1
|
Jia Q, Tang R, Sun X, Tang W, Li L, Zhu J, Wang P, Yan W, Qiu M. Precise and Omnidirectional Opto-Thermo-Elastic Actuation in Van Der Waals Contacting Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401418. [PMID: 39159073 PMCID: PMC11497110 DOI: 10.1002/advs.202401418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Actuation of micro-objects along unconstrained trajectories in van der Waals contacting systems-in the same capacity as optical tweezers to manipulate particles in fluidic environments-remains a formidable challenge due to the lack of effective methods to overcome and exploit surface friction. Herein, a technique that aims to resolve this difficulty is proposed. This study shows that, by utilizing a moderate power beam of light, micro-objects adhered on planar solid substrates can be precisely guided to move in arbitrary directions, realizing sub-nanometer resolution across extended surfaces. The underlying mechanism is the interplay between surface friction and pulsed opto-thermo-elastic deformations, and to render a biased motion with off-centroid light illumination. This technique enables high-precision assembly, separation control of nanogaps, regulation of rotation angles in various material-substrate systems, whose capability is further tested in reconfigurable construction of optoelectronic devices. With simple set-up and theoretical generality, opto-thermo-elastic actuation opens up an avenue for versatile optical manipulation in the solid domain.
Collapse
Affiliation(s)
- Qiannan Jia
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhouZhejiang Province310027China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- Institute of Advanced TechnologyWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| | - Renjie Tang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- Institute of Advanced TechnologyWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| | - Xiaoyu Sun
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- Institute of Advanced TechnologyWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| | - Weiwei Tang
- College of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiang Province310024China
| | - Lan Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- Institute of Advanced TechnologyWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
- Westlake Institute for OptoelectronicsHangzhouZhejiang Province311421China
| | - Jiajie Zhu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Pan Wang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Wei Yan
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- Institute of Advanced TechnologyWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- Institute of Advanced TechnologyWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
- Westlake Institute for OptoelectronicsHangzhouZhejiang Province311421China
| |
Collapse
|
2
|
Wang S, Xie Z, Chen Z, Miao L, Li Y, Zhai Y, Ding T. Photothermophoretic Splitting of Gold Nanoparticles for Plasmonic Nanopores and Nanonets Sensing. J Phys Chem Lett 2024; 15:6568-6574. [PMID: 38885430 DOI: 10.1021/acs.jpclett.4c01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Optical processing of single plasmonic nanoparticles reinvents the way of high-density information storage, high-performance sensing, and high-definition displays. However, such laser-fabricated nanoplasmonics with well-defined hot spots remain elusive due to the diffraction limit of light. Here we show Au nanoparticle (NP) decorated nanopores can be facilely generated with photothermal splitting of single Au NPs embedded in a silica matrix. The extremely high local temperature induced by plasmonic heating renders gradients of the temperature and surface tension around the Au NP, which drives the nanoscale thermophoretic and Marangoni flow of molten Au/silica. As a result, a nanopore decorated with fragmented Au NPs is formed in the silica film, which presents much stronger surface-enhanced Raman scattering as compared to a single Au NP due to the emergence of hot spots. This strategy can be used to generate plasmonic nanopores of various sizes in the silicon nitride (SiNx) films, which further transforms into nanonets at ambient conditions via light-induced reconstruction of silicon nitride membrane. These nanonets can serve as a robust platform for single particle trapping and analysis.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhipeng Xie
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Zihao Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Longfei Miao
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yong Li
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yueming Zhai
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Yao J, Li Y, Wang S, Ding T. Thin-Film-Assisted Photothermal Deformation of Gold Nanoparticles: A Facile and In-Situ Strategy for Single-Plate-Based Devices. ACS NANO 2024; 18:10618-10624. [PMID: 38564362 DOI: 10.1021/acsnano.4c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Optical-induced shape transformation of single nanoparticles on substrates has shown benefits of simplicity and regularity for single-particle device fabrication and on-chip integration. However, most of the existing strategies are based on wet chemical growth and etching, which could lead to surface contamination with limited local selectivity and device compatibility. Shape deformation via the photothermal effect can overcome these issues but has limited versatility and tunability largely due to the high surface tension of the molten droplet. Here we show gold nanoparticles (Au NPs) can drastically transform into nanoplates under the irradiation of a continuous wave laser (446 nm). We reveal the dielectric thin film underneath the molten Au is critical in deforming the NP into faceted nanoplate under the drive of photothermophoretic forces, which is sufficient to counteract the surface tension of the molten droplet. Both experimental evidence and simulations support this thin-film-assisted photothermal deformation mechanism, which is local selective and generally applicable to differently shaped Au NPs. It provides a facile and robust strategy for single-plate-based device applications.
Collapse
Affiliation(s)
- Jiacheng Yao
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yong Li
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shuangshuang Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Shang X, Wang N, Cao S, Chen H, Fan D, Zhou N, Qiu M. Fiber-Integrated Force Sensor using 3D Printed Spring-Composed Fabry-Perot Cavities with a High Precision Down to Tens of Piconewton. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305121. [PMID: 37985176 DOI: 10.1002/adma.202305121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/23/2023] [Indexed: 11/22/2023]
Abstract
Developing microscale sensors capable of force measurements down to the scale of piconewtons is of fundamental importance for a wide range of applications. To date, advanced instrumentations such as atomic force microscopes and other specifically developed micro/nano-electromechanical systems face challenges such as high cost, complex detection systems and poor electromagnetic compatibility. Here, it presents the unprecedented design and 3D printing of general fiber-integrated force sensors using spring-composed Fabry-Perot cavities. It calibrates these microscale devices employing varied-diameter μ $\umu$ m-scale silica particles as standard weights. The force sensitivity and resolution reach values of (0.436 ± 0.007) nmnN-1 and (40.0 ± 0.7) pN, respectively, which are the best resolutions among all fiber-based nanomechanical probes so far. It also measured the non-linear airflow force distributions produced from a nozzle with an orifice of 2 μ $\umu$ m, which matches well with the full-sized simulations. With further customization of their geometries and materials, it anticipates the easy-to-use force probe can well extend to many other applications such as air/fluidic turbulences sensing, micro-manipulations, and biological sensing.
Collapse
Affiliation(s)
- Xinggang Shang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Ning Wang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
- Laboratory of Gravitational Wave Precision Measurement of Zhejiang Province, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
- Taiji Laboratory for Gravitational Wave Universe, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Simin Cao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Hehao Chen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Dixia Fan
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Nanjia Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou, 311421, China
| |
Collapse
|
5
|
Yang T. Ultra-compact fiber tapering: plasmonics and structural bending as new combination of heat and pull. LIGHT, SCIENCE & APPLICATIONS 2023; 12:163. [PMID: 37400472 DOI: 10.1038/s41377-023-01203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Fabrication of optical fiber tapers is realized with a combination of plasmonic microheaters and specially designed structural bending of optical fibers, which provide the necessary elements of "heat and pull". The resultant compactness and flame-free condition enable monitoring of the tapering process inside a scanning electron microscope.
Collapse
Affiliation(s)
- Tian Yang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
6
|
Chen X, Kislyakov IM, Wang T, Xie Y, Wang Y, Zhang L, Wang J. Photoacoustic 2D actuator via femtosecond pulsed laser action on van der Waals interfaces. Nat Commun 2023; 14:2135. [PMID: 37059706 PMCID: PMC10104871 DOI: 10.1038/s41467-023-37763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/30/2023] [Indexed: 04/16/2023] Open
Abstract
Achieving optically controlled nanomachine engineering can satisfy the touch-free and non-invasive demands of optoelectronics, nanotechnology, and biology. Traditional optical manipulations are mainly based on optical and photophoresis forces, and they usually drive particles in gas or liquid environments. However, the development of an optical drive in a non-fluidic environment, such as on a strong van der Waals interface, remains difficult. Herein, we describe an efficient 2D nanosheet actuator directed by an orthogonal femtosecond laser, where 2D VSe2 and TiSe2 nanosheets deposited on sapphire substrates can overcome the interface van der Waals forces (tens and hundreds of megapascals of surface density) and move on the horizontal surfaces. We attribute the observed optical actuation to the momentum generated by the laser-induced asymmetric thermal stress and surface acoustic waves inside the nanosheets. 2D semimetals with high absorption coefficient can enrich the family of materials suitable to implement optically controlled nanomachines on flat surfaces.
Collapse
Affiliation(s)
- Xin Chen
- Photonic Integrated Circuits Center, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ivan M Kislyakov
- Photonic Integrated Circuits Center, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
| | - Tiejun Wang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yafeng Xie
- Photonic Integrated Circuits Center, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- Photonic Integrated Circuits Center, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Zhang
- Photonic Integrated Circuits Center, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Center for Excellence in Ultra-intense Laser Science, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jun Wang
- Photonic Integrated Circuits Center, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
- Center for Excellence in Ultra-intense Laser Science, Chinese Academy of Sciences, Shanghai, 201800, China.
| |
Collapse
|
7
|
Zhao Y, Song W, Xu J, Wu T, Gong Z, Li Y, Li B, Zhang Y. Light-driven upconversion fluorescence micromotors. Biosens Bioelectron 2022; 221:114931. [DOI: 10.1016/j.bios.2022.114931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
|
8
|
Abstract
Many light-based technologies have been developed to manipulate micro/nanoscale objects such as colloidal particles and biological cells for basic research and practical applications. While most approaches such as optical tweezers are best suited for manipulation of objects in fluidic environments, optical manipulation on solid substrates has recently gained research interest for its advantages in constructing, reconfiguring, or powering solid-state devices consisting of colloidal particles as building blocks. Here, we review recent progress in optical technologies that enable versatile manipulation and assembly of micro/nanoscale objects on solid substrates. Diverse technologies based on distinct physical mechanisms, including photophoresis, photochemical isomerization, optothermal phase transition, optothermally induced surface acoustic waves, and optothermal expansion, are discussed. We conclude this review with our perspectives on the opportunities, challenges, and future directions in optical manipulation and assembly on solid substrates.
Collapse
Affiliation(s)
- Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ali Alfares
- Paul M. Rady Department of Mechanical Engineering, The University of Colorado at Boulder, Boulder, CO 80303, USA
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|