1
|
Michail A, Yang JA, Filintoglou K, Balakeras N, Nattoo CA, Bailey CS, Daus A, Parthenios J, Pop E, Papagelis K. Biaxial Strain Transfer in Monolayer MoS 2 and WSe 2 Transistor Structures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49602-49611. [PMID: 39226175 PMCID: PMC11420877 DOI: 10.1021/acsami.4c07216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Monolayer transition metal dichalcogenides are intensely explored as active materials in 2D material-based devices due to their potential to overcome device size limitations, sub-nanometric thickness, and robust mechanical properties. Considering their large band gap sensitivity to mechanical strain, single-layered TMDs are well-suited for strain-engineered devices. While the impact of various types of mechanical strain on the properties of a variety of TMDs has been studied in the past, TMD-based devices have rarely been studied under mechanical deformations, with uniaxial strain being the most common one. Biaxial strain on the other hand, which is an important mode of deformation, remains scarcely studied as far as 2D material devices are concerned. Here, we study the strain transfer efficiency in MoS2- and WSe2-based flexible transistor structures under biaxial deformation. Utilizing Raman spectroscopy, we identify that strains as high as 0.55% can be efficiently and homogeneously transferred from the substrate to the material in the transistor channel. In particular, for the WSe2 transistors, we capture the strain dependence of the higher-order Raman modes and show that they are up to five times more sensitive compared to the first-order ones. Our work demonstrates Raman spectroscopy as a nondestructive probe for strain detection in 2D material-based flexible electronics and deepens our understanding of the strain transfer effects on 2D TMD devices.
Collapse
Affiliation(s)
- Antonios Michail
- Department of Physics, University of Patras, Patras 26504, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH - ICE/HT), Patras 26504, Greece
| | - Jerry A Yang
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kyriakos Filintoglou
- School of Physics, Department of Solid State Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Nikolaos Balakeras
- School of Physics, Department of Solid State Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Crystal Alicia Nattoo
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Connor Scott Bailey
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Alwin Daus
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| | - John Parthenios
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH - ICE/HT), Patras 26504, Greece
| | - Eric Pop
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science, Stanford University, Stanford, California 94305, United States
- Precourt Institute for Energy, Stanford University, Stanford, California 94305, United States
| | - Konstantinos Papagelis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH - ICE/HT), Patras 26504, Greece
- School of Physics, Department of Solid State Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
2
|
Rahaman M, Marino E, Joly AG, Stevens CE, Song S, Alfieri A, Jiang Z, O'Callahan BT, Rosen DJ, Jo K, Kim G, Hendrickson JR, El-Khoury PZ, Murray C, Jariwala D. Tunable Localized Charge Transfer Excitons in Nanoplatelet-2D Chalcogenide van der Waals Heterostructures. ACS NANO 2024; 18:15185-15193. [PMID: 38809690 DOI: 10.1021/acsnano.4c03260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Observation of interlayer, charge transfer (CT) excitons in van der Waals heterostructures (vdWHs) based on 2D-2D systems has been well investigated. While conceptually interesting, these charge transfer excitons are highly delocalized and spatially localizing them requires twisting layers at very specific angles. This issue of localizing the CT excitons can be overcome via making nanoplate-2D material heterostructures (N2DHs) where one of the components is a spatially quantum confined medium. Here, we demonstrate the formation of CT excitons in a mixed dimensional system comprising MoSe2 and WSe2 monolayers and CdSe/CdS-based core/shell nanoplates (NPLs). Spectral signatures of CT excitons in our N2DHs were resolved locally at the 2D/single-NPL heterointerface using tip-enhanced photoluminescence (TEPL) at room temperature. By varying both the 2D material and the shell thickness of the NPLs and applying an out-of-plane electric field, the exciton resonance energy was tuned by up to 100 meV. Our finding is a significant step toward the realization of highly tunable N2DH-based next-generation photonic devices.
Collapse
Affiliation(s)
- Mahfujur Rahaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Alan G Joly
- Physical and Chemical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Christopher E Stevens
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- KBR Inc., Beavercreek, Ohio 45431, United States
| | - Seunguk Song
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Adam Alfieri
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhiqiao Jiang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Brian T O'Callahan
- Physical and Chemical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Daniel J Rosen
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Gwangwoo Kim
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joshua R Hendrickson
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Patrick Z El-Khoury
- Physical and Chemical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Christopher Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Qian W, Qi P, Dai Y, Shi B, Tao G, Liu H, Zhang X, Xiang D, Fang Z, Liu W. Strongly Localized Moiré Exciton in Twisted Homobilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305200. [PMID: 37649150 DOI: 10.1002/smll.202305200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Indexed: 09/01/2023]
Abstract
Artificially molding exciton flux is the cornerstone for developing promising excitonic devices. In the emerging hetero/homobilayers, the spatial separated charges prolong exciton lifetimes and create out-plane dipoles, facilitating electrically control exciton flux on a large scale, and the nanoscale periodic moiré potentials arising from twist-angle or/and lattice mismatch can substantially alter exciton dynamics, which are mainly proved in the heterostructures. However, the spatially indirect excitons dynamics in homobilayers without lattice mismatch remain elusive. Here the nonequilibrium dynamics of indirect exciton in homobilayers are systematically investigated. The homobilayers with slightly twist-angle can induce a deep moiré potential (>50 meV) in the energy landscape of indirect excitons, resulting in a strongly localized moiré excitons insulating the transport dynamics from phonons and disorder. These findings provide insights into the exciton dynamics and many-body physics in moiré superlattices modulated energy landscape, with implications for designing excitonic devices operating at room temperature.
Collapse
Affiliation(s)
- Wenqi Qian
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Pengfei Qi
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Yuchen Dai
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing, 100871, China
| | - Beibei Shi
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing, 100871, China
| | - Guangyi Tao
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing, 100871, China
| | - Haiyi Liu
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Xubin Zhang
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Dong Xiang
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Zheyu Fang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing, 100871, China
| | - Weiwei Liu
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| |
Collapse
|
4
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|