1
|
Gu H, Xu H, Yang C, Feng Y, Gao G, Hoye RLZ, Hu X, Polavarapu L, Zhou G, Jiang XF. Color-Tunable Lead Halide Perovskite Single-Mode Chiral Microlasers with Exceptionally High glum. NANO LETTERS 2024; 24:13333-13340. [PMID: 39361829 PMCID: PMC11503764 DOI: 10.1021/acs.nanolett.4c03838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Chiral microlasers hold great promise for optoelectronics from integrated photonic devices to high-density quantum information processing. Despite significant progress in lead-halide perovskite emitters, chiral lasing with high dissymmetry factors (glum) has not yet been realized. Here, we demonstrate chiral single-mode microlasers with exceptional stability and tunable emission across the visible range by combining CsPbClxBr3-x perovskite microrods (MRs) with a cholesteric liquid crystal (CLC) layer. The MRs lase via a whispering gallery mode (WGM) microcavity and confer chirality through the encapsulated CLC layer, thus exhibiting circularly polarized lasing with dissymmetry factors reaching 1.62. Importantly, we demonstrate wavelength-tunable high dissymmetry chiral lasers in a broad spectral range by tuning the halide composition and using CLC layers with the desired photonic bandgap (PBG). This facile approach to generate chiral lasing not only is applicable to semiconductor nano- and microcrystals but also paves the way for potential integration into nanoscale photonic devices.
Collapse
Affiliation(s)
- Haotian Gu
- Guangdong
Basic Research Center of Excellence for Structure and Fundamental
Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum
Engineering and Quantum Material, School of Physics, South China Normal University, Guangzhou 510006, China
| | - Haoyuan Xu
- Guangdong
Basic Research Center of Excellence for Structure and Fundamental
Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum
Engineering and Quantum Material, School of Physics, South China Normal University, Guangzhou 510006, China
| | - Chao Yang
- SCNU-TUE
Joint Lab of Device Integrated Responsive Materials (DIRM), National
Center for International Research on Green Optoelectronics, South
China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yifan Feng
- SCNU-TUE
Joint Lab of Device Integrated Responsive Materials (DIRM), National
Center for International Research on Green Optoelectronics, South
China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Guanfeng Gao
- Guangdong
Basic Research Center of Excellence for Structure and Fundamental
Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum
Engineering and Quantum Material, School of Physics, South China Normal University, Guangzhou 510006, China
| | - Robert L. Z. Hoye
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, U.K.
| | - Xiaowen Hu
- SCNU-TUE
Joint Lab of Device Integrated Responsive Materials (DIRM), National
Center for International Research on Green Optoelectronics, South
China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Lakshminarayana Polavarapu
- Guangdong
Basic Research Center of Excellence for Structure and Fundamental
Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum
Engineering and Quantum Material, School of Physics, South China Normal University, Guangzhou 510006, China
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics Group, Department of Physical Chemistry Campus Universitario
As Lagoas, Marcosende 36310, Vigo, Spain
| | - Guofu Zhou
- SCNU-TUE
Joint Lab of Device Integrated Responsive Materials (DIRM), National
Center for International Research on Green Optoelectronics, South
China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Xiao-Fang Jiang
- Guangdong
Basic Research Center of Excellence for Structure and Fundamental
Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum
Engineering and Quantum Material, School of Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
2
|
Xu G, Lu Y, Zhou X, Moloto N, Liu J, Kure-Chu SZ, Hihara T, Zhang W, Sun Z. Thermochromic hydrogel-based energy efficient smart windows: fabrication, mechanisms, and advancements. MATERIALS HORIZONS 2024; 11:4867-4884. [PMID: 39324863 DOI: 10.1039/d4mh00903g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Thermochromic smart windows are regarded as highly cost-effective and easily implementable strategies with zero energy input among the smart window technologies. They possess the capability to spontaneously adjust between transparent and opaque states according to the ambient temperatures, which is essential for energy-efficient buildings. Recently, thermochromic smart windows based on hydrogels with various chromic mechanisms have emerged to meet the increasing demand for energy-saving smart windows. This review provides an overview of recent advancements in hydrogel-based thermochromic smart windows, focusing on fabrication strategies, chromic mechanisms, and improvements in responsiveness, stability and energy-saving performance. Key developments include dual-responsiveness, tunable critical transition temperatures, freezing resistance, and integrations with radiative cooling/power generation technologies. Finally, we also offer a perspective on the future development of thermochromic smart windows utilizing hydrogels. We hope that this review will enhance the understanding of the chromic mechanism of thermochromic hydrogels, and bring new insights and inspirations on the further design and development of thermochromic hydrogels and derived smart windows.
Collapse
Affiliation(s)
- Gang Xu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Yucan Lu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Xinguantong Zhou
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Nosipho Moloto
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits2050, Johannesburg 2000, South Africa
| | - Jiacheng Liu
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Song-Zhu Kure-Chu
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Takehiko Hihara
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Wei Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - ZhengMing Sun
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
3
|
Santos AFM, Figueirinhas JL, Dionísio M, Godinho MH, Branco LC. Ionic Liquid Crystals as Chromogenic Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4563. [PMID: 39336305 PMCID: PMC11432927 DOI: 10.3390/ma17184563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/30/2024]
Abstract
Ionic liquid crystals (ILCs), a class of soft matter materials whose properties can be tuned by the wise pairing of the cation and anion, have recently emerged as promising candidates for different applications, combining the characteristics of ionic liquids and liquid crystals. Among those potential uses, this review aims to cover chromogenic ILCs. In this context, examples of photo-, electro- and thermochromism based on ILCs are provided. Furthermore, thermotropic and lyotropic ionic liquid crystals are also summarised, including the most common chemical and phase structures, as well as the advantages of confining these materials. This manuscript also comprises the following main experimental techniques used to characterise ILCs: Differential Scanning Calorimetry (DSC), Polarised Optical Microscopy (POM) and X-Ray Powder Diffraction (XRD). Chromogenic ILCs can be interesting smart materials for energy and health purposes.
Collapse
Affiliation(s)
- Andreia F M Santos
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - João L Figueirinhas
- CeFEMA and Department of Physics, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Madalena Dionísio
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria H Godinho
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Luis C Branco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Zhang R, Song Z, Cao W, Gao G, Yang L, He Y, Han J, Zhang Z, Wang T, Zhu J. Multispectral smart window: Dynamic light modulation and electromagnetic microwave shielding. LIGHT, SCIENCE & APPLICATIONS 2024; 13:223. [PMID: 39209835 PMCID: PMC11362162 DOI: 10.1038/s41377-024-01541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/15/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
A novel multispectral smart window has been proposed, which features dynamic modulation of light transmittance and effective shielding against electromagnetic microwave radiation. This design integrates liquid crystal dynamic scattering and dye doping techniques, enabling the dual regulation of transmittance and scattering within a single-layer smart window. Additionally, the precise control of conductive film thickness ensures the attainment of robust microwave signal shielding. We present a theoretical model for ion movement in the presence of an alternating electric field, along with a novel approach to manipulate negative dielectric constant. The proposed model successfully enables a rapid transition between light transparent, absorbing and haze states, with an optimum drive frequency adjustable to approximately 300 Hz. Furthermore, the resistive design of the conductive layer effectively mitigates microwave radiation within the 2-18 GHz range. These findings offer an innovative perspective for future advancements in environmental construction.
Collapse
Affiliation(s)
- Ruicong Zhang
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China
| | - Zicheng Song
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China.
| | - Wenxin Cao
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China
| | - Gang Gao
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China
| | - Lei Yang
- Research Center of Analysis and Measurement, Harbin Institute of Technology, Harbin, 150080, China
| | - Yurong He
- School of Energy Science & Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Jiecai Han
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
| | - Zhibo Zhang
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China.
| | - Tianyu Wang
- School of Energy Science & Engineering, Harbin Institute of Technology, Harbin, 150080, China.
| | - Jiaqi Zhu
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China.
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450018, China.
| |
Collapse
|
5
|
Guardià J, Reina JA, Giamberini M, Montané X. An Up-to-Date Overview of Liquid Crystals and Liquid Crystal Polymers for Different Applications: A Review. Polymers (Basel) 2024; 16:2293. [PMID: 39204513 PMCID: PMC11359798 DOI: 10.3390/polym16162293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Liquid crystals have been extensively used in various applications, such as optoelectronic devices, biomedical applications, sensors and biosensors, and packaging, among others. Liquid crystal polymers are one type of liquid crystal material, combining their intrinsic properties with polymeric flexibility for advanced applications in displays and smart materials. For instance, liquid crystal polymers can serve as drug nanocarriers, forming cubic or hexagonal mesophases, which can be tailored for controlled drug release. Further applications of liquid crystals and liquid crystal polymers include the preparation of membranes for separation processes, such as wastewater treatment. Furthermore, these materials can be used as ion-conducting membranes for fuel cells or lithium batteries due to their broad types of mesophases. This review aims to provide an overall explanation and classification of liquid crystals and liquid crystal polymers. Furthermore, the great potential of these materials relies on their broad range of applications, which are determined by their unique properties. Moreover, this study provides the latest advances in liquid crystal polymer-based membranes and their applications, focusing especially on fuel cells. Moreover, future directions in the applications of various liquid crystals are highlighted.
Collapse
Affiliation(s)
- Jordi Guardià
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain; (J.G.); (J.A.R.)
| | - José Antonio Reina
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain; (J.G.); (J.A.R.)
| | - Marta Giamberini
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Xavier Montané
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain; (J.G.); (J.A.R.)
| |
Collapse
|
6
|
Kao TH, Hsu HH, Chen JJ, Lee LR, Chen HY, Chen JT. Fabrication of Polymer/Cholesteric Liquid Crystal Films and Fibers Using the Nonsolvent and Phase Separation Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14166-14172. [PMID: 38916980 PMCID: PMC11238578 DOI: 10.1021/acs.langmuir.4c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
In recent years, liquid crystal materials have drawn great interest because of their wide range of applications. Among various thermochromic materials, cholesteric liquid crystalline (CLC) materials have been well studied and reported. CLC materials have the advantages of ready manipulation and multiple color transitions. For the further development of smart clothing and wearable electronics, however, the incorporation of CLC materials into polymers still remains challenging. The difficulties lie in the prevention of leakage of CLC and retention of the cholesteric liquid crystalline phase. In this work, we demonstrate a versatile nonsolvent and phase separation method using polar solvents to incorporate CLC microspheres into polymer matrix. Poly(vinyl alcohol) (PVA), a water-soluble polymer, is chosen as the polymer because of its high transparency and ease to handle. Using spin-coating and wet spinning techniques, PVA/CLC films and fibers can be fabricated. The formation of CLC microspheres in the polymer matrix is characterized through optical and polarized microscopy. Compared with the CLC films, the PVA/CLC composites demonstrate superior thermal stability. Moreover, both PVA/CLC films and fibers exhibit good color stability from the electrical tests. This work provides an effective strategy to prepare polymer/CLC composites, paving a wide avenue toward applications in smart textiles, display technologies, and medical devices.
Collapse
Affiliation(s)
- Tzu-Hsun Kao
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Hsun-Hao Hsu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Jui-Juin Chen
- Department of Physics, National Chung Hsing University, Taichung City 402204, Taiwan
| | - Lin-Ruei Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Hui-Yu Chen
- Department of Physics, National Chung Hsing University, Taichung City 402204, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
7
|
Minev N, Buchkov K, Todorova N, Todorov R, Videva V, Stefanova M, Rafailov P, Karashanova D, Dikov H, Strijkova V, Trapalis C, Lin SH, Dimitrov D, Marinova V. Synthesis of 2D PtSe 2 Nanolayers on Glass Substrates and Their Integration in Near-Infrared Light Shutters. ACS OMEGA 2024; 9:14874-14886. [PMID: 38585138 PMCID: PMC10993254 DOI: 10.1021/acsomega.3c08235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
PtSe2 has asserted its key role among the emerging 2D transition metal dichalcogenides, however, its simplified growth process with controlled number of layers, high crystalline quality, and on inexpensive substrates is still challenging. Here, we report the synthesis details of PtSe2 layers on soda lime glass substrates by selenization of predeposited Pt layers using the thermally assisted conversion method at atmospheric pressure. PtSe2 syntheses are confirmed by X-ray photoelectron spectroscopy and Raman analysis. The layers were further investigated with transmission electron microscopy and optical ellipsometry, revealing the thickness and its dependence on the metal precursor sputtering time. Finally, the integration of PtSe2 as transparent conductive layers in polymer-dispersed liquid crystal structures operating as near-infrared light shutters is demonstrated and device performance is discussed. The proposed simple and inexpensive synthesis approach opens up new directions toward PtSe2 potential technological applications, including ITO-free optoelectronics.
Collapse
Affiliation(s)
- Nikolay Minev
- Institute
of Optical Materials and Technologies, Bulgarian
Academy of Sciences, Acad. G. Bontchev Str. 109, 1113 Sofia, Bulgaria
| | - Krastyo Buchkov
- Institute
of Solid-State Physics, Bulgarian Academy
of Sciences, 72, Tzarigradsko
Chaussee Blvd, 1784 Sofia, Bulgaria
| | - Nadia Todorova
- Institute
of Nanoscience and Nanotechnology, National
Centre for Scientific Research “Demokritos” 15341 Agia Paraskevi, Greece
| | - Rosen Todorov
- Institute
of Optical Materials and Technologies, Bulgarian
Academy of Sciences, Acad. G. Bontchev Str. 109, 1113 Sofia, Bulgaria
| | - Vladimira Videva
- Institute
of Optical Materials and Technologies, Bulgarian
Academy of Sciences, Acad. G. Bontchev Str. 109, 1113 Sofia, Bulgaria
- Faculty
of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Maria Stefanova
- Institute
of Optical Materials and Technologies, Bulgarian
Academy of Sciences, Acad. G. Bontchev Str. 109, 1113 Sofia, Bulgaria
| | - Peter Rafailov
- Institute
of Solid-State Physics, Bulgarian Academy
of Sciences, 72, Tzarigradsko
Chaussee Blvd, 1784 Sofia, Bulgaria
| | - Daniela Karashanova
- Institute
of Optical Materials and Technologies, Bulgarian
Academy of Sciences, Acad. G. Bontchev Str. 109, 1113 Sofia, Bulgaria
| | - Hristosko Dikov
- Central
Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia, Bulgaria
| | - Velichka Strijkova
- Institute
of Optical Materials and Technologies, Bulgarian
Academy of Sciences, Acad. G. Bontchev Str. 109, 1113 Sofia, Bulgaria
| | - Christos Trapalis
- Institute
of Nanoscience and Nanotechnology, National
Centre for Scientific Research “Demokritos” 15341 Agia Paraskevi, Greece
| | - Shiuan Huei Lin
- Department
of Electrophysics, National Yang Ming Chiao
Tung University, 30010 Hsinchu, Taiwan
| | - Dimitre Dimitrov
- Institute
of Optical Materials and Technologies, Bulgarian
Academy of Sciences, Acad. G. Bontchev Str. 109, 1113 Sofia, Bulgaria
- Institute
of Solid-State Physics, Bulgarian Academy
of Sciences, 72, Tzarigradsko
Chaussee Blvd, 1784 Sofia, Bulgaria
| | - Vera Marinova
- Institute
of Optical Materials and Technologies, Bulgarian
Academy of Sciences, Acad. G. Bontchev Str. 109, 1113 Sofia, Bulgaria
- Department
of Electrophysics, National Yang Ming Chiao
Tung University, 30010 Hsinchu, Taiwan
| |
Collapse
|
8
|
Meng X, Lin S, Chen S, Shen X, Guo D, Guo J. Recent Advances in Smart Windows Based on Photo-Responsive Liquid Crystals Featuring Phase Transition. Chempluschem 2024; 89:e202300700. [PMID: 38230830 DOI: 10.1002/cplu.202300700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
A smart window is an optical dimming device with intelligent functions that can control its relevant performances through external stimuli, achieving functions such as privacy protection and temperature regulation. Light is an ideal stimulus for regulating smart windows, which is noninvasive and allows self-adaptable manipulation of materials. This review highlights recent significant achievements in smart windows constructed by photo-responsive liquid crystals (LCs) systems that can undergo the transition between different phases. The smart windows based on photo-responsive LCs are used in a plethora of areas, including privacy protection, absorption glass, building decoration, energy saving, and climate modulation applications. The review concludes with a brief perspective on some significant challenges and opportunities for the future development of photo-responsive smart windows, which is crucial for expanding the applications of smart windows and improving their performances.
Collapse
Affiliation(s)
- Xianyu Meng
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Siyang Lin
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuo Chen
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuanzhe Shen
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dekang Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
9
|
Ghosh S, Abraham E, Smalyukh II. Low-Voltage Haze Tuning with Cellulose-Network Liquid Crystal Gels. ACS NANO 2023; 17:19767-19778. [PMID: 37725591 DOI: 10.1021/acsnano.3c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Being key components of the building envelope, glazing products with tunable optical properties are in great demand because of their potential for boosting energy efficiency and privacy features while enabling the main function of allowing natural light indoors. However, windows and skylights with electric switching of haze and transparency are rare and often require high voltages or electric currents, as well as not fully meet the stringent technical requirements for glazing applications. Here, by introducing a predesigned gel material we describe an approach dubbed "Haze-Switch" that involves low-voltage tuning of the haze coefficient in a broad range of 2-90% while maintaining high visible-range optical transmittance. The approach is based on a nanocellulose fiber gel network infiltrated by a nematic liquid crystal, which can be switched between polydomain and monodomain spatial patterns of optical axis via a dielectric coupling between the nematic domains and the applied external electric field. By utilizing a nanocellulose network of nanofibers ∼10 nm in diameter we achieve <10 V dielectric switching and <2% haze in the clear state, as needed for applications in window products. We characterize physical properties relevant to window and smart glass technologies, like the color rendering index, haze coefficient, and switching times, demonstrating that our material and envisaged products can meet the stringent requirements of the glass industry, including applications such as privacy windows, skylights, sunroofs, and daylighting.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Eldho Abraham
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Ivan I Smalyukh
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Boulder, Higashihiroshima 739-8526, Japan
- Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
Selvaraj P, Wang SL, Hou TY, Liu CK, Cheng KT. Adaptive focal lengths in white light focusing Fresnel lenses enabled by reflective-type and phase-only spatial light modulator. Sci Rep 2023; 13:17044. [PMID: 37813963 PMCID: PMC10562419 DOI: 10.1038/s41598-023-44231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023] Open
Abstract
Fresnel zone plates (FZPs) are widely used in integrated optical systems to meet new cutting-edge demands for photonic integration and device miniaturizing. However, their use in applications of cross-scale fabrication still faces several obstacles, such as low efficiency, fixed focal length, single wavelength, large size, and complicated fabrication. Here, we first examine a novel adaptive focal length in white light focusing by using reflective-type and phase-only spatial light modulator (RLC-SLM) based on a liquid crystal on silicon. The device achieves a maximum diffraction efficiency of approximately 38% at primary focal points of binary phase-type FZPs throughout the visible range (red, green, and blue wavelengths). The RLC-SLM focuses the light of the desired wavelength while other sources are defocused. White light focusing and color separation are demonstrated by sequentially and additively switching different FZPs. These recent advances show that optically tunable FRZs are promising potential candidates to enhance adaptive camera systems, microscopes, holograms, and portable and wearable devices, thereby opening up novel possibilities in optical communications and sensing.
Collapse
Affiliation(s)
- Pravinraj Selvaraj
- Department of Optics and Photonics, National Central University, Taoyuan, 320317, Taiwan
| | - Sheng-Le Wang
- Department of Optics and Photonics, National Central University, Taoyuan, 320317, Taiwan
| | - Tsung-Yi Hou
- Department of Optics and Photonics, National Central University, Taoyuan, 320317, Taiwan
| | - Cheng-Kai Liu
- Department of Optics and Photonics, National Central University, Taoyuan, 320317, Taiwan
| | - Ko-Ting Cheng
- Department of Optics and Photonics, National Central University, Taoyuan, 320317, Taiwan.
| |
Collapse
|
11
|
Khoshbin Z, Sameiyan E, Zahraee H, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. A simple and robust aptasensor assembled on surfactant-mediated liquid crystal interface for ultrasensitive detection of mycotoxin. Anal Chim Acta 2023; 1270:341478. [PMID: 37311610 DOI: 10.1016/j.aca.2023.341478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Here, a simple aptasensing approach is represented to sensitively detect ochratoxin A (OTA) as one of the most perilous mycotoxins with carcinogenic, nephrotoxic, teratogenic, and immunosuppressive sequels on human health. The aptasensor is based on the alteration in the orientational order of liquid crystal (LC) molecules at the surfactant-arranged interface. Homeotropic alignment of LCs is achieved by the interaction of the surfactant tail with LCs. By perturbing the alignment of LCs due to the electrostatic interaction of the aptamer strand with the surfactant head, a colorful polarized view of the aptasensor substrate is induced drastically. While OTA causes the re-orientation of LCs to a vertical state by forming an OTA-aptamer complex that induces darkness of the substrate. This study shows that the length of the aptamer strand impacts the efficiency of the aptasensor; longer strand results in the greater disruption of LCs, and therefore, increases the aptasensor sensitivity. Hence, the aptasensor can determine OTA in the linear concentration range of 0.1 fM-1 pM as low as 0.021 fM. The aptasensor is capable to monitor OTA in grape juice, coffee drink, corn, and human serum real samples. The proposed LC-based aptasensor provides a cost-effective, easy-to-carry, operator-independent, and user-friendly array with great potential to develop portable sensing gadgets for food quality control and health care monitoring.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Sameiyan
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zahraee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Tang J, Gu H, Zhao Y, Tan M, Zhao W, Ma R, Zhang S, Hu D. Coupling Ti doping with oxygen vacancies in tungsten oxide for high-performance photochromism applications. Chem Commun (Camb) 2023; 59:6060-6063. [PMID: 37114352 DOI: 10.1039/d3cc00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A series of Ti-doped W18O49 samples were prepared using a convenient solvothermal route. Due to the synergistic effect of doped Ti and oxygen vacancies, the samples showed excellent visible-light photochromic properties. Their performances as light-printable rewritable paper and smart windows showed great application value and promotion value.
Collapse
Affiliation(s)
- Jiamin Tang
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China.
| | - Hongxi Gu
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China.
| | - Yating Zhao
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China.
| | - Mengdi Tan
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China.
| | - Weiwei Zhao
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China.
| | - Rong Ma
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China.
| | - Sheng Zhang
- School of Science, Hainan University, Haikou 570228, China
| | - Dengwei Hu
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China.
| |
Collapse
|