1
|
Li M, Zhang Y, Yu N, Chen W, Gong H, Zheng Y, Ni M, Han Y, Sun N, Bai L, An X, Yang J, Lin Y, Huang W, Zhuo Z, Liang X, Wang L, Sun L, Xu M, Lin J, Huang W. Triphenylamine Spirofunctionalized Light-Emitting Conjugated Polymer with an Ultradeep-Blue Narrowband Emission for Large-Area Printed Display. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307605. [PMID: 38349697 DOI: 10.1002/adma.202307605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/16/2024] [Indexed: 02/25/2024]
Abstract
Emerging printed large-area polymer light-emitting diodes (PLEDs) are essential for manufacturing flat-panel displays and solid lighting devices. However, it is challenging to obtain large-area and stable ultradeep-blue PLEDs because of the lack of light-emitting conjugated polymers (LCPs) with robust deep-blue emissions, excellent morphological stabilities, and high charging abilities. Here, a novel unsymmetrically substituted polydiarylfluorene (POPSAF) is obtained with stable narrowband emission for large-area printed displays via triphenylamine (TPA) spirofunctionalization of LCPs. POPSAF films show narrowband and stable ultradeep-blue emission with a full width at half maximum (FWHM) of 36 nm, associated with their intrachain excitonic behavior without obvious polaron formation. Compared to controlled poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPF), excellent charge transport is observed in the POPSAF films because of the intrinsic hole transport ability of the TPA units. Large-area PLEDs are fabricated via blade-coating with an emission area of 9 cm2, which exhibit uniform ultradeep-blue emission with an FWHM of 36 nm and corresponding Commission internationale de l'éclairage (CIE) coordinates of (0.155, 0.072). These findings are attributed to the synergistic effects of robust emission, stable morphology, and printing capacity. Finally, preliminary printed passive matrix (PM) PLED displays with 20 × 20 pixels monochromes are fabricated, confirmed the effectiveness of spirofunctionalization in optoelectronics.
Collapse
Affiliation(s)
- Mengyuan Li
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yahui Zhang
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Ningning Yu
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenyu Chen
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Huaqiang Gong
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yingying Zheng
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Mingjian Ni
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yamin Han
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Ning Sun
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Lubing Bai
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiang An
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Jing Yang
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yingru Lin
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenxin Huang
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Zhiqiang Zhuo
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xinyu Liang
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Lizhi Wang
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Lili Sun
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Man Xu
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLoFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
2
|
Chen L, Cai J, Zhen Y, Ou C, Ding X, Lin J. Ultraviolet Organic Laser from Rhombus Microcrystal: Benefits of Single-Molecule Emission from Twisted Structure. J Phys Chem Lett 2024; 15:1028-1033. [PMID: 38253018 DOI: 10.1021/acs.jpclett.3c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Light-emitting molecular crystals with efficient emission behavior are crucial for fabricating low-threshold ultraviolet organic lasers. Herein, we demonstrated a rhombus microcrystal from a fluorene-based conjugated molecule (CL-1) with robust emission behavior for an ultraviolet organic laser. Due to the synergistic effect of twisted intramolecular conformation and weak π-interaction, the CL-1 single crystal showed an extremely high photoluminescence quantum yield (PLQY) of ∼82%, due to their single-molecule excitonic behavior. Considering the diverse noncovalent interactions, CL-1 molecules easily self-assembled into the rhombus microcrystals. Finally, a low-threshold ultraviolet organic laser was fabricated with a sharp emission at 379 nm, attributed to the 0-1 vibration band of a single CL-1 molecule, also further confirming the single twisted-molecule emission in crystal states. Precisely controlling the intramolecular twisted structure and intermolecular interaction of organic conjugated molecules is a precondition to obtain robust ultraviolet emission for optoelectronic applications.
Collapse
Affiliation(s)
- Lin Chen
- School of Environment and Safety Engineering, Nanjing Polytechnic Institute, Nanjing 210048, China
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jiangli Cai
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yingying Zhen
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Changjin Ou
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xuehua Ding
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jinyi Lin
- Centre for Supramolecular Optoelectronics (CSO), Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|