB, miR-150 and other genes. Overexpression of circZDHHC11 neither affected cell growth, nor rescued the phenotype induced by miR-150 overexpression. Genomic deletion of the miR-150 binding site region did not affect growth, nor did it change the effect of circZDHHC11 knockdown. This indicated that the miR-150 binding site region is dispensable for the growth promoting role of circZDHHC11. To conclude, our results show that circZDHHC11 is a crucial factor supporting BL cell growth independent of its ability to sponge miR-150.
Collapse
Affiliation(s)
- Yichen Liu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
- Cancer Hospital Academy of Medical Sciences, Peking Union Medical College, Dongcheng, China
| | - Xing Zhao
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Annika Seitz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Annie A Hooijsma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Reyhaneh Ravanbakhsh
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
- Department of Aquatic Biotechnology, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Sofia Sheveleva
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Jasper Koerts
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | | | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Lotteke J Y M Ziel-Swier
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
7
|
Gutierrez-Camino A, Caron M, Richer C, Fuchs C, Illarregi U, Poncelet L, St-Onge P, Bataille AR, Tremblay-Dauphinais P, Lopez-Lopez E, Camos M, Ramirez-Orellana M, Astigarraga I, Lécuyer É, Bourque G, Martin-Guerrero I, Sinnett D. CircRNAome of Childhood Acute Lymphoblastic Leukemia: Deciphering Subtype-Specific Expression Profiles and Involvement in TCF3::PBX1 ALL. Int J Mol Sci 2024; 25:1477. [PMID: 38338754 PMCID: PMC10855129 DOI: 10.3390/ijms25031477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Childhood B-cell acute lymphoblastic leukemia (B-ALL) is a heterogeneous disease comprising multiple molecular subgroups with subtype-specific expression profiles. Recently, a new type of ncRNA, termed circular RNA (circRNA), has emerged as a promising biomarker in cancer, but little is known about their role in childhood B-ALL. Here, through RNA-seq analysis in 105 childhood B-ALL patients comprising six genetic subtypes and seven B-cell controls from two independent cohorts we demonstrated that circRNAs properly stratified B-ALL subtypes. By differential expression analysis of each subtype vs. controls, 156 overexpressed and 134 underexpressed circRNAs were identified consistently in at least one subtype, most of them with subtype-specific expression. TCF3::PBX1 subtype was the one with the highest number of unique and overexpressed circRNAs, and the circRNA signature could effectively discriminate new patients with TCF3::PBX1 subtype from others. Our results indicated that NUDT21, an RNA-binding protein (RBP) involved in circRNA biogenesis, may contribute to this circRNA enrichment in TCF3::PBX1 ALL. Further functional characterization using the CRISPR-Cas13d system demonstrated that circBARD1, overexpressed in TCF3::PBX1 patients and regulated by NUDT21, might be involved in leukemogenesis through the activation of p38 via hsa-miR-153-5p. Our results suggest that circRNAs could play a role in the pathogenesis of childhood B-ALL.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Maxime Caron
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Chantal Richer
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Claire Fuchs
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Unai Illarregi
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (U.I.); (I.M.-G.)
| | - Lucas Poncelet
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Pascal St-Onge
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Alain R. Bataille
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Pascal Tremblay-Dauphinais
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
| | - Elixabet Lopez-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Pediatric Oncology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Mireia Camos
- Hematology Laboratory, Sant Joan de Déu Research Institute, Esplugues de Llobregat, 08950 Barcelona, Spain;
| | - Manuel Ramirez-Orellana
- Department of Pediatric Hematology and Oncology, Niño Jesús University Hospital, 28009 Madrid, Spain;
| | - Itziar Astigarraga
- Pediatric Oncology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Department of Pediatrics, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Éric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada;
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (U.I.); (I.M.-G.)
- Pediatric Oncology Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Daniel Sinnett
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (A.G.-C.); (M.C.); (C.R.); (C.F.); (L.P.); (P.S.-O.); (A.R.B.); (P.T.-D.)
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
8
|
Kaisai T, Mantang Z, Tailei Y, Liying Z, Xiaoping C, Mingming J, Yi Z. Hsa_circ_0013561 promotes progression of nasopharyngeal carcinoma by activating JAK2/STAT3 signaling pathway. Braz J Otorhinolaryngol 2024; 90:101362. [PMID: 38006726 PMCID: PMC10709185 DOI: 10.1016/j.bjorl.2023.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 11/03/2023] [Indexed: 11/27/2023] Open
Abstract
OBJECTIVE Nasopharyngeal Carcinoma (NPC) is a malignancy of epithelium of epithelium of the nasopharynx, with the highest incidence of otolaryngeal malignancies. A growing number of studies confirm that Circular RNA (circRNA) plays an important role in tumor development, including Hsa_circ_0013561. This study aims to elucidate the process and mechanism of NPC regulation hsa_circ_0013561. METHODS In this study, circRNA expression nodes and subcellular localization in NPC tissues were analyzed by fluorescence in situ hybridization. The expression of hsa_circ_0013561 in NPC cells was further clarified by RT-qPCR. At the same time, the lentivirus vector interfered by hsa_circ_0013561 was constructed and transfected. The cell proliferation was detected by CCK-8 method, EdU assay and plate cloning assay. The cell cycle and apoptosis were detected by flow cytometry, and the cell migration ability was detected by wound healing assay and Transwell assay. Western blotting examined the expression of apoptosis, Epithelial-Mesenchymal Transition (EMT)-associated proteins, and Janus Kinase/Signal Transductor and Activator of Transcription (JAK/STAT) signaling pathway-related proteins. RESULTS The results showed that the expression of hsa_circ_0013561 in NPC samples was significantly upregulated and hsa_circ_0013561 localized in the cytoplasm. After down-regulating hsa_circ_0013561 expression, it significantly inhibited the proliferation and metastasis ability of NPC, inhibited EMT progression, and promoted apoptosis. Further studies showed that interference hsa_circ_0013561 significantly inhibited JAK2/STAT3 signaling pathway activation and induced the expression of apoptosis-related proteins. CONCLUSION In summary, we found that hsa_circ_0013561 is a pro-tumor circRNA in NPC, which can reduce the activation of JAK2/STAT3 pathway by knocking down hsa_circ_0013561, thereby slowing down the malignant progression of NPC. OXFORD CENTRE FOR EVIDENCE-BASED MEDICINE 2011 LEVELS OF EVIDENCE: Level 4.
Collapse
Affiliation(s)
- Tian Kaisai
- Ningxia Medical University, Postgraduate Training Base in Shanghai Gongli Hospital, Shanghai, China; Shanghai Pudong New Area Gongli Hospital, Department of Otorhinolaryngology & Head and Neck Surgery, Shanghai, China; Shanghai University of Medicine and Health Sciences, Shanghai Key Laboratory of Molecular Imaging, Shanghai, China
| | - Zheng Mantang
- Affiliated Hospital of Hebei University, Baoding, China
| | - Yuan Tailei
- Ningxia Medical University, Postgraduate Training Base in Shanghai Gongli Hospital, Shanghai, China; Shanghai University of Medicine and Health Sciences, Shanghai Key Laboratory of Molecular Imaging, Shanghai, China
| | - Zheng Liying
- Ningxia Medical University, Postgraduate Training Base in Shanghai Gongli Hospital, Shanghai, China; Shanghai Pudong New Area Gongli Hospital, Department of Otorhinolaryngology & Head and Neck Surgery, Shanghai, China; Shanghai University of Medicine and Health Sciences, Shanghai Key Laboratory of Molecular Imaging, Shanghai, China
| | - Chen Xiaoping
- Shanghai Pudong New Area Gongli Hospital, Department of Otorhinolaryngology & Head and Neck Surgery, Shanghai, China
| | - Jin Mingming
- Shanghai University of Medicine and Health Sciences, Shanghai Key Laboratory of Molecular Imaging, Shanghai, China
| | - Zhang Yi
- Shanghai Pudong New Area Gongli Hospital, Department of Otorhinolaryngology & Head and Neck Surgery, Shanghai, China.
| |
Collapse
|
9
|
Gao L, Fan J, He J, Fan W, Che X, Wang X, Han C. Circular RNA as Diagnostic and Prognostic Biomarkers in Hematological Malignancies:Systematic Review. Technol Cancer Res Treat 2024; 23:15330338241285149. [PMID: 39512224 PMCID: PMC11544746 DOI: 10.1177/15330338241285149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 11/15/2024] Open
Abstract
Objectives: While various serum and tissue biomarkers have been explored for tumor diagnosis, the sensitivity and specificity have not yield optimal results. Circular RNAs (circRNAs) are more stable, conserved, and tissue-specific than linear RNA. Recent reports indicate that circRNAs could serve as potential biomarkers in the diagnosis or/and prognosis of tumors. In this study, we systematically examined the relationship between circRNA expression and diagnostic and prognostic outcomes in patients with hematological tumors. Methods: We searched several databases, including Google Scholar, MEDLINE, Scopus, PubMed, Embase, ScienceDirect, Ovid-Medline, Chinese National Knowledge Infrastructure, WanFang and SinoMed, with a cutoff date of June 12, 2024. The study protocol was PROSPERO (CRD42020188627). Result: A total of 73 studies were included in our review, comprising 39 diagnostic studies and 65 prognostic studies. Clinical parameters were assessed based on pooled adds ratios and 95% confidence intervals (CIs). Overall survival (OS) was evaluated using hazard ratios (HRs) and 95% CIs. The pooled area under the curve was 0.86, indicating the potential to identify hematological tumor patients, with sensitivity and specificity of 79% each. The diagnostic score for circRNAs related to hematological malignancies was 2.12. Notably, different hematological malignancies subgroups displayed varying prognoses. Specifically, lymphoid leukemia circRNA showed a negative impacct on prognosis (HR = 1.25, 95% CI: 1.10-1.43, P < 0.001). Conclusion: Our findings provide compelling evidence that circRNA may be serve as a promising alternative for the diagnosis and prognosis of hematological tumors.
Collapse
Affiliation(s)
- Liyun Gao
- Laboratory of of Precision Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Junfei Fan
- School of Humanities, Shangluo University, Shangluo, China
| | - Jiayin He
- School of Literature and Journalism, South-central Minzu University, Wuhan, China
| | - Wenyan Fan
- Laboratory of of Precision Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Xiangxin Che
- Laboratory of of Precision Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Xin Wang
- Laboratory of of Precision Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Chunhua Han
- Internal Medicine, Jiujiang First People's Hospital, Jiujiang, China
| |
Collapse
|
10
|
García-Rodríguez JL, Korsgaard U, Ahmadov U, Jarlstad Olesen MT, Dietrich KG, Hansen EB, Vissing SM, Ulhøi BP, Dyrskjøt L, Sørensen KD, Kjems J, Hager H, Kristensen LS. Spatial Profiling of Circular RNAs in Cancer Reveals High Expression in Muscle and Stromal Cells. Cancer Res 2023; 83:3340-3353. [PMID: 37477923 PMCID: PMC10570686 DOI: 10.1158/0008-5472.can-23-0748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Circular RNAs (circRNA) are covalently closed molecules that can play important roles in cancer development and progression. Hundreds of differentially expressed circRNAs between tumors and adjacent normal tissues have been identified in studies using RNA sequencing or microarrays, emphasizing a strong translational potential. Most previous studies have been performed using RNA from bulk tissues and lack information on the spatial expression patterns of circRNAs. Here, we showed that the majority of differentially expressed circRNAs from bulk tissue analyses of colon tumors relative to adjacent normal tissues were surprisingly not differentially expressed when comparing cancer cells directly with normal epithelial cells. Manipulating the proliferation rates of cells grown in culture revealed that these discrepancies were explained by circRNAs accumulating to high levels in quiescent muscle cells due to their high stability; on the contrary, circRNAs were diluted to low levels in the fast-proliferating cancer cells due to their slow biogenesis rates. Thus, different subcompartments of colon tumors and adjacent normal tissues exhibited striking differences in circRNA expression patterns. Likewise, the high circRNA content in muscle cells was also a strong confounding factor in bulk analyses of circRNAs in bladder and prostate cancers. Together, these findings emphasize the limitations of using bulk tissues for studying differential circRNA expression in cancer and highlight a particular need for spatial analysis in this field of research. SIGNIFICANCE The abundance of circRNAs varies systematically between subcompartments of solid tumors and adjacent tissues, implying that differentially expressed circRNAs discovered in bulk tissue analyses may reflect differences in cell type composition between samples.
Collapse
Affiliation(s)
| | - Ulrik Korsgaard
- Department of Clinical Pathology, Vejle Hospital, Vejle, Denmark
- Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark
| | - Ulvi Ahmadov
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Emma B. Hansen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Lars Dyrskjøt
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karina D. Sørensen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Henrik Hager
- Department of Clinical Pathology, Vejle Hospital, Vejle, Denmark
- Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
11
|
Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M, Calin GA. Going circular: history, present, and future of circRNAs in cancer. Oncogene 2023; 42:2783-2800. [PMID: 37587333 PMCID: PMC10504067 DOI: 10.1038/s41388-023-02780-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023]
Abstract
To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and post-transcriptionally and exhibit distinct tissue- and development-specific expression patterns associated with a variety of normal and disease conditions, including cancer pathogenesis. Over the past years, due to their intrinsic stability and resistance to ribonucleases, particular attention has been drawn to their use as reliable diagnostic and prognostic biomarkers in cancer diagnosis, treatment, and prevention. However, there are some critical caveats to their utility in the clinic. Their circular shape limits their annotation and a complete functional elucidation is lacking. This makes their detection and biomedical application still challenging. Herein, we review the current knowledge of circRNA biogenesis and function, and of their involvement in tumorigenesis and potential utility in cancer-targeted therapy.
Collapse
Affiliation(s)
- Giuseppina Pisignano
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - David C Michael
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Tanvi H Visal
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Radu Pirlog
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol, BS16 1QY, UK
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Salim R, Husby S, Winther Eskelund C, Scott DW, Holte H, Kolstad A, Räty R, Ek S, Jerkeman M, Geisler C, Sommer Kristensen L, Dahl M, Grønbæk K. Exploring new prognostic biomarkers in Mantle Cell Lymphoma: a comparison of the circSCORE and the MCL35 score. Leuk Lymphoma 2023; 64:1414-1423. [PMID: 37259807 DOI: 10.1080/10428194.2023.2216819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Mantle cell lymphoma (MCL) is a biologically and clinically heterogeneous disease, emphasizing the need for prognostic biomarkers. In this study we aimed at comparing the prognostic value of two RNA-based risk scores, circSCORE and MCL35, in 149 patients from the MCL2 (ISRCTN87866680) and MCL3 (NCT00514475) patient cohorts. Both risk scores provided significant stratification of high versus low risk for progression free survival (PFS) and overall survival (OS). The circSCORE retained significant prognostic value in adjusted multivariable Cox regressions for PFS, but not for OS. Furthermore, circSCORE added significant prognostic value to MIPI in the pooled cohort (MCL2 and MCL3) for PFS and OS, and for PFS in MCL3 alone, outperforming Ki67 and MCL35. We suggest a new, combined MIPI-circSCORE with improved prognostic value, and with potential for future clinical implementation, if validated in a larger, independent cohort.
Collapse
Affiliation(s)
- Ruth Salim
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - Simon Husby
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | | | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, Canada
| | - Harald Holte
- Department of Oncology, Oslo University Hospital, Norway and KG Jebsen Centre for B-cell malignancies, Oslo, Norway
| | - Arne Kolstad
- Department of Oncology, Division Gjøvik-Lillehammer, Innlandet Hospital Trust, Innlandet, Norway
| | - Riikka Räty
- Department of Hematology, Helsinki University Hospital, Helsinki, Finland
| | - Sara Ek
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Mats Jerkeman
- Department of Oncology, Lund University, Lund, Sweden
| | | | | | - Mette Dahl
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Wedge E, Ahmadov U, Hansen TB, Gao Z, Tulstrup M, Côme C, Nonavinkere Srivatsan S, Ahmed T, Jespersen JS, Schlotmann BC, Schöllkopf C, Raaschou-Jensen K, Ødum N, Kjems J, Bak RO, Walter MJ, Grønbæk K, Kristensen LS. Impact of U2AF1 mutations on circular RNA expression in myelodysplastic neoplasms. Leukemia 2023; 37:1113-1125. [PMID: 36922625 DOI: 10.1038/s41375-023-01866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Mutations in U2AF1 are relatively common in myelodysplastic neoplasms (MDS) and are associated with an inferior prognosis, but the molecular mechanisms underlying this are not fully elucidated. Circular RNAs (circRNAs) have been implicated in cancer, but it is unknown how mutations in splicing factors may impact on circRNA biogenesis. Here, we used RNA-sequencing to investigate the effects of U2AF1 mutations on circRNA expression in K562 cells with a doxycycline-inducible U2AF1S34 mutation, in a mouse model with a doxycycline-inducible U2AF1S34 mutation, and in FACS-sorted CD34+ bone marrow cells from MDS patients with either U2AF1S34 or U2AF1Q157 mutations. In all contexts, we found an increase in global circRNA levels in the U2AF1-mutated setting, which was independent of expression changes in the cognate linear host genes. In patients, the U2AF1S34 and U2AF1Q157 mutations were both associated with an overall increased expression of circRNAs. circRNAs generated by a non-Alu-mediated mechanism generally showed the largest increase in expression levels. Several well-described cancer-associated circRNAs, including circZNF609 and circCSNK1G3, were upregulated in MDS patients with U2AF1 mutations compared to U2AF1-wildtype MDS controls. In conclusion, high circRNA expression is observed in association with U2AF1 mutations in three biological systems, presenting an interesting possibility for biomarker and therapeutic investigation.
Collapse
Affiliation(s)
- Eileen Wedge
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Danish Stem Cell Center (Danstem), University of Copenhagen, Copenhagen, Denmark
| | - Ulvi Ahmadov
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Thomas B Hansen
- Department of Molecular Biology and Genetics, Aarhus, Denmark
| | - Zongliang Gao
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Morten Tulstrup
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Danish Stem Cell Center (Danstem), University of Copenhagen, Copenhagen, Denmark
| | - Christophe Côme
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Danish Stem Cell Center (Danstem), University of Copenhagen, Copenhagen, Denmark
| | | | - Tanzir Ahmed
- Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Jakob S Jespersen
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Danish Stem Cell Center (Danstem), University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Copenhagen University Hospital, Copenhagen, Denmark
| | - Balthasar C Schlotmann
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Danish Stem Cell Center (Danstem), University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Copenhagen University Hospital, Copenhagen, Denmark
| | - Claudia Schöllkopf
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Matthew J Walter
- Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Kirsten Grønbæk
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark.
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark.
- The Danish Stem Cell Center (Danstem), University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
14
|
Whole Transcriptome Sequencing Reveals Cancer-Related, Prognostically Significant Transcripts and Tumor-Infiltrating Immunocytes in Mantle Cell Lymphoma. Cells 2022; 11:cells11213394. [PMID: 36359790 PMCID: PMC9654955 DOI: 10.3390/cells11213394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma (NHL) subtype characterized by overexpression of CCND1 and SOX11 genes. It is generally associated with clinically poor outcomes despite recent improvements in therapeutic approaches. The genes associated with the development and prognosis of MCL are still largely unknown. Through whole transcriptome sequencing (WTS), we identified mRNAs, lncRNAs, and alternative transcripts differentially expressed in MCL cases compared with reactive tonsil B-cell subsets. CCND1, VCAM1, and VWF mRNAs, as well as MIR100HG and ROR1-AS1 lncRNAs, were among the top 10 most significantly overexpressed, oncogenesis-related transcripts. Survival analyses with each of the top upregulated transcripts showed that MCL cases with high expression of VWF mRNA and low expression of FTX lncRNA were associated with poor overall survival. Similarly, high expression of MSTRG.153013.3, an overexpressed alternative transcript, was associated with shortened MCL survival. Known tumor suppressor candidates (e.g., PI3KIP1, UBXN) were significantly downregulated in MCL cases. Top differentially expressed protein-coding genes were enriched in signaling pathways related to invasion and metastasis. Survival analyses based on the abundance of tumor-infiltrating immunocytes estimated with CIBERSORTx showed that high ratios of CD8+ T-cells or resting NK cells and low ratios of eosinophils are associated with poor overall survival in diagnostic MCL cases. Integrative analysis of tumor-infiltrating CD8+ T-cell abundance and overexpressed oncogene candidates showed that MCL cases with high ratio CD8+ T-cells and low expression of FTX or PCA3 can potentially predict high-risk MCL patients. WTS results were cross-validated with qRT-PCR of selected transcripts as well as linear correlation analyses. In conclusion, expression levels of oncogenesis-associated transcripts and/or the ratios of microenvironmental immunocytes in MCL tumors may be used to improve prognostication, thereby leading to better patient management and outcomes.
Collapse
|
15
|
Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol 2022; 19:188-206. [PMID: 34912049 DOI: 10.1038/s41571-021-00585-y] [Citation(s) in RCA: 557] [Impact Index Per Article: 185.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Over the past decade, circular RNAs (circRNAs) have emerged as a large class of primarily non-coding RNA molecules, many of which have key roles in cancer development and progression through diverse mechanisms of action. CircRNAs often have tissue-restricted and cancer-specific expression patterns, and accumulating data suggest that these molecules are of potential clinical relevance and utility. In particular, circRNAs have strong potential as diagnostic, prognostic and predictive biomarkers, which is underscored by their detectability in liquid biopsy samples such as in plasma, saliva and urine. However, technical issues in the detection and assessment of circRNAs as well as biological knowledge gaps need to be addressed to move this relatively young field of research forward and bring circRNAs to the forefront of clinical practice. Herein, we review the current knowledge regarding circRNA biogenesis, regulation and functions in cancer as well as their clinical potential as biomarkers, therapeutic agents and drug targets.
Collapse
Affiliation(s)
| | | | - Henrik Hager
- Department of Clinical Pathology, Vejle Hospital, Vejle, Denmark.,Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus C, Denmark. .,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
16
|
Singh D, Kesharwani P, Alhakamy NA, Siddique HR. Accentuating CircRNA-miRNA-Transcription Factors Axis: A Conundrum in Cancer Research. Front Pharmacol 2022; 12:784801. [PMID: 35087404 PMCID: PMC8787047 DOI: 10.3389/fphar.2021.784801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are the newly uncovered class of non-coding RNAs being cognized as profound regulators of gene expression in developmental and disease biology. These are the covalently closed RNAs synthesized when the pre-mRNA transcripts undergo a back-splicing event. In recent years, circRNAs are gaining special attention in the scientific world and are no longer considered as "splicing noise" but rather structurally stable molecules having multiple biological functions including acting as miRNA sponges, protein decoys/scaffolds, and regulators of transcription and translation. Further, emerging evidence suggests that circRNAs are also differentially expressed in multiple cancers where they play oncogenic roles. In addition, circRNAs in association with miRNAs change the expression patterns of multiple transcription factors (TFs), which play important roles in cancer. Thus, the circRNA-miRNA-TFs axis is implicated in the progression or suppression of various cancer types and plays a role in cell proliferation, invasion, and metastasis. In this review article, we provide an outline of the biogenesis, localization, and functions of circRNAs specifically in cancer. Also, we highlight the regulatory function of the circRNA-miRNA-TFs axis in the progression or suppression of cancer and the targeting of this axis as a potential therapeutic approach for cancer management. We anticipate that our review will contribute to expanding the knowledge of the research community about this recent and rapidly growing field of circRNAs for further thorough investigation which will surely help in the management of deadly disease cancer.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hifzur R. Siddique
- Molecular Cancer Genetics and Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|