1
|
Schwarz-Furlan S, Gengler C, Yoshimi-Noellke A, Piontek G, Schneider-Kimoto Y, Schmugge M, Thiede C, Niemeyer CM, Erlacher M, Rudelius M. Diagnostic features in paediatric MDS-EB with UBTF-internal tandem duplication: defining a unique subgroup. Histopathology 2024. [PMID: 39564724 DOI: 10.1111/his.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
AIM Tandem-duplications of the UBTF gene (UBTF-TDs) have recently been identified as a new genetic driver in young individuals with acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). Disease in these newly defined subgroups is characterized by poor response to standard intensive chemotherapy and inferior survival of the affected patients. However, a thorough analysis of bone marrow histomorphology of UBTF-mutated neoplasia has not been undertaken thus far. METHODS AND RESULTS In this retrospective study, we investigated the characteristic histopathological features of a cohort comprising 14 paediatric MDS patients with an excess of blasts (MDS-EB) and UBTF-TD. Bone marrow biopsies from these patients revealed hypercellularity and severe dysplasia across all three haematopoietic lineages. In particular, a marked hyperplastic megakaryopoiesis characterized by the presence of frequent micromegakaryocytes and a high number of monolobulated cells forming small clusters was observed. Additionally, erythropoiesis was left-shifted, with numerous blastoid precursors. The granulopoietic precursors displayed prominent UBTF-positive nucleoli. CONCLUSION The unique combination of these histomorphological features strongly suggests a possible UBTF aberration. It will allow initiating the appropriate genetic testing to confirm the presence of UBTF-TD and identify potential additional genetic alterations. Such molecular profiling will not only contribute to a better understanding of the disease mechanism, but also facilitate more rational treatment approaches for these high-risk paediatric MDS patients.
Collapse
Affiliation(s)
| | - Carole Gengler
- Department of Pathology, Université Lausanne, Lausanne, Switzerland
| | - Ayami Yoshimi-Noellke
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Guido Piontek
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Markus Schmugge
- Department of Hematology and Oncology, University Children's Hospital, Zürich, Switzerland
| | - Christian Thiede
- Department of Internal Medicine I, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- AgenDix GmbH, Dresden, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
2
|
Nadiminti KVG, Sahasrabudhe KD, Liu H. Menin inhibitors for the treatment of acute myeloid leukemia: challenges and opportunities ahead. J Hematol Oncol 2024; 17:113. [PMID: 39558390 PMCID: PMC11575055 DOI: 10.1186/s13045-024-01632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
The AML treatment landscape has significantly changed in recent years with the approval of targeted therapies in the front-line and relapsed/refractory settings, including inhibitors of FLT3 and IDH1/2 mutations. More importantly, approval of the combination of the BCl-2 inhibitor, venetoclax, and hypomethylating agents or low dose cytarabine provided unprecedented breakthrough for the frontline treatment of older, unfit AML patients. Even with all this exciting progress, more targeted therapies for AML treatment are needed. Recent development of menin inhibitors targeting AML with KMT2A rearrangements or NPM1 mutations could represent a promising new horizon of treatment for patients within these subsets of AML. Our current review will focus on a summary and updates of recent developments of menin inhibitors in the treatment of AML, on the challenges ahead arising from drug resistance, as well as on the opportunities of novel combinations with menin inhibitors.
Collapse
Affiliation(s)
- Kalyan V G Nadiminti
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705-2281, USA.
| | - Kieran D Sahasrabudhe
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705-2281, USA
| | - Hongtao Liu
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705-2281, USA
| |
Collapse
|
3
|
Vaughan L, Pimanda JE. Seeing MDS through the lens of genomics. Blood 2024; 144:1552-1554. [PMID: 39388160 DOI: 10.1182/blood.2024025676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Affiliation(s)
| | - John E Pimanda
- University of New South Wales, Sydney
- Prince of Wales Hospital
| |
Collapse
|
4
|
Cuglievan B, Kantarjian H, Rubnitz JE, Cooper TM, Zwaan CM, Pollard JA, DiNardo CD, Kadia TM, Guest E, Short NJ, McCall D, Daver N, Nunez C, Haddad FG, Garcia M, Bhalla KN, Maiti A, Catueno S, Fiskus W, Carter BZ, Gibson A, Roth M, Khazal S, Tewari P, Abbas HA, Bourgeois W, Andreeff M, Shukla NN, Truong DD, Connors J, Ludwig JA, Stutterheim J, Salzer E, Juul-Dam KL, Sasaki K, Mahadeo KM, Tasian SK, Borthakur G, Dickson S, Jain N, Jabbour E, Meshinchi S, Garcia-Manero G, Ravandi F, Stein EM, Kolb EA, Issa GC. Menin inhibitors in pediatric acute leukemia: a comprehensive review and recommendations to accelerate progress in collaboration with adult leukemia and the international community. Leukemia 2024; 38:2073-2084. [PMID: 39179671 PMCID: PMC11436367 DOI: 10.1038/s41375-024-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
Aberrant expression of HOX and MEIS1 family genes, as seen in KMT2A-rearranged, NUP98-rearranged, or NPM1-mutated leukemias leads to arrested differentiation and leukemia development. HOX family genes are essential gatekeepers of physiologic hematopoiesis, and their expression is regulated by the interaction between KMT2A and menin. Menin inhibitors block this interaction, downregulate the abnormal expression of MEIS1 and other transcription factors and thereby release the differentiation block. Menin inhibitors show significant clinical efficacy against KMT2A-rearranged and NPM1-mutated acute leukemias, with promising potential to address unmet needs in various pediatric leukemia subtypes. In this collaborative initiative, pediatric and adult hematologists/oncologists, and stem cell transplant physicians have united their expertise to explore the potential of menin inhibitors in pediatric leukemia treatment internationally. Our efforts aim to provide a comprehensive clinical overview of menin inhibitors, integrating preclinical evidence and insights from ongoing global clinical trials. Additionally, we propose future international, inclusive, and efficient clinical trial designs, integrating pediatric populations in adult trials, to ensure broad access to this promising therapy for all children and adolescents with menin-dependent leukemias.
Collapse
Affiliation(s)
- Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd M Cooper
- Cancer and Blood Disorders Center, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - C Michel Zwaan
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands; Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; The Innovative Therapies for Children with Cancer Consortium, Paris, France
| | | | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erin Guest
- Department of Pediatric Oncology, Children's Mercy, Kansas City, MO, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar Nunez
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miriam Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kapil N Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samanta Catueno
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Warren Fiskus
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bing Z Carter
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Roth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sajad Khazal
- Division of Transplant and Cellular Therapy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Priti Tewari
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Danh D Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeremy Connors
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Elisabeth Salzer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Kristian L Juul-Dam
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kris M Mahadeo
- Division of Pediatric Transplantation and Cellular Therapy, Duke University, Durham, NC, USA
| | - Sarah K Tasian
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samantha Dickson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eytan M Stein
- Department of Leukemia, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Anders Kolb
- Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, DE, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Rasouli M, Troester S, Grebien F, Goemans BF, Zwaan CM, Heidenreich O. NUP98 oncofusions in myeloid malignancies: An update on molecular mechanisms and therapeutic opportunities. Hemasphere 2024; 8:e70013. [PMID: 39323480 PMCID: PMC11423334 DOI: 10.1002/hem3.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with a heterogeneous molecular landscape. In the pediatric context, the NUP98 gene is a frequent target of chromosomal rearrangements that are linked to poor prognosis and unfavorable treatment outcomes in different AML subtypes. The translocations fuse NUP98 to a diverse array of partner genes, resulting in fusion proteins with novel functions. NUP98 fusion oncoproteins induce aberrant biomolecular condensation, abnormal gene expression programs, and re-wired protein interactions which ultimately cause alterations in the cell cycle and changes in cellular structures, all of which contribute to leukemia development. The extent of these effects is steered by the functional domains of the fusion partners and the influence of concomitant somatic mutations. In this review, we discuss the complex characteristics of NUP98 fusion proteins and potential novel therapeutic approaches for NUP98 fusion-driven AML.
Collapse
Affiliation(s)
- Milad Rasouli
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Pediatric Hematology/OncologyErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | - Selina Troester
- Department of Biological Sciences and PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Florian Grebien
- Department of Biological Sciences and PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | | | - C. Michel Zwaan
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Pediatric Hematology/OncologyErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of HematologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
6
|
Barajas JM, Umeda M, Contreras L, Khanlari M, Westover T, Walsh MP, Xiong E, Yang C, Otero B, Arribas-Layton M, Abdelhamed S, Song G, Ma X, Thomas Rd ME, Ma J, Klco JM. UBTF tandem duplications in pediatric myelodysplastic syndrome and acute myeloid leukemia: implications for clinical screening and diagnosis. Haematologica 2024; 109:2459-2468. [PMID: 38426285 PMCID: PMC11290532 DOI: 10.3324/haematol.2023.284683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Recent genomic studies in adult and pediatric acute myeloid leukemia (AML) demonstrated recurrent in-frame tandem duplications (TD) in exon 13 of upstream binding transcription factor (UBTF). These alterations, which account for approximately 4.3% of AML in childhood and about 3% in adult AML aged <60 years of age, are subtype-defining and associated with poor outcomes. Here, we provide a comprehensive investigation into the clinicopathological features of UBTF-TD myeloid neoplasms in childhood, including 89 unique pediatric AML and 6 myelodysplastic syndrome (MDS) cases harboring a tandem duplication in exon 13 of UBTF. We demonstrate that UBTF-TD myeloid tumors are associated with dysplastic features, low bone marrow blast infiltration, and low white blood cell count. Furthermore, using bulk and single-cell analyses, we confirm that UBTF-TD is an early and clonal event associated with a distinct transcriptional profile, whereas the acquisition of FLT3 or WT1 mutations is associated with more stem cell-like programs. Lastly, we report rare duplications within exon 9 of UBTF that phenocopy exon 13 duplications, expanding the spectrum of UBTF alterations in pediatric myeloid tumors. Collectively, we comprehensively characterize pediatric AML and MDS with UBTF-TD, and highlight key clinical and pathologic features that distinguish this new entity from other molecular subtypes of AML.
Collapse
Affiliation(s)
- Juan M Barajas
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Lisett Contreras
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Mahsa Khanlari
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Michael P Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Emily Xiong
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | | | | | | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Melvin E Thomas Rd
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
7
|
Masetti R, Baccelli F, Leardini D, Locatelli F. Venetoclax: a new player in the treatment of children with high-risk myeloid malignancies? Blood Adv 2024; 8:3583-3595. [PMID: 38701350 PMCID: PMC11319833 DOI: 10.1182/bloodadvances.2023012041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
ABSTRACT Venetoclax selectively inhibits B-cell lymphoma 2 (BCL-2) and restores apoptotic signaling of hematologic malignant cells. Venetoclax, in combination with hypomethylating and low-dose cytotoxic agents, has revolutionized the management of older patients affected by acute myeloid leukemia (AML) and that of patients unfit to receive intensive chemotherapy. In a single phase 1 pediatric trial conducted on relapsed or refractory AML, the combination of venetoclax and intensive chemotherapy was shown to be safe and yielded promising response rates. In addition, several retrospective studies in children with AML reported that venetoclax, when combined with hypomethylating agents and cytotoxic drugs, seems to be a safe and efficacious bridge to transplant. The promising results on the use of venetoclax combinations in advanced myelodysplastic syndromes (MDS) and therapy-related MDS/AML have also been reported in small case series. This review summarizes the available current knowledge about venetoclax use in childhood high-risk myeloid neoplasms and discusses the possible integration of BCL-2 inhibition in the current treatment algorithm of these children. It also focuses on specific genetic subgroups potentially associated with response in preclinical and clinical studies.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
8
|
Fenwarth L, Duployez N. Genomics has more to reveal. Oncotarget 2024; 15:400-401. [PMID: 38900627 PMCID: PMC11197967 DOI: 10.18632/oncotarget.28596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 06/22/2024] Open
Affiliation(s)
| | - Nicolas Duployez
- Correspondence to:Nicolas Duployez, Laboratory of Hematology, CHU Lille, Lille 59037, France; U1277 CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), University of Lille 59037, INSERM, France email
| |
Collapse
|
9
|
Harrop S, Nguyen PC, Robinson S, Nguyen T, Tiong IS, Came N, Baldwin K, Nguyen V, Chan KL, Blombery P, Westerman D. Immunophenotypic characterisation of acute myeloid leukaemia with UBTF tandem duplications. Br J Haematol 2024; 204:2492-2495. [PMID: 38544472 DOI: 10.1111/bjh.19427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/14/2024] [Indexed: 06/15/2024]
Affiliation(s)
- Sean Harrop
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Phillip C Nguyen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Samuel Robinson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Tamia Nguyen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ing Soo Tiong
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Neil Came
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Kylie Baldwin
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Vuong Nguyen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kah Lok Chan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Piers Blombery
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - David Westerman
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Barajas JM, Rasouli M, Umeda M, Hiltenbrand R, Abdelhamed S, Mohnani R, Arthur B, Westover T, Thomas ME, Ashtiani M, Janke LJ, Xu B, Chang TC, Rosikiewicz W, Xiong E, Rolle C, Low J, Krishan R, Song G, Walsh MP, Ma J, Rubnitz JE, Iacobucci I, Chen T, Krippner-Heidenreich A, Zwaan CM, Heidenreich O, Klco JM. Acute myeloid leukemias with UBTF tandem duplications are sensitive to menin inhibitors. Blood 2024; 143:619-630. [PMID: 37890156 PMCID: PMC10873536 DOI: 10.1182/blood.2023021359] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
ABSTRACT UBTF tandem duplications (UBTF-TDs) have recently emerged as a recurrent alteration in pediatric and adult acute myeloid leukemia (AML). UBTF-TD leukemias are characterized by a poor response to conventional chemotherapy and a transcriptional signature that mirrors NUP98-rearranged and NPM1-mutant AMLs, including HOX-gene dysregulation. However, the mechanism by which UBTF-TD drives leukemogenesis remains unknown. In this study, we investigated the genomic occupancy of UBTF-TD in transformed cord blood CD34+ cells and patient-derived xenograft models. We found that UBTF-TD protein maintained genomic occupancy at ribosomal DNA loci while also occupying genomic targets commonly dysregulated in UBTF-TD myeloid malignancies, such as the HOXA/HOXB gene clusters and MEIS1. These data suggest that UBTF-TD is a gain-of-function alteration that results in mislocalization to genomic loci dysregulated in UBTF-TD leukemias. UBTF-TD also co-occupies key genomic loci with KMT2A and menin, which are known to be key partners involved in HOX-dysregulated leukemias. Using a protein degradation system, we showed that stemness, proliferation, and transcriptional signatures are dependent on sustained UBTF-TD localization to chromatin. Finally, we demonstrate that primary cells from UBTF-TD leukemias are sensitive to the menin inhibitor SNDX-5613, resulting in markedly reduced in vitro and in vivo tumor growth, myeloid differentiation, and abrogation of the UBTF-TD leukemic expression signature. These findings provide a viable therapeutic strategy for patients with this high-risk AML subtype.
Collapse
Affiliation(s)
- Juan M. Barajas
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Milad Rasouli
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Hematology/Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Masayuki Umeda
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ryan Hiltenbrand
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rebecca Mohnani
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Bright Arthur
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Tamara Westover
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Melvin E. Thomas
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Minoo Ashtiani
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Laura J. Janke
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Emily Xiong
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Chandra Rolle
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jonathan Low
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Reethu Krishan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Guangchun Song
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Michael P. Walsh
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jing Ma
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Christian M. Zwaan
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Hematology/Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
11
|
Barajas JM, Umeda M, Contreras L, Khanlari M, Westover T, Walsh MP, Xiong E, Yang C, Otero B, Arribas-Layton M, Abdelhamed S, Song G, Ma X, Thomas ME, Ma J, Klco JM. UBTF Tandem Duplications in Pediatric MDS and AML: Implications for Clinical Screening and Diagnosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.13.23298320. [PMID: 38014207 PMCID: PMC10680889 DOI: 10.1101/2023.11.13.23298320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Recent genomic studies in adult and pediatric acute myeloid leukemia (AML) demonstrated recurrent in-frame tandem duplications (TD) in exon 13 of upstream binding transcription factor (UBTF). These alterations, which account for ~4.3% of AMLs in childhood and up to 3% in adult AMLs under 60, are subtype-defining and associated with poor outcomes. Here, we provide a comprehensive investigation into the clinicopathological features of UBTF-TD myeloid neoplasms in childhood, including 89 unique pediatric AML and 6 myelodysplastic syndrome (MDS) cases harboring a tandem duplication in exon 13 of UBTF. We demonstrate that UBTF-TD myeloid tumors are associated with dysplastic features, low bone marrow blast infiltration, and low white blood cell count. Furthermore, using bulk and single-cell analyses, we confirm that UBTF-TD is an early and clonal event associated with a distinct transcriptional profile, whereas the acquisition of FLT3 or WT1 mutations is associated with more stem cell-like programs. Lastly, we report rare duplications within exon 9 of UBTF that phenocopy exon 13 duplications, expanding the spectrum of UBTF alterations in pediatric myeloid tumors. Collectively, we comprehensively characterize pediatric AML and MDS with UBTF-TD and highlight key clinical and pathologic features that distinguish this new entity from other molecular subtypes of AML.
Collapse
Affiliation(s)
- Juan M. Barajas
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Masayuki Umeda
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lisett Contreras
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mahsa Khanlari
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Tamara Westover
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Michael P. Walsh
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Emily Xiong
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | | | | | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Melvin E. Thomas
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
12
|
Harrop S, Nguyen PC, Byrne D, Wilson C, Ryland GL, Nguyen T, Anderson MA, Khaw SL, Martin M, Tiong IS, Sanij E, Blombery P. Persistence of UBTF tandem duplications in remission in acute myeloid leukaemia. EJHAEM 2023; 4:1105-1109. [PMID: 38024622 PMCID: PMC10660390 DOI: 10.1002/jha2.808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023]
Abstract
UBTF tandem duplications are recurrent in adult and paediatric acute myeloid leukaemia and have been reported to be associated with a poor prognosis. Co-mutations in WT1 and FLT3 are common while morphological dysplasia is frequent. The role of UBTF-TDs in leukemogenesis is yet to be elucidated; however they have been proposed as early initiating events, making them attractive for assessment of MRD and a potential therapeutic target. We present two cases where the UBTF-TD was observed in remission and discuss the implications of these findings in the clinicobiological understanding of this emerging entity.
Collapse
Affiliation(s)
- Sean Harrop
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | | | - David Byrne
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | | | - Georgina L Ryland
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Parkville Victoria Australia
| | - Tamia Nguyen
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | | | - Seong Lin Khaw
- Royal Children's Hospital Melbourne Victoria Australia
- Murdoch Children's Research Institute Melbourne Victoria Australia
| | | | - Ing Soo Tiong
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | - Elaine Sanij
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
- St Vincent's Institute of Medical Research Fitzroy Victoria Australia
- Department of Medicine St Vincent's Hospital University of Melbourne Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Parkville Victoria Australia
- Department of Biochemistry and Molecular Biology Monash University Clayton Victoria Australia
| | - Piers Blombery
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Parkville Victoria Australia
| |
Collapse
|
13
|
Daiß JL, Griesenbeck J, Tschochner H, Engel C. Synthesis of the ribosomal RNA precursor in human cells: mechanisms, factors and regulation. Biol Chem 2023; 404:1003-1023. [PMID: 37454246 DOI: 10.1515/hsz-2023-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The ribosomal RNA precursor (pre-rRNA) comprises three of the four ribosomal RNAs and is synthesized by RNA polymerase (Pol) I. Here, we describe the mechanisms of Pol I transcription in human cells with a focus on recent insights gained from structure-function analyses. The comparison of Pol I-specific structural and functional features with those of other Pols and with the excessively studied yeast system distinguishes organism-specific from general traits. We explain the organization of the genomic rDNA loci in human cells, describe the Pol I transcription cycle regarding structural changes in the enzyme and the roles of human Pol I subunits, and depict human rDNA transcription factors and their function on a mechanistic level. We disentangle information gained by direct investigation from what had apparently been deduced from studies of the yeast enzymes. Finally, we provide information about how Pol I mutations may contribute to developmental diseases, and why Pol I is a target for new cancer treatment strategies, since increased rRNA synthesis was correlated with rapidly expanding cell populations.
Collapse
Affiliation(s)
- Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
14
|
Moss T, LeDoux MS, Crane-Robinson C. HMG-boxes, ribosomopathies and neurodegenerative disease. Front Genet 2023; 14:1225832. [PMID: 37600660 PMCID: PMC10435976 DOI: 10.3389/fgene.2023.1225832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
The UBTF E210K neuroregression syndrome is a predominantly neurological disorder caused by recurrent de novo dominant variants in Upstream Binding Factor, that is, essential for transcription of the ribosomal RNA genes. This unusual form of ribosomopathy is characterized by a slow decline in cognition, behavior, and sensorimotor functioning during the critical period of development. UBTF (or UBF) is a multi-HMGB-box protein that acts both as an epigenetic factor to establish "open" chromatin on the ribosomal genes and as a basal transcription factor in their RNA Polymerase I transcription. Here we review the possible mechanistic connections between the UBTF variants, ribosomal RNA gene transcription and the neuroregression syndrome, and suggest that DNA topology may play an important role.
Collapse
Affiliation(s)
- Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Mark S. LeDoux
- Department of Psychology, University of Memphis, Memphis, TN, United States
- Veracity Neuroscience LLC, Memphis, TN, United States
| | - Colyn Crane-Robinson
- Biophysics Laboratories, School of Biology, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|