2
|
Jelinek T, Zihala D, Sevcikova T, Anilkumar Sithara A, Kapustova V, Sahinbegovic H, Venglar O, Muronova L, Broskevicova L, Nenarokov S, Bilek D, Popkova T, Plonkova H, Vrana J, Zidlik V, Hurnik P, Havel M, Hrdinka M, Chyra Z, Stracquadanio G, Simicek M, Hajek R. Beyond the marrow: insights from comprehensive next-generation sequencing of extramedullary multiple myeloma tumors. Leukemia 2024; 38:1323-1333. [PMID: 38493239 PMCID: PMC11147761 DOI: 10.1038/s41375-024-02206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
Extramedullary multiple myeloma (EMM) is an aggressive form of multiple myeloma (MM). This study represents the most comprehensive next-generation sequencing analysis of EMM tumors (N = 14) to date, uncovering key molecular features and describing the tumor microenvironment. We observed the co-occurrence of 1q21 gain/amplification and MAPK pathway mutations in 79% of EMM samples, suggesting that these are crucial mutational events in EMM development. We also demonstrated that patients with mutated KRAS and 1q21 gain/amplification at the time of diagnosis have a significantly higher risk of EMM development (HR = 2.4, p = 0.011) using data from a large CoMMpass dataset. We identified downregulation of CXCR4 and enhanced cell proliferation, along with reduced expression of therapeutic targets (CD38, SLAMF7, GPRC5D, FCRH5), potentially explaining diminished efficacy of immunotherapy. Conversely, we identified significantly upregulated EZH2 and CD70 as potential future therapeutic options. For the first time, we report on the tumor microenvironment of EMM, revealing CD8+ T cells and NK cells as predominant immune effector cells using single-cell sequencing. Finally, this is the first longitudinal study in EMM revealing the molecular changes from the time of diagnosis to EMM relapse.
Collapse
Affiliation(s)
- T Jelinek
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - D Zihala
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - T Sevcikova
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - A Anilkumar Sithara
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - V Kapustova
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - H Sahinbegovic
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - O Venglar
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - L Muronova
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - L Broskevicova
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - S Nenarokov
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - D Bilek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - T Popkova
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - H Plonkova
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - J Vrana
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - V Zidlik
- Department of Pathology, University Hospital Ostrava, Ostrava, Czech Republic
| | - P Hurnik
- Department of Pathology, University Hospital Ostrava, Ostrava, Czech Republic
| | - M Havel
- Department of Nuclear Medicine, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Imaging Methods, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - M Hrdinka
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Z Chyra
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - G Stracquadanio
- School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - M Simicek
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - R Hajek
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
3
|
Parreno V, Loubiere V, Schuettengruber B, Fritsch L, Rawal CC, Erokhin M, Győrffy B, Normanno D, Di Stefano M, Moreaux J, Butova NL, Chiolo I, Chetverina D, Martinez AM, Cavalli G. Transient loss of Polycomb components induces an epigenetic cancer fate. Nature 2024; 629:688-696. [PMID: 38658752 PMCID: PMC11096130 DOI: 10.1038/s41586-024-07328-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Although cancer initiation and progression are generally associated with the accumulation of somatic mutations1,2, substantial epigenomic alterations underlie many aspects of tumorigenesis and cancer susceptibility3-6, suggesting that genetic mechanisms might not be the only drivers of malignant transformation7. However, whether purely non-genetic mechanisms are sufficient to initiate tumorigenesis irrespective of mutations has been unknown. Here, we show that a transient perturbation of transcriptional silencing mediated by Polycomb group proteins is sufficient to induce an irreversible switch to a cancer cell fate in Drosophila. This is linked to the irreversible derepression of genes that can drive tumorigenesis, including members of the JAK-STAT signalling pathway and zfh1, the fly homologue of the ZEB1 oncogene, whose aberrant activation is required for Polycomb perturbation-induced tumorigenesis. These data show that a reversible depletion of Polycomb proteins can induce cancer in the absence of driver mutations, suggesting that tumours can emerge through epigenetic dysregulation leading to inheritance of altered cell fates.
Collapse
Affiliation(s)
- V Parreno
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - V Loubiere
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - B Schuettengruber
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - L Fritsch
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - C C Rawal
- University of Southern California, Los Angeles, CA, USA
| | - M Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - B Győrffy
- Semmelweis University Department of Bioinformatics, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - D Normanno
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - M Di Stefano
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - J Moreaux
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- UFR Medicine, University of Montpellier, Montpellier, France
| | - N L Butova
- University of Southern California, Los Angeles, CA, USA
| | - I Chiolo
- University of Southern California, Los Angeles, CA, USA
| | - D Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A-M Martinez
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| | - G Cavalli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|