1
|
Kang MJ, Ioannou S, Lougheide Q, Dittmar M, Hsu Y, Pastor-Soler NM. The study of intercalated cells using ex vivo techniques: primary cell culture, cell lines, kidney slices, and organoids. Am J Physiol Cell Physiol 2024; 326:C229-C251. [PMID: 37899748 DOI: 10.1152/ajpcell.00479.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
This review summarizes methods to study kidney intercalated cell (IC) function ex vivo. While important for acid-base homeostasis, IC dysfunction is often not recognized clinically until it becomes severe. The advantage of using ex vivo techniques is that they allow for the differential evaluation of IC function in controlled environments. Although in vitro kidney tubular perfusion is a classical ex vivo technique to study IC, here we concentrate on primary cell cultures, immortalized cell lines, and ex vivo kidney slices. Ex vivo techniques are useful in evaluating IC signaling pathways that allow rapid responses to extracellular changes in pH, CO2, and bicarbonate (HCO3-). However, these methods for IC work can also be challenging, as cell lines that recapitulate IC do not proliferate easily in culture. Moreover, a "pure" IC population in culture does not necessarily replicate its collecting duct (CD) environment, where ICs are surrounded by the more abundant principal cells (PCs). It is reassuring that many findings obtained in ex vivo IC systems signaling have been largely confirmed in vivo. Some of these newly identified signaling pathways reveal that ICs are important for regulating NaCl reabsorption, thus suggesting new frontiers to target antihypertensive treatments. Moreover, recent single-cell characterization studies of kidney epithelial cells revealed a dual developmental origin of IC, as well as the presence of novel CD cell types with certain IC characteristics. These exciting findings present new opportunities for the study of IC ex vivo and will likely rediscover the importance of available tools in this field.NEW & NOTEWORTHY The study of kidney intercalated cells has been limited by current cell culture and kidney tissue isolation techniques. This review is to be used as a reference to select ex vivo techniques to study intercalated cells. We focused on the use of cell lines and kidney slices as potential useful models to study membrane transport proteins. We also review how novel collecting duct organoids may help better elucidate the role of these intriguing cells.
Collapse
Affiliation(s)
- Min Ju Kang
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Silvia Ioannou
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Quinn Lougheide
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Michael Dittmar
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Young Hsu
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Nuria M Pastor-Soler
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| |
Collapse
|
2
|
Barry A, Samuel SF, Hosni I, Moursi A, Feugere L, Sennett CJ, Deepak S, Achawal S, Rajaraman C, Iles A, Wollenberg Valero KC, Scott IS, Green V, Stead LF, Greenman J, Wade MA, Beltran-Alvarez P. Investigating the effects of arginine methylation inhibitors on microdissected brain tumour biopsies maintained in a miniaturised perfusion system. LAB ON A CHIP 2023; 23:2664-2682. [PMID: 37191188 DOI: 10.1039/d3lc00204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Arginine methylation is a post-translational modification that consists of the transfer of one or two methyl (CH3) groups to arginine residues in proteins. Several types of arginine methylation occur, namely monomethylation, symmetric dimethylation and asymmetric dimethylation, which are catalysed by different protein arginine methyltransferases (PRMTs). Inhibitors of PRMTs have recently entered clinical trials to target several types of cancer, including gliomas (NCT04089449). People with glioblastoma (GBM), the most aggressive form of brain tumour, are among those with the poorest quality of life and likelihood of survival of anyone diagnosed with cancer. There is currently a lack of (pre)clinical research on the possible application of PRMT inhibitors to target brain tumours. Here, we set out to investigate the effects of clinically-relevant PRMT inhibitors on GBM biopsies. We present a new, low-cost, easy to fabricate perfusion device that can maintain GBM tissue in a viable condition for at least eight days post-surgical resection. The miniaturised perfusion device enables the treatment of GBM tissue with PRMT inhibitors ex vivo, and we observed a two-fold increase in apoptosis in treated samples compared to parallel control experiments. Mechanistically, we show thousands of differentially expressed genes after treatment, and changes in the type of arginine methylation of the RNA binding protein FUS that are consistent with hundreds of differential gene splicing events. This is the first time that cross-talk between different types of arginine methylation has been observed in clinical samples after treatment with PRMT inhibitors.
Collapse
Affiliation(s)
- Antonia Barry
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Sabrina F Samuel
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Ines Hosni
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Amr Moursi
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | - Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Hull, UK
| | | | - Srihari Deepak
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | - Shailendra Achawal
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | - Chittoor Rajaraman
- Department of Neurosurgery, Hull University Teaching Hospitals NHS Trust, Hull Royal Infirmary, Hull, UK
| | | | | | - Ian S Scott
- Neuroscience Laboratories, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Vicky Green
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Lucy F Stead
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - John Greenman
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | - Mark A Wade
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| | | |
Collapse
|
3
|
Singh DK, Miller CM, Orgel KA, Dave M, Mackay S, Good M. Necrotizing enterocolitis: Bench to bedside approaches and advancing our understanding of disease pathogenesis. Front Pediatr 2023; 10:1107404. [PMID: 36714655 PMCID: PMC9874231 DOI: 10.3389/fped.2022.1107404] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating, multifactorial disease mainly affecting the intestine of premature infants. Recent discoveries have significantly enhanced our understanding of risk factors, as well as, cellular and genetic mechanisms of this complex disease. Despite these advancements, no essential, single risk factor, nor the mechanism by which each risk factor affects NEC has been elucidated. Nonetheless, recent research indicates that maternal factors, antibiotic exposure, feeding, hypoxia, and altered gut microbiota pose a threat to the underdeveloped immunity of preterm infants. Here we review predisposing factors, status of unwarranted immune responses, and microbial pathogenesis in NEC based on currently available scientific evidence. We additionally discuss novel techniques and models used to study NEC and how this research translates from the bench to the bedside into potential treatment strategies.
Collapse
Affiliation(s)
- Dhirendra K. Singh
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Claire M. Miller
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kelly A. Orgel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mili Dave
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Stephen Mackay
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Nascentes Melo LM, Lesner NP, Sabatier M, Ubellacker JM, Tasdogan A. Emerging metabolomic tools to study cancer metastasis. Trends Cancer 2022; 8:988-1001. [PMID: 35909026 DOI: 10.1016/j.trecan.2022.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022]
Abstract
Metastasis is responsible for 90% of deaths in patients with cancer. Understanding the role of metabolism during metastasis has been limited by the development of robust and sensitive technologies that capture metabolic processes in metastasizing cancer cells. We discuss the current technologies available to study (i) metabolism in primary and metastatic cancer cells and (ii) metabolic interactions between cancer cells and the tumor microenvironment (TME) at different stages of the metastatic cascade. We identify advantages and disadvantages of each method and discuss how these tools and technologies will further improve our understanding of metastasis. Studies investigating the complex metabolic rewiring of different cells using state-of-the-art metabolomic technologies have the potential to reveal novel biological processes and therapeutic interventions for human cancers.
Collapse
Affiliation(s)
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie Sabatier
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Partner Site, Essen, Germany.
| |
Collapse
|
5
|
Furia L, Pelicci S, Perillo F, Bolognesi MM, Pelicci PG, Facciotti F, Cattoretti G, Faretta M. Automated multimodal fluorescence microscopy for hyperplex spatial-proteomics: Coupling microfluidic-based immunofluorescence to high resolution, high sensitivity, three-dimensional analysis of histological slides. Front Oncol 2022; 12:960734. [PMCID: PMC9606676 DOI: 10.3389/fonc.2022.960734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
In situ multiplexing analysis and in situ transcriptomics are now providing revolutionary tools to achieve the comprehension of the molecular basis of cancer and to progress towards personalized medicine to fight the disease. The complexity of these tasks requires a continuous interplay among different technologies during all the phases of the experimental procedures. New tools are thus needed and their characterization in terms of performances and limits is mandatory to reach the best resolution and sensitivity. We propose here a new experimental pipeline to obtain an optimized costs-to-benefits ratio thanks to the alternate employment of automated and manual procedures during all the phases of a multiplexing experiment from sample preparation to image collection and analysis. A comparison between ultra-fast and automated immunofluorescence staining and standard staining protocols has been carried out to compare the performances in terms of antigen saturation, background, signal-to-noise ratio and total duration. We then developed specific computational tools to collect data by automated analysis-driven fluorescence microscopy. Computer assisted selection of targeted areas with variable magnification and resolution allows employing confocal microscopy for a 3D high resolution analysis. Spatial resolution and sensitivity were thus maximized in a framework where the amount of stored data and the total requested time for the procedure were optimized and reduced with respect to a standard experimental approach.
Collapse
Affiliation(s)
- Laura Furia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Simone Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Giorgio Cattoretti
- Department of Medicine and Surgery, Università di Milano-Bicocca, Monza, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- *Correspondence: Mario Faretta,
| |
Collapse
|
6
|
Eigel D, Werner C, Newland B. Cryogel biomaterials for neuroscience applications. Neurochem Int 2021; 147:105012. [PMID: 33731275 DOI: 10.1016/j.neuint.2021.105012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Biomaterials in the form of 3D polymeric scaffolds have been used to create structurally and functionally biomimetic constructs of nervous system tissue. Such constructs can be used to model defects and disease or can be used to supplement neuronal tissue regeneration and repair. One such group of biomaterial scaffolds are hydrogels, which have been widely investigated for cell/tissue culture and as cell or molecule delivery systems in the field of neurosciences. However, a subset of hydrogels called cryogels, have shown to possess several distinct structural advantages over conventional hydrogel networks. Their macroporous structure, created via the time and resource efficient fabrication process (cryogelation) not only allows mass fluid transport throughout the structure, but also creates a high surface area to volume ratio for cell growth or drug loading. In addition, the macroporous structure of cryogels is ideal for applications in the central nervous system as they are very soft and spongey, yet also robust, which makes them a user-friendly and reproducible tool to address neuroscience challenges. In this review, we aim to provide the neuroscience community, who may not be familiar with the fundamental concepts of cryogels, an accessible summary of the basic information that pertain to their use in the brain and nervous tissue. We hope that this review shall initiate creative ways that cryogels could be further adapted and employed to tackle unsolved neuroscience challenges.
Collapse
Affiliation(s)
- Dimitri Eigel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Ben Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF10 3NB, Cardiff, Wales, UK.
| |
Collapse
|