1
|
Liu X, Bhakta R, Kryvorutsky E, Zhang Y. Imaging cells and nanoparticles using modulated optically computed phase microscopy. Sci Rep 2025; 15:3157. [PMID: 39856138 PMCID: PMC11760360 DOI: 10.1038/s41598-025-86377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Nanoparticles (NPs) have been successfully used as drug delivery systems. To develop and optimize NP-based drug delivery systems, it is essential to understand the dynamics of cell-NP interactions. Quantitative phase imaging techniques enable label-free imaging and have the potential to reveal how cells interact with NPs. To measure the subtle motion at cellular and subcellular scales, it requires a high phase sensitivity and a high spatial resolution. However, phase imaging techniques are limited by an intrinsic tradeoff between sensitivity and resolution. To overcome the tradeoff, we develop a technology termed as modulated optically computed phase microscopy (M-OCPM) based on low coherence interferometry and optical computation. The key innovation of M-OCPM is to utilize optical computation that performs Fourier transform of the interferometric spectra, imposes temporal modulation on the interference signal, and circumvents the sensitivity-resolution tradeoff. We evaluated the performance of M-OCPM using various samples, and demonstrated its label-free imaging capability, high sensitivity (nanometer scale displacement sensitivity) and high resolution (~ 250 nm). Particularly, we imaged NPs along with cultured cells and showed different signal characteristics for NPs that were adhered to the cells or in the cell culture medium. Our results clearly demonstrated the feasibility of M-OCPM in studying cell-NP interactions.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Rupak Bhakta
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Emily Kryvorutsky
- Department of Chemistry & Environmental Science, Jordan Hu College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Yuanwei Zhang
- Department of Chemistry & Environmental Science, Jordan Hu College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
2
|
Hou S, Han L, Zhang S, Zhang L, Zhang K, Xiao K, Yang Y, Zhang Y, Wen Y, Mo W, Tan Y, Yao Y, He J, Tang W, Guo X, Zhu Y, Chen X. On-Chip Metamaterial-Enhanced Mid-Infrared Photodetectors with Built-In Encryption Features. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415518. [PMID: 39792596 DOI: 10.1002/advs.202415518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/30/2024] [Indexed: 01/12/2025]
Abstract
The integration of mid-infrared (MIR) photodetectors with built-in encryption capabilities holds immense promise for advancing secure communications in decentralized networks and compact sensing systems. However, achieving high sensitivity, self-powered operation, and reliable performance at room temperature within a miniaturized form factor remains a formidable challenge, largely due to constraints in MIR light absorption and the intricacies of embedding encryption at the device level. Here, a novel on-chip metamaterial-enhanced, 2D tantalum nickel selenide (Ta₂NiSe₅)-based photodetector, meticulously designed with a custom-engineered plasmonic resonance microstructure to achieve self-powered photodetection in the nanoampere range is unveiled. Gold cross-shaped resonators are demonstrated that generate plasmon-induced ultrahot electrons, significantly enhancing the absorption of MIR photons with energies far below the bandgap and boosting electron thermalization in Ta₂NiSe₅, yielding a 0.1 V bias responsivity of 47 mA/W-an order of magnitude higher than previously reported values. Furthermore, the implementation of six reconfigurable optoelectronic logic computing ("AND", "OR", "NAND", "NOR", "XOR", and "XNOR") are illustrated via tailored optical and electrical input-output configurations, thereby establishing a platform for real-time infrared-encrypted communication. This work pioneers a new direction in secure MIR communications, advancing the development of high-performance, encryption-capable photonic systems.
Collapse
Affiliation(s)
- Shicong Hou
- Shanghai Key Laboratory of Modern Optical Systems, Terahertz Technology Innovation Research Institute, and Engineering Research Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China
| | - Li Han
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Shi Zhang
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
| | - Libo Zhang
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China
| | - Kaixuan Zhang
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China
| | - Kening Xiao
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China
| | - Yao Yang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yunduo Zhang
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China
| | - Yuanfeng Wen
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China
| | - Wenqi Mo
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China
| | - Yiran Tan
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China
| | - Yifan Yao
- Shanghai Key Laboratory of Modern Optical Systems, Terahertz Technology Innovation Research Institute, and Engineering Research Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Jiale He
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China
| | - Weiwei Tang
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China
| | - Xuguang Guo
- Shanghai Key Laboratory of Modern Optical Systems, Terahertz Technology Innovation Research Institute, and Engineering Research Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Yiming Zhu
- Shanghai Key Laboratory of Modern Optical Systems, Terahertz Technology Innovation Research Institute, and Engineering Research Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xiaoshuang Chen
- College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
| |
Collapse
|
3
|
Fu P, Zhang Y, Wang S, Ye X, Wu Y, Yu M, Zhu S, Lee HJ, Zhang D. INSPIRE: Single-beam probed complementary vibrational bioimaging. SCIENCE ADVANCES 2024; 10:eadm7687. [PMID: 39661668 PMCID: PMC11633736 DOI: 10.1126/sciadv.adm7687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/19/2024] [Indexed: 12/13/2024]
Abstract
Molecular spectroscopy provides intrinsic contrast for in situ chemical imaging, linking the physiochemical properties of biomolecules to the functions of living systems. While stimulated Raman imaging has found successes in deciphering biological machinery, many vibrational modes are Raman inactive or weak, limiting the broader impact of the technique. It can potentially be mitigated by the spectral complementarity from infrared (IR) spectroscopy. However, the vastly different optical windows make it challenging to develop such a platform. Here, we introduce in situ pump-probe IR and Raman excitation (INSPIRE) microscopy, a nascent cross-modality spectroscopic imaging approach by encoding the ultrafast Raman and the IR photothermal relaxation into a single probe beam for simultaneous detection. INSPIRE inherits the merits of complementary modalities and demonstrates high-content molecular imaging of chemicals, cells, tissues, and organisms. Furthermore, INSPIRE applies to label-free and molecular tag imaging, offering possibilities for optical sensing and imaging in biomedicine and materials science.
Collapse
Affiliation(s)
- Pengcheng Fu
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yongqing Zhang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Siming Wang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xin Ye
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Yunhong Wu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Mengfei Yu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Shiyao Zhu
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
- Hefei National Laboratory, Hefei 230088, China
- State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Hyeon Jeong Lee
- College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Delong Zhang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
- Hefei National Laboratory, Hefei 230088, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Sistemich L, Ebbinghaus S. Heat application in live cell imaging. FEBS Open Bio 2024; 14:1940-1954. [PMID: 39489617 PMCID: PMC11609584 DOI: 10.1002/2211-5463.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Thermal heating of biological samples allows to reversibly manipulate cellular processes with high temporal and spatial resolution. Manifold heating techniques in combination with live-cell imaging were developed, commonly tailored to customized applications. They include Peltier elements and microfluidics for homogenous sample heating as well as infrared lasers and radiation absorption by nanostructures for spot heating. A prerequisite of all techniques is that the induced temperature changes are measured precisely which can be the main challenge considering subcellular structures or multicellular organisms as target regions. This article discusses heating and temperature sensing techniques for live-cell imaging, leading to future applications in cell biology.
Collapse
Affiliation(s)
- Linda Sistemich
- Chair of Biophysical ChemistryRuhr‐University BochumGermany
- Research Center Chemical Sciences and Sustainability, Research Alliance RuhrBochumGermany
| | - Simon Ebbinghaus
- Chair of Biophysical ChemistryRuhr‐University BochumGermany
- Research Center Chemical Sciences and Sustainability, Research Alliance RuhrBochumGermany
| |
Collapse
|
5
|
Jia D, Cui M, Ding X. Visualizing DNA/RNA, Proteins, and Small Molecule Metabolites within Live Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404482. [PMID: 39096065 DOI: 10.1002/smll.202404482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Live cell imaging is essential for obtaining spatial and temporal insights into dynamic molecular events within heterogeneous individual cells, in situ intracellular networks, and in vivo organisms. Molecular tracking in live cells is also a critical and general requirement for studying dynamic physiological processes in cell biology, cancer, developmental biology, and neuroscience. Alongside this context, this review provides a comprehensive overview of recent research progress in live-cell imaging of RNAs, DNAs, proteins, and small-molecule metabolites, as well as their applications in molecular diagnosis, immunodiagnosis, and biochemical diagnosis. A series of advanced live-cell imaging techniques have been introduced and summarized, including high-precision live-cell imaging, high-resolution imaging, low-abundance imaging, multidimensional imaging, multipath imaging, rapid imaging, and computationally driven live-cell imaging methods, all of which offer valuable insights for disease prevention, diagnosis, and treatment. This review article also addresses the current challenges, potential solutions, and future development prospects in this field.
Collapse
Affiliation(s)
- Dongling Jia
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Minhui Cui
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
6
|
Yamazaki H, Sugawara R, Takayama Y. Development of label-free light-controlled gene expression technologies using mid-IR and terahertz light. Front Bioeng Biotechnol 2024; 12:1324757. [PMID: 39465004 PMCID: PMC11502365 DOI: 10.3389/fbioe.2024.1324757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Gene expression is a fundamental process that regulates diverse biological activities across all life stages. Given its vital role, there is an urgent need to develop innovative methodologies to effectively control gene expression. Light-controlled gene expression is considered a favorable approach because of its ability to provide precise spatiotemporal control. However, current light-controlled technologies rely on photosensitive molecular tags, making their practical use challenging. In this study, we review current technologies for light-controlled gene expression and propose the development of label-free light-controlled technologies using mid-infrared (mid-IR) and terahertz light.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, Nagaoka, Japan
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Ryusei Sugawara
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yurito Takayama
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
7
|
Baden N, Watanabe H, Aoyagi M, Ujii H, Fujita Y. Surface-enhanced optical-mid-infrared photothermal microscopy using shortened colloidal silver nanowires: a noble approach for mid-infrared surface sensing. NANOSCALE HORIZONS 2024; 9:1311-1317. [PMID: 38808389 DOI: 10.1039/d4nh00106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We propose surface-enhanced optical-mid-infrared photothermal (MIP) microscopy using highly crystalline silver nanowires, acting as a Fabry-Perot resonator, and demonstrate its applicability to enhanced mid-infrared surface sensing of thin polymer layers as thin as 20 nm.
Collapse
Affiliation(s)
- Naoki Baden
- Nihon Thermal Consulting, Co., Ltd, 3-9-2 Nishishinjuku, Sinjuku-ku, Tokyo 160-0023, Japan
| | - Hirohmi Watanabe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama 3-11-32, Higashihiroshima, Hiroshima, 739-0046, Japan.
| | - Masaru Aoyagi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama 3-11-32, Higashihiroshima, Hiroshima, 739-0046, Japan.
| | - Hiroshi Ujii
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuhiko Fujita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama 3-11-32, Higashihiroshima, Hiroshima, 739-0046, Japan.
| |
Collapse
|
8
|
Chen L, Zhao D, Huang K, Zhou ZY, Shi BS. Characterizing mid-infrared micro-ring resonator with frequency conversion. OPTICS EXPRESS 2024; 32:21795-21805. [PMID: 38859525 DOI: 10.1364/oe.524895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
Due to the high cost, low-performance lasers and detectors in the mid-infrared (MIR) band, the development of MIR-integrated devices is very slow. Here, we demonstrate an effective method to characterize the parameters of MIR devices by using frequency conversion technology. We designed and fabricated rib waveguides and the micro-ring resonators (MRRs) on a silicon-on-sapphire platform. The MIR laser for the test is generated by difference frequency generation, and the transmission spectrum of the MIR-MRRs is detected by sum frequency generation. The experimental results show that the waveguide transmission loss is 4.5 dB/cm and the quality factor of the micro-ring reaches 38000, which is in good agreement with the numerical simulations. This work provides a useful method to characterize MIR integrated devices based on the frequency conversion technique, which can boost the development of MIR integrated optics in the future.
Collapse
|
9
|
Hanninen A. Vibrational imaging of metabolites for improved microbial cell strains. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22711. [PMID: 38952688 PMCID: PMC11216725 DOI: 10.1117/1.jbo.29.s2.s22711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
Significance Biomanufacturing utilizes modified microbial systems to sustainably produce commercially important biomolecules for use in agricultural, energy, food, material, and pharmaceutical industries. However, technological challenges related to non-destructive and high-throughput metabolite screening need to be addressed to fully unlock the potential of synthetic biology and sustainable biomanufacturing. Aim This perspective outlines current analytical screening tools used in industrial cell strain development programs and introduces label-free vibrational spectro-microscopy as an alternative contrast mechanism. Approach We provide an overview of the analytical instrumentation currently used in the "test" portion of the design, build, test, and learn cycle of synthetic biology. We then highlight recent progress in Raman scattering and infrared absorption imaging techniques, which have enabled improved molecular specificity and sensitivity. Results Recent developments in high-resolution chemical imaging methods allow for greater throughput without compromising the image contrast. We provide a roadmap of future work needed to support integration with microfluidics for rapid screening at the single-cell level. Conclusions Quantifying the net expression of metabolites allows for the identification of cells with metabolic pathways that result in increased biomolecule production, which is essential for improving the yield and reducing the cost of industrial biomanufacturing. Technological advancements in vibrational microscopy instrumentation will greatly benefit biofoundries as a complementary approach for non-destructive cell screening.
Collapse
|
10
|
Teng X, Li M, He H, Jia D, Yin J, Bolarinho R, Cheng JX. Mid-infrared Photothermal Imaging: Instrument and Life Science Applications. Anal Chem 2024; 96:7895-7906. [PMID: 38702858 PMCID: PMC11785416 DOI: 10.1021/acs.analchem.4c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Recently developed mid-infrared photothermal (MIP) microscopy has attracted great attention from the research community in terms of video-rate imaging speed, sub-micron resolution, sensitivity in the range of several micro-molars, and suitability for live-cell analysis. In this review, we recount the developmental history of MIP microscopy. Subsequently, we describe the operational principles. Next, we delve into the wide-ranging applications of MIP microscopy to life sciences, spanning various samples from viruses to tissues. We explore the potential of MIP imaging in comprehension of cellular metabolism, cellular responses to chemical stimuli, and the mechanism of diseases. Finally, we discuss the future perspectives of MIP microscopy.
Collapse
Affiliation(s)
- Xinyan Teng
- Department of Chemistry, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Mingsheng Li
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Hongjian He
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Danchen Jia
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Jiaze Yin
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Rylie Bolarinho
- Department of Chemistry, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Ji-Xin Cheng
- Department of Chemistry, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
11
|
Kim H, Oh S, Lee S, Lee KS, Park Y. Recent advances in label-free imaging and quantification techniques for the study of lipid droplets in cells. Curr Opin Cell Biol 2024; 87:102342. [PMID: 38428224 DOI: 10.1016/j.ceb.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
Lipid droplets (LDs), once considered mere storage depots for lipids, have gained recognition for their intricate roles in cellular processes, including metabolism, membrane trafficking, and disease states like obesity and cancer. This review explores label-free imaging techniques' applications in LD research. We discuss holotomography and vibrational spectroscopic microscopy, emphasizing their potential for studying LDs without molecular labels, and we highlight the growing integration of artificial intelligence. Clinical applications in disease diagnosis and therapy are also considered.
Collapse
Affiliation(s)
- Hyeonwoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seungeun Oh
- Department of Physics, Department of Cellular Molecular Medicine, University of California, San Diego, CA 2093, USA
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea; Department of Systems Biotechnology, Chung-Ang University Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Kwang Suk Lee
- Department of Urology, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul 06229, Republic of Korea
| | - YongKeun Park
- Department of Physics, KAIST, Daejeon 34141, Republic of Korea; KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea; Tomocube Inc., Daejeon 34109, Republic of Korea.
| |
Collapse
|
12
|
Park C, Cho M. Dual phase-detected infrared photothermal microscopy. OPTICS EXPRESS 2024; 32:6865-6875. [PMID: 38439382 DOI: 10.1364/oe.510044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/22/2023] [Indexed: 03/06/2024]
Abstract
Infrared photothermal microscopy (IPM) has recently gained considerable attention as a versatile analytical platform capable of providing spatially resolved molecular insights across diverse research fields. This technique has led to numerous breakthroughs in the study of compositional variations in functional materials and cellular dynamics in living cells. However, its application to investigate multiple components of temporally dynamic systems, such as living cells and operational devices, has been hampered by the limited information content of the IP signal, which only covers a narrow spectral window (< 1 cm-1). Here, we present a straightforward approach for measuring two distinct IPM images utilizing the orthogonality between the in-phase and quadrature outputs of a lock-in amplifier, called dual-phase IR photothermal (DP-IP) detection. We demonstrate the feasibility of DP-IP detection for IPM in distinguishing two different micro-sized polymer beads.
Collapse
|
13
|
Li B, Xu J, Kocoj CA, Li S, Li Y, Chen D, Zhang S, Dou L, Guo P. Dual-Hyperspectral Optical Pump-Probe Microscopy with Single-Nanosecond Time Resolution. J Am Chem Soc 2024; 146:2187-2195. [PMID: 38216555 DOI: 10.1021/jacs.3c12284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
In recent years, optical pump-probe microscopy (PPM) has become a vital technique for spatiotemporally imaging electronic excitations and charge-carrier transport in metals and semiconductors. However, existing methods are limited by mechanical delay lines with a probe time window up to several nanoseconds (ns) or monochromatic pump and probe sources with restricted spectral coverage and temporal resolution, hindering their amenability in studying relatively slow processes. To bridge these gaps, we introduce a dual-hyperspectral PPM setup with a time window spanning from nanoseconds to milliseconds and single-nanosecond resolution. Our method features a wide-field probe tunable from 370 to 1000 nm and a pump spanning from 330 nm to 16 μm. We apply this PPM technique to study various two-dimensional metal-halide perovskites (2D-MHPs) as representative semiconductors by imaging their transient responses near the exciton resonances under both above-band gap electronic pump excitation and below-band gap vibrational pump excitation. The resulting spatially and temporally resolved images reveal insights into heat dissipation, film uniformity, distribution of impurity phases, and film-substrate interfaces. In addition, the single-nanosecond temporal resolution enables the imaging of in-plane strain wave propagation in 2D-MHP single crystals. Our method, which offers extensive spectral tunability and significantly improved time resolution, opens new possibilities for the imaging of charge carriers, heat, and transient phase transformation processes, particularly in materials with spatially varying composition, strain, crystalline structure, and interfaces.
Collapse
Affiliation(s)
- Bowen Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Joy Xu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Conrad A Kocoj
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Yanyan Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Du Chen
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Shuchen Zhang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
14
|
De Santis E, Faruqui N, Russell CT, Noble JE, Kepiro IE, Hammond K, Tsalenchuk M, Ryadnov EM, Wolna M, Frogley MD, Price CJ, Barbaric I, Cinque G, Ryadnov MG. Hyperspectral Mapping of Human Primary and Stem Cells at Cell-Matrix Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2154-2165. [PMID: 38181419 DOI: 10.1021/acsami.3c17113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Extracellular matrices interface with cells to promote cell growth and tissue development. Given this critical role, matrix mimetics are introduced to enable biomedical materials ranging from tissue engineering scaffolds and tumor models to organoids for drug screening and implant surface coatings. Traditional microscopy methods are used to evaluate such materials in their ability to support exploitable cell responses, which are expressed in changes in cell proliferation rates and morphology. However, the physical imaging methods do not capture the chemistry of cells at cell-matrix interfaces. Herein, we report hyperspectral imaging to map the chemistry of human primary and embryonic stem cells grown on matrix materials, both native and artificial. We provide the statistical analysis of changes in lipid and protein content of the cells obtained from infrared spectral maps to conclude matrix morphologies as a major determinant of biochemical cell responses. The study demonstrates an effective methodology for evaluating bespoke matrix materials directly at cell-matrix interfaces.
Collapse
Affiliation(s)
| | - Nilofar Faruqui
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Craig T Russell
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, U.K
| | - James E Noble
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Ibolya E Kepiro
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Maria Tsalenchuk
- UK Dementia Research Institute, Imperial College London, London W12 0BZ, U.K
| | - Eugeni M Ryadnov
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, U.K
| | - Magda Wolna
- Diamond Light Source Ltd., Chilton-Didcot, Oxfordshire OX11 0DE, U.K
| | - Mark D Frogley
- Diamond Light Source Ltd., Chilton-Didcot, Oxfordshire OX11 0DE, U.K
| | | | - Ivana Barbaric
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Gianfelice Cinque
- Diamond Light Source Ltd., Chilton-Didcot, Oxfordshire OX11 0DE, U.K
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
- Department of Physics, King's College London, London WC2R 2LS, U.K
| |
Collapse
|
15
|
Kurata R, Toda K, Ishigane G, Naruse M, Horisaki R, Ideguchi T. Single-image phase retrieval for off-the-shelf Zernike phase-contrast microscopes. OPTICS EXPRESS 2024; 32:2202-2211. [PMID: 38297755 DOI: 10.1364/oe.509877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024]
Abstract
Quantitative phase imaging (QPI), such as digital holography, is considered a promising tool in the field of life science due to its noninvasive and quantitative visualization capabilities without the need for fluorescence labeling. However, the popularity of QPI systems is limited due to the cost and complexity of their hardware. In contrast, Zernike phase-contrast microscopy (ZPM) has been widely used in practical scenarios but has not been categorized as QPI, owing to halo and shade-off artifacts and the weak phase condition. Here, we present a single-image phase retrieval method for ZPM that addresses these issues without requiring hardware modifications. By employing a rigorous physical model of ZPM and a gradient descent algorithm for its inversion, we achieve single-shot QPI with an off-the-shelf ZPM system. Our approach is validated in simulations and experiments, demonstrating QPI of a polymer microbead and biological cells. The quantitative nature of our method for single-cell imaging is confirmed through comparisons with observations from an established QPI technique conducted through digital holography. This study paves the way for transforming non-QPI ZPM systems into QPI systems.
Collapse
|
16
|
Bai Y, Camargo CM, Glasauer SMK, Gifford R, Tian X, Longhini AP, Kosik KS. Single-cell mapping of lipid metabolites using an infrared probe in human-derived model systems. Nat Commun 2024; 15:350. [PMID: 38191490 PMCID: PMC10774263 DOI: 10.1038/s41467-023-44675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Understanding metabolic heterogeneity is the key to uncovering the underlying mechanisms of metabolic-related diseases. Current metabolic imaging studies suffer from limitations including low resolution and specificity, and the model systems utilized often lack human relevance. Here, we present a single-cell metabolic imaging platform to enable direct imaging of lipid metabolism with high specificity in various human-derived 2D and 3D culture systems. Through the incorporation of an azide-tagged infrared probe, selective detection of newly synthesized lipids in cells and tissue became possible, while simultaneous fluorescence imaging enabled cell-type identification in complex tissues. In proof-of-concept experiments, newly synthesized lipids were directly visualized in human-relevant model systems among different cell types, mutation status, differentiation stages, and over time. We identified upregulated lipid metabolism in progranulin-knockdown human induced pluripotent stem cells and in their differentiated microglia cells. Furthermore, we observed that neurons in brain organoids exhibited a significantly lower lipid metabolism compared to astrocytes.
Collapse
Affiliation(s)
- Yeran Bai
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
- Photothermal Spectroscopy Corp., Santa Barbara, CA, USA.
| | - Carolina M Camargo
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Stella M K Glasauer
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Raymond Gifford
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Xinran Tian
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Andrew P Longhini
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
17
|
Samolis P, Zhu X, Sander MY. Time-Resolved Mid-Infrared Photothermal Microscopy for Imaging Water-Embedded Axon Bundles. Anal Chem 2023; 95:16514-16521. [PMID: 37880191 PMCID: PMC10652238 DOI: 10.1021/acs.analchem.3c02352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023]
Abstract
Few experimental tools exist for performing label-free imaging of biological samples in a water-rich environment due to the high infrared absorption of water, overlapping with major protein and lipid bands. A novel imaging modality based on time-resolved mid-infrared photothermal microscopy is introduced and applied to imaging axon bundles in a saline bath environment. Photothermally induced spatial gradients at the axon bundle membrane interfaces with saline and surrounding biological tissue are observed and temporally characterized by a high-speed boxcar detection system. Localized time profiles with an enhanced signal-to-noise, hyper-temporal image stacks, and two-dimensional mapping of the time decay profiles are acquired without the need for complex post image processing. Axon bundles are found to have a larger distribution of time decay profiles compared to the water background, allowing background differentiation based on these transient dynamics. The quantitative analysis of the signal evolution over time allows characterizing the level of thermal confinement at different regions. When axon bundles are surrounded by complex heterogeneous tissue, which contains smaller features, a stronger thermal confinement is observed compared to a water environment, thus shedding light on the heat transfer dynamics across aqueous biological interfaces.
Collapse
Affiliation(s)
- Panagis
D. Samolis
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
| | - Xuedong Zhu
- Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Michelle Y. Sander
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Division
of Materials Science and Engineering, Boston
University, Brookline, Massachusetts 02446, United States
| |
Collapse
|
18
|
Yi K, Wang X, Filippov SK, Zhang H. Emerging ctDNA detection strategies in clinical cancer theranostics. SMART MEDICINE 2023; 2:e20230031. [PMID: 39188296 PMCID: PMC11235813 DOI: 10.1002/smmd.20230031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 08/28/2024]
Abstract
Circulating tumor DNA (ctDNA) is naked DNA molecules shed from the tumor cells into the peripheral blood circulation. They contain tumor-specific gene mutations and other valuable information. ctDNA is considered to be one of the most significant analytes in liquid biopsies. Over the past decades, numerous researchers have developed various detection strategies to perform quantitative or qualitative ctDNA analysis, including PCR-based detection and sequencing-based detection. More and more studies have illustrated the great value of ctDNA as a biomarker in the diagnosis, prognosis and heterogeneity of tumor. In this review, we first outlined the development of digital PCR (dPCR)-based and next generation sequencing (NGS)-based ctDNA detection systems. Besides, we presented the introduction of the emerging ctDNA analysis strategies based on various biosensors, such as electrochemical biosensors, fluorescent biosensors, surface plasmon resonance and Raman spectroscopy, as well as their applications in the field of biomedicine. Finally, we summarized the essentials of the preceding discussions, and the existing challenges and prospects for the future are also involved.
Collapse
Affiliation(s)
- Kexin Yi
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Xiaoju Wang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Sergey K. Filippov
- DWI‐Leibniz Institute for Interactive Materials e. V.AachenGermany
- School of PharmacyUniversity of ReadingReadingUK
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|