1
|
Pellissier-Tanon A, Chouket R, Zhang R, Lahlou A, Espagne A, Lemarchand A, Croquette V, Jullien L, Le Saux T. Resonances at Fundamental and Harmonic Frequencies for Selective Imaging of Sine-Wave Illuminated Reversibly Photoactivatable Labels. Chemphyschem 2022; 23:e202200295. [PMID: 35976176 PMCID: PMC10087976 DOI: 10.1002/cphc.202200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/15/2022] [Indexed: 01/04/2023]
Abstract
We introduce HIGHLIGHT as a simple and general strategy to selectively image a reversibly photoactivatable fluorescent label associated with a given kinetics. The label is submitted to sine-wave illumination of large amplitude, which generates oscillations of its concentration and fluorescence at higher harmonic frequencies. For singularizing a label, HIGHLIGHT uses specific frequencies and mean light intensities associated with resonances of the amplitudes of concentration and fluorescence oscillations at harmonic frequencies. Several non-redundant resonant observables are simultaneously retrieved from a single experiment with phase-sensitive detection. HIGHLIGHT is used for selective imaging of four spectrally similar fluorescent proteins that had not been discriminated so far. Moreover, labels out of targeted locations can be discarded in an inhomogeneous spatial profile of illumination. HIGHLIGHT opens roads for simplified optical setups at reduced cost and easier maintenance.
Collapse
Affiliation(s)
- Agnès Pellissier-Tanon
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Raja Chouket
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Ruikang Zhang
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Aliénor Lahlou
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France.,Sony Computer Science Laboratories, Paris, France
| | - Agathe Espagne
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Annie Lemarchand
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4, Place Jussieu, Case Courrier 121, 75252, Paris Cedex 05, France
| | - Vincent Croquette
- Laboratoire de Physique Statistique, Département de Physique and Département de Biologie, École normale supérieure, PSL Research University, F-, 75005, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Thomas Le Saux
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| |
Collapse
|
2
|
Characterization of conidial autofluorescence in powdery mildew. Heliyon 2022; 8:e12084. [PMID: 36544848 PMCID: PMC9761720 DOI: 10.1016/j.heliyon.2022.e12084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/06/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Autofluorescence is produced by endogenous fluorophores, such as NAD(P)H, lipofuscin, melanin, and riboflavin, indicating the accumulation of substances and the state of energy metabolism in organisms. As an obligate parasite, powdery mildew is wildly spread by air and parasitic crops. However, most identification studies have been based on morphology and molecular biology which were far too time- and labor-consuming, thus lacking characteristic, simple, and effective means. Using microscopy under the blue and cyan channels, we elaborated visible conidial autofluorescence in three powdery mildew species, Erysiphe quercicola, E. cichoracearum, and Podosphaera hibiscicola, with a sharp increase during the conidia senescence in E. quercicola. Additionally, the main spectral excitation detected by fluorescence spectrometery was 375 nm for these species, with a common emission peak at approximately 458-463 nm, and an additional trend at 487 nm for P. hibiscicola. Because NAD(P)H has a similar spectral feature, we further investigated the relation between NAD(P)H and conidial autofluorescence by fluorescence spectra. We observed that the reduced coenzymes prominently contributed to conidial autofluorescence; however, the conidial autofluorescence in P. hibiscicola displayed a different trend that may be affected by the oxidized coenzyme -NAD. Finally, the normalized average spectra of these three powdery mildew species and standard samples showed that the spectral trend of each species was similar but that the features in detail were specific and distinct based on principal component analysis. In conclusion, we showed and characterized conidial autofluorescence in three powdery mildew species for the first time. The specific conidial autofluorescence in these species provides a new idea for the development of field spore capture and identification devices for the discrimination of powdery mildew at the species level.
Collapse
|
3
|
Eigenfeld M, Kerpes R, Whitehead I, Becker T. Autofluorescence prediction model for fluorescence unmixing and age determination. Biotechnol J 2022; 17:e2200091. [DOI: 10.1002/biot.202200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Marco Eigenfeld
- Technical University of Munich, School of Life Science Institute of Brewing and Beverage Technology Freising Germany
| | - Roland Kerpes
- Technical University of Munich, School of Life Science Institute of Brewing and Beverage Technology Freising Germany
| | - Iain Whitehead
- Technical University of Munich, School of Life Science Institute of Brewing and Beverage Technology Freising Germany
| | - Thomas Becker
- Technical University of Munich, School of Life Science Institute of Brewing and Beverage Technology Freising Germany
| |
Collapse
|
4
|
Pellissier-Tanon A, Adelizzi B, Jullien L, Le Saux T, Lemarchand A. Correlation of fluorescence evolution for quantitative analysis of labels and sensors. Anal Chim Acta 2022; 1225:340180. [DOI: 10.1016/j.aca.2022.340180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/09/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
|
5
|
Jiang P, Liu C, Yang W, Kang Z, Fan C, Li Z. Automatic extraction channel of space debris based on wide-field surveillance system. NPJ Microgravity 2022; 8:14. [PMID: 35513398 PMCID: PMC9072332 DOI: 10.1038/s41526-022-00200-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
In the past few years, the increasing amount of space debris has triggered the demand for distributed surveillance systems. Long exposure time can effectively improve the target detection capability of the wide-area surveillance system. Problems that also cause difficulties in space-target detection include large amounts of data, countless star points, and discontinuous or nonlinear targets. In response to these problems, this paper proposes a high-precision space-target detection and tracking pipeline that aims to automatically detect debris data in space. First, a guided filter is used to effectively remove the stars and noise, then Hough transform is used to detect space debris, and finally Kalman filter is applied to track the space debris target. All experimental images are from Jilin Observatory, and the telescope is in star-tracking mode. Our method is practical and effective. The results show that the proposed automatic extraction channel of space debris can accurately detect and track space targets in a complex background.
Collapse
Affiliation(s)
- Ping Jiang
- Changchun Observatory of National Astronomical Observators, Chinese Academy of Sciences, Changchun, 130117, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengzhi Liu
- Changchun Observatory of National Astronomical Observators, Chinese Academy of Sciences, Changchun, 130117, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Key Laboratory of Space Object & Debris Observation, PMO, CAS, Nanjing, 210008, China.
| | - Wenbo Yang
- Changchun Observatory of National Astronomical Observators, Chinese Academy of Sciences, Changchun, 130117, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Kang
- Changchun Observatory of National Astronomical Observators, Chinese Academy of Sciences, Changchun, 130117, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cunbo Fan
- Changchun Observatory of National Astronomical Observators, Chinese Academy of Sciences, Changchun, 130117, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenwei Li
- Changchun Observatory of National Astronomical Observators, Chinese Academy of Sciences, Changchun, 130117, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Abstract
Due to its sensitivity and versatility, fluorescence is widely used to detect specifically labeled biomolecules. However, fluorescence is currently limited by label discrimination, which suffers from the broad full width of the absorption/emission bands and the narrow lifetime distribution of the bright fluorophores. We overcome this limitation by introducing extra kinetic dimensions through illuminations of reversibly photoswitchable fluorophores (RSFs) at different light intensities. In this expanded space, each RSF is characterized by a chromatic aberration-free kinetic fingerprint of photochemical reactivity, which can be recovered with limited hardware, excellent photon budget, and minimal data processing. This fingerprint was used to identify and discriminate up to 20 among 22 spectrally similar reversibly photoswitchable fluorescent proteins (RSFPs) in less than 1s. This strategy opens promising perspectives for expanding the multiplexing capabilities of fluorescence imaging. Label discrimination is challenging in fluorescence microscopy due to broad spectra and narrow lifetime distribution. Here, the authors introduce extra kinetic dimensions by illuminating reversibly photoswitchable fluorophores with different intensities, and discriminate 20 spectrally similar fluorophores.
Collapse
|
7
|
Deng J, Niu M, Liu X, Feng J, Ji S, Guo Z. Label-Free Fluorescent Aptasensor for Adenosine Triphosphate Detection Using SYBR Gold as a Probe. APPLIED SPECTROSCOPY 2021; 75:1419-1426. [PMID: 34259576 DOI: 10.1177/00037028211028668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this experimental research, a label-free sensing strategy is developed and employed to detect adenosine triphosphate with utilization of aptamers, including exonuclease I and SYBR Gold. The conformation of aptamers bonding to the specific target molecule (ATP) is transformed into an antiparallel G-quadruplex structure from a random coil. Afterwards, considering the unfolded aptamers are the preferred substrates for exonuclease I, the addition of exonuclease I is used so as to digest unfolded aptamers in the mixture in a selective manner. In the follow-up study, in order to strengthen the fluorescence intensity, SYBR Gold is applied as a fluorescent probe. The aptasensor presents the features of high selectivity against adenosine triphosphate and the low detecting limit of concentrations (39.2 nM). In order to verify the validation of experimental procedures and the practical application of the aptasensor, the detection of adenosine triphosphate for human serum samples is performed with satisfactory success. The recovery result with the range of 93.8%-108.1% is desirable and suggests that the designed approach is applicable. The outcomes of the cellular adenosine triphosphate assay manifest that the level of adenosine triphosphate concentrations in cell extracts can be monitored without the interference of other substances in the cells. Subject to its advantageous benefits (cost-effective, easiness, rapidity, and extraordinary selectivity), the designed approach has a promising implication for adenosine triphosphate detection in the research domain of bioanalytical science and biology.
Collapse
Affiliation(s)
- Jun Deng
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
| | - Mengyu Niu
- College of Agriculture, Yanbian University, Yanji, China
| | - Xingquan Liu
- College of Agriculture and Food Science, Zhejiang Agricultural & Forestry University, Hangzhou, China
| | - Jin Feng
- College of Agriculture, Yanbian University, Yanji, China
| | - Shuang Ji
- College of Agriculture, Yanbian University, Yanji, China
| | - Zhijun Guo
- College of Agriculture, Yanbian University, Yanji, China
| |
Collapse
|
8
|
Out-of-Phase Imaging after Optical Modulation (OPIOM) for Multiplexed Fluorescence Imaging Under Adverse Optical Conditions. Methods Mol Biol 2021; 2350:191-227. [PMID: 34331287 DOI: 10.1007/978-1-0716-1593-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescence imaging has become a powerful tool for observations in biology. Yet it has also encountered limitations to overcome optical interferences of ambient light, autofluorescence, and spectrally interfering fluorophores. In this account, we first examine the current approaches which address these limitations. Then we more specifically report on Out-of-Phase Imaging after Optical Modulation (OPIOM), which has proved attractive for highly selective multiplexed fluorescence imaging even under adverse optical conditions. After exposing the OPIOM principle, we detail the protocols for successful OPIOM implementation.
Collapse
|
9
|
Huang S, Strobel SA, Rai R, Jeoh T, Nitin N. Multiscale imaging approaches for simultaneously mapping distribution of multiple components in infant formula powders. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Kelemen Z, Zhang R, Gissot L, Chouket R, Bellec Y, Croquette V, Jullien L, Faure JD, Le Saux T. Dynamic Contrast for Plant Phenotyping. ACS OMEGA 2020; 5:15105-15114. [PMID: 32637783 PMCID: PMC7331089 DOI: 10.1021/acsomega.0c00957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Noninvasiveness, minimal handling, and immediate response are favorable features of fluorescence readout for high-throughput phenotyping of labeled plants.Yet, remote fluorescence imaging may suffer from an autofluorescent background and artificial or natural ambient light. In this work, the latter limitations are overcome by adopting reversibly photoswitchable fluorescent proteins (RSFPs) as labels and Speed OPIOM (out-of-phase imaging after optical modulation), a fluorescence imaging protocol exploiting dynamic contrast. Speed OPIOM can efficiently distinguish the RSFP signal from autofluorescence and other spectrally interfering fluorescent reporters like GFP. It can quantitatively assess gene expressions, even when they are weak. It is as quantitative, sensitive, and robust in dark and bright light conditions. Eventually, it can be used to nondestructively record abiotic stress responses like water or iron limitations in real time at the level of individual plants and even of specific organs. Such Speed OPIOM validation could find numerous applications to identify plant lines in selection programs, design plants as environmental sensors, or ecologically monitor transgenic plants in the environment.
Collapse
Affiliation(s)
- Zsolt Kelemen
- Université
Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Ruikang Zhang
- PASTEUR,
Département de chimie, École
normale supérieure, PSL University, SorbonneUniversité,
CNRS, 24, rue Lhomond, 75005 Paris, France
| | - Lionel Gissot
- Université
Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Raja Chouket
- PASTEUR,
Département de chimie, École
normale supérieure, PSL University, SorbonneUniversité,
CNRS, 24, rue Lhomond, 75005 Paris, France
| | - Yannick Bellec
- Université
Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Vincent Croquette
- Laboratoire
de Physique Statistique, École normale
supérieure, PSL Research University, Université de Paris,
Sorbonne Université, CNRS, 75005 Paris, France
- Institut
de biologie de l’École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM,
PSL Research University, 75005 Paris, France
| | - Ludovic Jullien
- PASTEUR,
Département de chimie, École
normale supérieure, PSL University, SorbonneUniversité,
CNRS, 24, rue Lhomond, 75005 Paris, France
| | - Jean-Denis Faure
- Université
Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | - Thomas Le Saux
- PASTEUR,
Département de chimie, École
normale supérieure, PSL University, SorbonneUniversité,
CNRS, 24, rue Lhomond, 75005 Paris, France
| |
Collapse
|
11
|
Chouket R, Pellissier-Tanon A, Lemarchand A, Espagne A, Le Saux T, Jullien L. Dynamic contrast with reversibly photoswitchable fluorescent labels for imaging living cells. Chem Sci 2020; 11:2882-2887. [PMID: 34122788 PMCID: PMC8157520 DOI: 10.1039/d0sc00182a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/23/2020] [Indexed: 12/20/2022] Open
Abstract
Interrogating living cells requires sensitive imaging of a large number of components in real time. The state-of-the-art of multiplexed imaging is usually limited to a few components. This review reports on the promise and the challenges of dynamic contrast to overcome this limitation.
Collapse
Affiliation(s)
- Raja Chouket
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS 24, rue Lhomond 75005 Paris France +33 4432 3333
| | - Agnès Pellissier-Tanon
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS 24, rue Lhomond 75005 Paris France +33 4432 3333
| | - Annie Lemarchand
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC) 4 Place Jussieu, Case Courrier 121 75252 Paris Cedex 05 France
| | - Agathe Espagne
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS 24, rue Lhomond 75005 Paris France +33 4432 3333
| | - Thomas Le Saux
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS 24, rue Lhomond 75005 Paris France +33 4432 3333
| | - Ludovic Jullien
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS 24, rue Lhomond 75005 Paris France +33 4432 3333
| |
Collapse
|
12
|
A label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection based on aggregation-induced emission probe. Anal Biochem 2019; 578:60-65. [PMID: 31095938 DOI: 10.1016/j.ab.2019.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022]
Abstract
Based on Aggregation-Induced Emission (AIE), the development of a label-free, simple and sensitive fluorometric aptasensor for adenosine triphosphate (ATP) detection is described. With ATP present, the aptamers will combine with ATP and the conformation of the aptamer will switch from a random coil to an antiparallel G-quadruplex, which impedes the digestion by exonuclease I (Exo I). Addition of 4,4 -(1E,1E)-2,2-(anthracene-9,10-diyl) bis (ethene-2,1-diyl) bis (N,N, N-trimethyl-benzenaminium iodide) (DSAI) into the solution will cause aggregation of DSAI on the surface of the aptamer/ATP complex and consequently give rise to strong emission. Additionally, a good linear relationship was observed under optimized conditions between the fluorescence intensities and the logarithm of ATP concentrations (R2 = 0.9908). The established aptamer sensor was highly sensitive and exhibited a low limit of detection of 32.8 nM, with superior specificity for ATP. It was also used in the quantification of ATP levels in human serum samples and demonstrated satisfactory recoveries in the scope of 93.2%-107.6%. The cellular ATP assay results indicated that the developed method can be used for monitoring ATP concentrations in cell extracts without the interference of other substances in the cells. This method offers several advantages such as simplicity, rapidity, low cost and excellent selectivity, which make it hold great potential for the detection of ATP in bioanalytical and biological studies.
Collapse
|