1
|
Wang H, Zhu W, Xu C, Su W, Li Z. Engineering organoids-on-chips for drug testing and evaluation. Metabolism 2025; 162:156065. [PMID: 39522593 DOI: 10.1016/j.metabol.2024.156065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Organoids-on-chips is an emerging innovative integration of stem cell-derived organoids with advanced organ-on-chip technology, providing a novel platform for the in vitro construction of biomimetic micro-physiological systems. The synergistic merger transcends the limitations of traditional drug screening and safety assessment methodologies, such as 2D cell cultures and animal models. In this review, we examine the prevailing challenges and prerequisites of preclinical models utilized for drug screening and safety evaluations. We highlighted the salient features and merits of organoids-on-chip, elucidating their capability to authentically replicate human physiology, thereby addressing contemporary impediments. We comprehensively overviewed the recent endeavors where organoids-on-chips have been harnessed for drug screening and safety assessment and delved into potential opportunities and challenges for evolving sophisticated, near-physiological organoids-on-chips. Based on current achievements, we further discuss how to enhance the practicality of organoids-on-chips and accelerate the translation from preclinical to clinical stages in healthcare and industry by utilizing multidisciplinary convergent innovation.
Collapse
Affiliation(s)
- Hui Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan Zhu
- Shanghai General Hospital, Shanghai 200080, China
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University Medical Center, New York 10032, USA
| | - Wentao Su
- Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China.
| | - Zhongyu Li
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
2
|
Acharya P, Shrestha S, Joshi P, Choi NY, Lekkala VKR, Kang SY, Ni G, Lee MY. Dynamic culture of cerebral organoids using a pillar/perfusion plate for the assessment of developmental neurotoxicity. Biofabrication 2024; 17:10.1088/1758-5090/ad867e. [PMID: 39444222 PMCID: PMC11542746 DOI: 10.1088/1758-5090/ad867e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Despite the potential toxicity of commercial chemicals to the development of the nervous system (known as developmental neurotoxicity or DNT), conventionalin vitrocell models have primarily been employed for the assessment of acute neuronal toxicity. On the other hand, animal models used for the assessment of DNT are not physiologically relevant due to the heterogenic difference between humans and animals. In addition, animal models are low-throughput, time-consuming, expensive, and ethically questionable. Recently, human brain organoids have emerged as a promising alternative to assess the detrimental effects of chemicals on the developing brain. However, conventional organoid culture systems have several technical limitations including low throughput, lack of reproducibility, insufficient maturity of organoids, and the formation of the necrotic core due to limited diffusion of nutrients and oxygen. To address these issues and establish predictive DNT models, cerebral organoids were differentiated in a dynamic condition in a unique pillar/perfusion plate, which were exposed to test compounds to evaluate DNT potential. The pillar/perfusion plate facilitated uniform, dynamic culture of cerebral organoids with improved proliferation and maturity by rapid, bidirectional flow generated on a digital rocker. Day 9 cerebral organoids in the pillar/perfusion plate were exposed to ascorbic acid (DNT negative) and methylmercury (DNT positive) in a dynamic condition for 1 and 3 weeks, and changes in organoid morphology and neural gene expression were measured to determine DNT potential. As expected, ascorbic acid did not induce any changes in organoid morphology and neural gene expression. However, exposure of day 9 cerebral organoids to methylmercury resulted in significant changes in organoid morphology and neural gene expression. Interestingly, methylmercury did not induce adverse changes in cerebral organoids in a static condition, thus highlighting the importance of dynamic organoid culture in DNT assessment.
Collapse
Affiliation(s)
- Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | | | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | | | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Gabriel Ni
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
- Bioprinting Laboratories Inc., Dallas, Texas
| |
Collapse
|
3
|
Liu H, Gan Z, Qin X, Wang Y, Qin J. Advances in Microfluidic Technologies in Organoid Research. Adv Healthc Mater 2024; 13:e2302686. [PMID: 38134345 DOI: 10.1002/adhm.202302686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Organoids have emerged as major technological breakthroughs and novel organ models that have revolutionized biomedical research by recapitulating the key structural and functional complexities of their in vivo counterparts. The combination of organoid systems and microfluidic technologies has opened new frontiers in organoid engineering and offers great opportunities to address the current challenges of existing organoid systems and broaden their biomedical applications. In this review, the key features of the existing organoids, including their origins, development, design principles, and limitations, are described. Then the recent progress in integrating organoids into microfluidic systems is highlighted, involving microarrays for high-throughput organoid manipulation, microreactors for organoid hydrogel scaffold fabrication, and microfluidic chips for functional organoid culture. The opportunities in the nascent combination of organoids and microfluidics that lie ahead to accelerate research in organ development, disease studies, drug screening, and regenerative medicine are also discussed. Finally, the challenges and future perspectives in the development of advanced microfluidic platforms and modified technologies for building organoids with higher fidelity and standardization are envisioned.
Collapse
Affiliation(s)
- Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqing Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
4
|
Acharya P, Shrestha S, Joshi P, Choi NY, Lekkala VKR, Kang SY, Ni G, Lee MY. Dynamic culture of cerebral organoids using a pillar/perfusion plate for the assessment of developmental neurotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584506. [PMID: 38559002 PMCID: PMC10979904 DOI: 10.1101/2024.03.11.584506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Despite the potential toxicity of commercial chemicals to the development of the nervous system (known as developmental neurotoxicity or DNT), conventional in vitro cell models have primarily been employed for the assessment of acute neuronal toxicity. On the other hand, animal models used for the assessment of DNT are not physiologically relevant due to the heterogenic difference between humans and animals. In addition, animal models are low-throughput, time-consuming, expensive, and ethically questionable. Recently, human brain organoids have emerged as a promising alternative to assess the detrimental effects of chemicals on the developing brain. However, conventional organoid culture systems have several technical limitations including low throughput, lack of reproducibility, insufficient maturity of organoids, and the formation of the necrotic core due to limited diffusion of nutrients and oxygen. To address these issues and establish predictive DNT models, cerebral organoids were differentiated in a dynamic condition in a unique pillar/perfusion plate, which were exposed to test compounds to evaluate DNT potential. The pillar/perfusion plate facilitated uniform, dynamic culture of cerebral organoids with improved proliferation and maturity by rapid, bidirectional flow generated on a digital rocker. Day 9 cerebral organoids in the pillar/perfusion plate were exposed to ascorbic acid (DNT negative) and methylmercury (DNT positive) in a dynamic condition for 1 and 3 weeks, and changes in organoid morphology and neural gene expression were measured to determine DNT potential. As expected, ascorbic acid didn't induce any changes in organoid morphology and neural gene expression. However, exposure of day 9 cerebral organoids to methylmercury resulted in significant changes in organoid morphology and neural gene expression. Interestingly, methylmercury did not induce adverse changes in cerebral organoids in a static condition, thus highlighting the importance of dynamic organoid culture in DNT assessment.
Collapse
Affiliation(s)
- Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | | | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | | | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Gabriel Ni
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
- Bioprinting Laboratories Inc., Dallas, Texas
| |
Collapse
|
5
|
Hu C, Yang S, Zhang T, Ge Y, Chen Z, Zhang J, Pu Y, Liang G. Organoids and organoids-on-a-chip as the new testing strategies for environmental toxicology-applications & advantages. ENVIRONMENT INTERNATIONAL 2024; 184:108415. [PMID: 38309193 DOI: 10.1016/j.envint.2024.108415] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 02/05/2024]
Abstract
An increasing number of harmful environmental factors are causing serious impacts on human health, and there is an urgent need to accurately identify the toxic effects and mechanisms of these harmful environmental factors. However, traditional toxicity test methods (e.g., animal models and cell lines) often fail to provide accurate results. Fortunately, organoids differentiated from stem cells can more accurately, sensitively and specifically reflect the effects of harmful environmental factors on the human body. They are also suitable for specific studies and are frequently used in environmental toxicology nowadays. As a combination of organoids and organ-on-a-chip technology, organoids-on-a-chip has great potential in environmental toxicology. It is more controllable to the physicochemical microenvironment and is not easy to be contaminated. It has higher homogeneity in the size and shape of organoids. In addition, it can achieve vascularization and exchange the nutrients and metabolic wastes in time. Multi-organoids-chip can also simulate the interactions of different organs. These advantages can facilitate better function and maturity of organoids, which can also make up for the shortcomings of common organoids to a certain extent. This review firstly discussed the limitations of traditional toxicology testing platforms, leading to the introduction of new platforms: organoids and organoids-on-a-chip. Next, the applications of different organoids and organoids-on-a-chip in environmental toxicology were summarized and prospected. Since the advantages of the new platforms have not been sufficiently considered in previous literature, we particularly emphasized them. Finally, this review also summarized the opportunities and challenges faced by organoids and organoids-on-a-chip, with the expectation that readers will gain a deeper understanding of their value in the field of environmental toxicology.
Collapse
Affiliation(s)
- Chengyu Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
6
|
Saglam-Metiner P, Yildirim E, Dincer C, Basak O, Yesil-Celiktas O. Humanized brain organoids-on-chip integrated with sensors for screening neuronal activity and neurotoxicity. Mikrochim Acta 2024; 191:71. [PMID: 38168828 DOI: 10.1007/s00604-023-06165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The complex structure and function of the human central nervous system that develops from the neural tube made in vitro modeling quite challenging until the discovery of brain organoids. Human-induced pluripotent stem cells-derived brain organoids offer recapitulation of the features of early human neurodevelopment in vitro, including the generation, proliferation, and differentiation into mature neurons and micro-macroglial cells, as well as the complex interactions among these diverse cell types of the developing brain. Recent advancements in brain organoids, microfluidic systems, real-time sensing technologies, and their cutting-edge integrated use provide excellent models and tools for emulation of fundamental neurodevelopmental processes, the pathology of neurological disorders, personalized transplantation therapy, and high-throughput neurotoxicity testing by bridging the gap between two-dimensional models and the complex three-dimensional environment in vivo. In this review, we summarize how bioengineering approaches are applied to mitigate the limitations of brain organoids for biomedical and clinical research. We further provide an extensive overview and future perspectives of the humanized brain organoids-on-chip platforms with integrated sensors toward brain organoid intelligence and biocomputing studies. Such approaches might pave the way for increasing approvable clinical applications by solving their current limitations.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ender Yildirim
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
- ODTÜ MEMS Center, Ankara, Turkey
| | - Can Dincer
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Onur Basak
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
7
|
Shin JH, Song MJ, Kim JH. Valproate use associated with frontal and cerebellar gray matter volume reductions: A voxel-based morphometry study. Epilepsia 2024; 65:e1-e6. [PMID: 37945542 DOI: 10.1111/epi.17825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Recent morphometric magnetic resonance imaging (MRI) studies suggested the possibility that valproate (VPA) use is associated with parieto-occipital cortical thinning in patients with heterogeneous epilepsy syndromes. In this study, we examined the effect of VPA on the brain volume using a large number of homogenous patients with idiopathic generalized epilepsy. Voxel-based morphometry was used to compare regional gray matter (GM) volume between 112 patients currently taking VPA (VPA+ group), 81 patients not currently taking VPA (VPA- group), and 120 healthy subjects (control group). The VPA+ group showed a significant GM volume reduction in the bilateral cerebellum, hippocampus, insula, caudate nucleus, medial frontal cortex/anterior cingulate cortex, primary motor/premotor cortex, medial occipital cortex, and anteromedial thalamus, as compared to the control group. The VPA- group showed a significant GM volume reduction in the anteromedial thalamus and right hippocampus/temporal cortex, as compared to the control group. Compared to the VPA- group, the VPA+ group had a significant GM volume reduction in the bilateral cerebellum, primary motor/premotor cortex, and medial frontal cortex/anterior cingulate cortex. We have provided evidence that VPA use could result in GM volume reductions in the frontal cortex and cerebellum. Our findings should be acknowledged as a potential confounding factor in morphometric MRI studies that include subjects taking VPA.
Collapse
Affiliation(s)
- Ji Hye Shin
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Min Ji Song
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Ji Hyun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Zarate-Lopez D, Torres-Chávez AL, Gálvez-Contreras AY, Gonzalez-Perez O. Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder. Curr Neuropharmacol 2024; 22:260-289. [PMID: 37873949 PMCID: PMC10788883 DOI: 10.2174/1570159x22666231003121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.
Collapse
Affiliation(s)
- David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Ana Laura Torres-Chávez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Alma Yadira Gálvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, México
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
| |
Collapse
|
9
|
Wang H, Ning X, Zhao F, Zhao H, Li D. Human organoids-on-chips for biomedical research and applications. Theranostics 2024; 14:788-818. [PMID: 38169573 PMCID: PMC10758054 DOI: 10.7150/thno.90492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
Human organoids-on-chips (OrgOCs) are the synergism of human organoids (HOs) technology and microfluidic organs-on-chips (OOCs). OOCs can mimic extrinsic characteristics of organs, such as environmental clues of living tissue, while HOs are more amenable to biological analysis and genetic manipulation. By spatial cooperation, OrgOCs served as 3D organotypic living models allowing them to recapitulate critical tissue-specific properties and forecast human responses and outcomes. It represents a giant leap forward from the regular 2D cell monolayers and animal models in the improved human ecological niche modeling. In recent years, OrgOCs have offered potential promises for clinical studies and advanced the preclinical-to-clinical translation in medical and industrial fields. In this review, we highlight the cutting-edge achievements in OrgOCs, introduce the key features of OrgOCs architectures, and share the revolutionary applications in basic biology, disease modeling, preclinical assay and precision medicine. Furthermore, we discuss how to combine a wide range of disciplines with OrgOCs and accelerate translational applications, as well as the challenges and opportunities of OrgOCs in biomedical research and applications.
Collapse
Affiliation(s)
- Hui Wang
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiufan Ning
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Feng Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Hui Zhao
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Dong Li
- Department of Interventional & Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
10
|
Tidball AM, Niu W, Ma Q, Takla TN, Walker JC, Margolis JL, Mojica-Perez SP, Sudyk R, Deng L, Moore SJ, Chopra R, Shakkottai VG, Murphy GG, Yuan Y, Isom LL, Li JZ, Parent JM. Deriving early single-rosette brain organoids from human pluripotent stem cells. Stem Cell Reports 2023; 18:2498-2514. [PMID: 37995702 PMCID: PMC10724074 DOI: 10.1016/j.stemcr.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Brain organoid methods are complicated by multiple rosette structures and morphological variability. We have developed a human brain organoid technique that generates self-organizing, single-rosette cortical organoids (SOSR-COs) with reproducible size and structure at early timepoints. Rather than patterning a 3-dimensional embryoid body, we initiate brain organoid formation from a 2-dimensional monolayer of human pluripotent stem cells patterned with small molecules into neuroepithelium and differentiated to cells of the developing dorsal cerebral cortex. This approach recapitulates the 2D to 3D developmental transition from neural plate to neural tube. Most monolayer fragments form spheres with a single central lumen. Over time, the SOSR-COs develop appropriate progenitor and cortical laminar cell types as shown by immunocytochemistry and single-cell RNA sequencing. At early time points, this method demonstrates robust structural phenotypes after chemical teratogen exposure or when modeling a genetic neurodevelopmental disorder, and should prove useful for studies of human brain development and disease modeling.
Collapse
Affiliation(s)
- Andrew M Tidball
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wei Niu
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Qianyi Ma
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Taylor N Takla
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - J Clayton Walker
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joshua L Margolis
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Roksolana Sudyk
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lu Deng
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shannon J Moore
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ravi Chopra
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Geoffrey G Murphy
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yukun Yuan
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lori L Isom
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Wang Z, Zhang Y, Li Z, Wang H, Li N, Deng Y. Microfluidic Brain-on-a-Chip: From Key Technology to System Integration and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304427. [PMID: 37653590 DOI: 10.1002/smll.202304427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Indexed: 09/02/2023]
Abstract
As an ideal in vitro model, brain-on-chip (BoC) is an important tool to comprehensively elucidate brain characteristics. However, the in vitro model for the definition scope of BoC has not been universally recognized. In this review, BoC is divided into brain cells-on-a- chip, brain slices-on-a-chip, and brain organoids-on-a-chip according to the type of culture on the chip. Although these three microfluidic BoCs are constructed in different ways, they all use microfluidic chips as carrier tools. This method can better meet the needs of maintaining high culture activity on a chip for a long time. Moreover, BoC has successfully integrated cell biology, the biological material platform technology of microenvironment on a chip, manufacturing technology, online detection technology on a chip, and so on, enabling the chip to present structural diversity and high compatibility to meet different experimental needs and expand the scope of applications. Here, the relevant core technologies, challenges, and future development trends of BoC are summarized.
Collapse
Affiliation(s)
- Zhaohe Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongqian Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhe Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Hao Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Nuomin Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
12
|
Park G, Jang WE, Kim S, Gonzales EL, Ji J, Choi S, Kim Y, Park JH, Mohammad HB, Bang G, Kang M, Kim S, Jeon SJ, Kim JY, Kim KP, Shin CY, An JY, Kim MS, Lee YS. Dysregulation of the Wnt/β-catenin signaling pathway via Rnf146 upregulation in a VPA-induced mouse model of autism spectrum disorder. Exp Mol Med 2023; 55:1783-1794. [PMID: 37524878 PMCID: PMC10474298 DOI: 10.1038/s12276-023-01065-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 08/02/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder associated with impaired social behavior and communication, repetitive behaviors, and restricted interests. In addition to genetic factors, environmental factors such as prenatal drug exposure contribute to the development of ASD. However, how those prenatal factors induce behavioral deficits in the adult stage is not clear. To elucidate ASD pathogenesis at the molecular level, we performed a high-resolution mass spectrometry-based quantitative proteomic analysis on the prefrontal cortex (PFC) of mice exposed to valproic acid (VPA) in utero, a widely used animal model of ASD. Differentially expressed proteins (DEPs) in VPA-exposed mice showed significant overlap with ASD risk genes, including differentially expressed genes from the postmortem cortex of ASD patients. Functional annotations of the DEPs revealed significant enrichment in the Wnt/β-catenin signaling pathway, which is dysregulated by the upregulation of Rnf146 in VPA-exposed mice. Consistently, overexpressing Rnf146 in the PFC impaired social behaviors and altered the Wnt signaling pathway in adult mice. Furthermore, Rnf146-overexpressing PFC neurons showed increased excitatory synaptic transmission, which may underlie impaired social behavior. These results demonstrate that Rnf146 is critical for social behavior and that dysregulation of Rnf146 underlies social deficits in VPA-exposed mice.
Collapse
Affiliation(s)
- Gaeun Park
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Wooyoung Eric Jang
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Seoyeon Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Edson Luck Gonzales
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jungeun Ji
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Seunghwan Choi
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Yujin Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hwan Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | | | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Minkyung Kang
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Soobin Kim
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, 17104, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea.
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea.
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea.
| | - Min-Sik Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
- New Biology Research Center, DGIST, Daegu, 42988, Republic of Korea.
- Center for Cell Fate Reprogramming and Control, DGIST, Daegu, 42988, Republic of Korea.
| | - Yong-Seok Lee
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
| |
Collapse
|
13
|
Kilpatrick S, Irwin C, Singh KK. Human pluripotent stem cell (hPSC) and organoid models of autism: opportunities and limitations. Transl Psychiatry 2023; 13:217. [PMID: 37344450 PMCID: PMC10284884 DOI: 10.1038/s41398-023-02510-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder caused by genetic or environmental perturbations during early development. Diagnoses are dependent on the identification of behavioral abnormalities that likely emerge well after the disorder is established, leaving critical developmental windows uncharacterized. This is further complicated by the incredible clinical and genetic heterogeneity of the disorder that is not captured in most mammalian models. In recent years, advancements in stem cell technology have created the opportunity to model ASD in a human context through the use of pluripotent stem cells (hPSCs), which can be used to generate 2D cellular models as well as 3D unguided- and region-specific neural organoids. These models produce profoundly intricate systems, capable of modeling the developing brain spatiotemporally to reproduce key developmental milestones throughout early development. When complemented with multi-omics, genome editing, and electrophysiology analysis, they can be used as a powerful tool to profile the neurobiological mechanisms underlying this complex disorder. In this review, we will explore the recent advancements in hPSC-based modeling, discuss present and future applications of the model to ASD research, and finally consider the limitations and future directions within the field to make this system more robust and broadly applicable.
Collapse
Affiliation(s)
- Savannah Kilpatrick
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, ON, Canada
| | - Courtney Irwin
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karun K Singh
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Guerra M, Medici V, Weatheritt R, Corvino V, Palacios D, Geloso MC, Farini D, Sette C. Fetal exposure to valproic acid dysregulates the expression of autism-linked genes in the developing cerebellum. Transl Psychiatry 2023; 13:114. [PMID: 37019889 PMCID: PMC10076313 DOI: 10.1038/s41398-023-02391-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
Autism spectrum disorder (ASD) includes a set of highly heritable neurodevelopmental syndromes characterized by social and communication impairment, repetitive behaviour, and intellectual disability. Although mutations in multiple genes have been associated to ASD, most patients lack detectable genetic alterations. For this reason, environmental factors are commonly thought to also contribute to ASD aetiology. Transcriptome analyses have revealed that autistic brains possess distinct gene expression signatures, whose elucidation can provide insights about the mechanisms underlying the effects of ASD-causing genetic and environmental factors. Herein, we have identified a coordinated and temporally regulated programme of gene expression in the post-natal development of cerebellum, a brain area whose defects are strongly associated with ASD. Notably, this cerebellar developmental programme is significantly enriched in ASD-linked genes. Clustering analyses highlighted six different patterns of gene expression modulated during cerebellar development, with most of them being enriched in functional processes that are frequently dysregulated in ASD. By using the valproic acid mouse model of ASD, we found that ASD-linked genes are dysregulated in the developing cerebellum of ASD-like mice, a defect that correlates with impaired social behaviour and altered cerebellar cortical morphology. Moreover, changes in transcript levels were reflected in aberrant protein expression, indicating the functional relevance of these alterations. Thus, our work uncovers a complex ASD-related transcriptional programme regulated during cerebellar development and highlight genes whose expression is dysregulated in this brain area of an ASD mouse model.
Collapse
Affiliation(s)
- Marika Guerra
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Vanessa Medici
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy
| | - Robert Weatheritt
- Garvan Institute of Medical Research, EMBL Australia, Darlinghurst, NSW, Australia
| | - Valentina Corvino
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy
| | - Daniela Palacios
- Department of Life Science and Public Health, Section of Biology, Catholic University of the Sacred Hearth, Rome, Italy
| | - Maria Concetta Geloso
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Donatella Farini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy.
- GSTeP-Organoids Research Core Facility, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.
| |
Collapse
|
15
|
Spatio-temporal dynamics enhance cellular diversity, neuronal function and further maturation of human cerebral organoids. Commun Biol 2023; 6:173. [PMID: 36788328 PMCID: PMC9926461 DOI: 10.1038/s42003-023-04547-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
The bioengineerined and whole matured human brain organoids stand as highly valuable three-dimensional in vitro brain-mimetic models to recapitulate in vivo brain development, neurodevelopmental and neurodegenerative diseases. Various instructive signals affecting multiple biological processes including morphogenesis, developmental stages, cell fate transitions, cell migration, stem cell function and immune responses have been employed for generation of physiologically functional cerebral organoids. However, the current approaches for maturation require improvement for highly harvestable and functional cerebral organoids with reduced batch-to-batch variabilities. Here, we demonstrate two different engineering approaches, the rotating cell culture system (RCCS) microgravity bioreactor and a newly designed microfluidic platform (µ-platform) to improve harvestability, reproducibility and the survival of high-quality cerebral organoids and compare with those of traditional spinner and shaker systems. RCCS and µ-platform organoids have reached ideal sizes, approximately 95% harvestability, prolonged culture time with Ki-67 + /CD31 + /β-catenin+ proliferative, adhesive and endothelial-like cells and exhibited enriched cellular diversity (abundant neural/glial/ endothelial cell population), structural brain morphogenesis, further functional neuronal identities (glutamate secreting glutamatergic, GABAergic and hippocampal neurons) and synaptogenesis (presynaptic-postsynaptic interaction) during whole human brain development. Both organoids expressed CD11b + /IBA1 + microglia and MBP + /OLIG2 + oligodendrocytes at high levels as of day 60. RCCS and µ-platform organoids showing high levels of physiological fidelity a high level of physiological fidelity can serve as functional preclinical models to test new therapeutic regimens for neurological diseases and benefit from multiplexing.
Collapse
|
16
|
Fontes-Dutra M, Righes Marafiga J, Santos-Terra J, Deckmann I, Brum Schwingel G, Rabelo B, Kazmierzak de Moraes R, Rockenbach M, Vendramin Pasquetti M, Gottfried C, Calcagnotto ME. GABAergic synaptic transmission and cortical oscillation patterns in the primary somatosensory area of a valproic acid rat model of autism spectrum disorder. Eur J Neurosci 2023; 57:527-546. [PMID: 36504470 DOI: 10.1111/ejn.15893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social communication and interaction associated with repetitive or stereotyped behaviour. Prenatal valproic acid (VPA) exposure in rodents is a commonly used model of ASD. Resveratrol (RSV) has been shown to prevent interneuronal and behavioural impairments in the VPA model. We investigated the effects of prenatal VPA exposure and RSV on the GABAergic synaptic transmission, brain oscillations and on the genic expression of interneuron-associated transcription factor LHX6 in the primary somatosensory area (PSSA). Prenatal VPA exposure decreased the sIPSC and mIPSC frequencies and the sIPSC decay kinetics onto layers 4/5 pyramidal cells of PSSA. About 40% of VPA animals exhibited absence-like spike-wave discharge (SWD) events associated with behaviour arrest and increased power spectrum density of delta, beta and gamma cortical oscillations. VPA animals had reduced LHX6 expression in PSSA, but VPA animals treated with RSV had no changes on synaptic inhibition or LHX6 expression in the PSSA. SWD events associated with behaviour arrest and the abnormal increment of cortical oscillations were also absent in VPA animals treated with RSV. These findings provide new venues to investigate the role of both RSV and VPA in the pathophysiology of ASD and highlight the VPA animal model as an interesting tool to investigate pathways related to the aetiology and possible future therapies to this neuropsychiatric disorder.
Collapse
Affiliation(s)
- Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Joseane Righes Marafiga
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Bruna Rabelo
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rafael Kazmierzak de Moraes
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marília Rockenbach
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mayara Vendramin Pasquetti
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Elisa Calcagnotto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
17
|
Jeong E, Choi S, Cho SW. Recent Advances in Brain Organoid Technology for Human Brain Research. ACS APPLIED MATERIALS & INTERFACES 2023; 15:200-219. [PMID: 36468535 DOI: 10.1021/acsami.2c17467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Brain organoids are self-assembled three-dimensional aggregates with brain-like cell types and structures and have emerged as new model systems that can be used to investigate human neurodevelopment and neurological disorders. However, brain organoids are not as mature and functional as real human brains due to limitations of the culture system with insufficient developmental patterning signals and a lack of components that are important for brain development and function, such as the non-neural population and vasculature. In addition, establishing the desired brain-like environment and monitoring the complex neural networks and physiological functions of the brain organoids remain challenging. The current protocols to generate brain organoids also have problems with heterogeneity and batch variation due to spontaneous self-organization of brain organoids into complex architectures of the brain. To address these limitations of current brain organoid technologies, various engineering platforms, such as extracellular matrices, fluidic devices, three-dimensional bioprinting, bioreactors, polymeric scaffolds, microelectrodes, and biochemical sensors, have been employed to improve neuronal development and maturation, reduce structural heterogeneity, and facilitate functional analysis and monitoring. In this review, we provide an overview of the latest engineering techniques that overcome these limitations in the production and application of brain organoids.
Collapse
Affiliation(s)
- Eunseon Jeong
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Suah Choi
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
18
|
Cui K, Chen T, Zhu Y, Shi Y, Guo Y, Qin J. Engineering placenta-like organoids containing endogenous vascular cells from human-induced pluripotent stem cells. Bioeng Transl Med 2023; 8:e10390. [PMID: 36684087 PMCID: PMC9842056 DOI: 10.1002/btm2.10390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/17/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
The placenta is an essential organ that maintains the health of both the fetus and its mother. Understanding the development of human placenta has been hindered by the limitations of existing animal models and monolayer cell cultures. Models that can recapitulate the essential aspects of human placental multicellular components and vasculature are still lacking. Herein, we presented a new strategy to establish placenta-like organoids with vascular-like structures from human-induced pluripotent stem cells in a defined three-dimensional (3D) culture system. The resulting placenta-like tissue resembles first-trimester human placental development in terms of complex placental components and secretory function. The multicellular tissue was characterized by the inclusion of trophoblasts (cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, and other endogenous vascular cells), which were identified by immunofluorescence, flow cytometry analyses, real-time quantitative reverse transcription polymerase chain reaction and single-cell RNA-seq. Moreover, the 3D tissue was able to secrete the placenta-specific hormone human chorionic gonadotropin β (hCG-β) and vascular endothelial growth factor A (VEGFA). The tissue responded to the inflammatory factor tumor necrosis factor-α (TNF-α) and VEGF receptor inhibitors. This new model system can represent the major features of placental cellular components, and function, which have not been realized in 2D monolayer cultures. The developed tissue system might open new avenues for studying normal early human placental development and its disease states.
Collapse
Affiliation(s)
- Kangli Cui
- Division of Biotechnology, CAS Key Laboratory of SSACDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tingwei Chen
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Yujuan Zhu
- Division of Biotechnology, CAS Key Laboratory of SSACDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Shi
- Dalian Municipal Woman and Children's Medical CenterDalianChina
| | - Yaqiong Guo
- Division of Biotechnology, CAS Key Laboratory of SSACDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jianhua Qin
- Division of Biotechnology, CAS Key Laboratory of SSACDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and RegenerationBeijingChina
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
19
|
Yin F, Ge P, Wei W, Wang H, Cheng Y, Zhao F, Li D. WITHDRAWN: Human placental barrier-brain organoid-on-a-chip for modeling maternal PM2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022:160565. [PMID: 36464052 DOI: 10.1016/j.scitotenv.2022.160565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Fangchao Yin
- Medical School, Nantong University, Nantong 226001, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, 250014, China
| | - Pinghua Ge
- Shanghai Yuanhao Environmental Technology Co., Ltd., Shanghai 201100, China
| | - Wenbo Wei
- First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Hui Wang
- Medical School, Nantong University, Nantong 226001, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yan Cheng
- Medical School, Nantong University, Nantong 226001, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Feng Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Dong Li
- Medical School, Nantong University, Nantong 226001, China.
| |
Collapse
|
20
|
Unagolla JM, Jayasuriya AC. Recent advances in organoid engineering: A comprehensive review. APPLIED MATERIALS TODAY 2022; 29:101582. [PMID: 38264423 PMCID: PMC10804911 DOI: 10.1016/j.apmt.2022.101582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Organoid, a 3D structure derived from various cell sources including progenitor and differentiated cells that self-organize through cell-cell and cell-matrix interactions to recapitulate the tissue/organ-specific architecture and function in vitro. The advancement of stem cell culture and the development of hydrogel-based extracellular matrices (ECM) have made it possible to derive self-assembled 3D tissue constructs like organoids. The ability to mimic the actual physiological conditions is the main advantage of organoids, reducing the excessive use of animal models and variability between animal models and humans. However, the complex microenvironment and complex cellular structure of organoids cannot be easily developed only using traditional cell biology. Therefore, several bioengineering approaches, including microfluidics, bioreactors, 3D bioprinting, and organoids-on-a-chip techniques, are extensively used to generate more physiologically relevant organoids. In this review, apart from organoid formation and self-assembly basics, the available bioengineering technologies are extensively discussed as solutions for traditional cell biology-oriented problems in organoid cultures. Also, the natural and synthetic hydrogel systems used in organoid cultures are discussed when necessary to highlight the significance of the stem cell microenvironment. The selected organoid models and their therapeutic applications in drug discovery and disease modeling are also presented.
Collapse
Affiliation(s)
- Janitha M. Unagolla
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo OH, United States
| | - Ambalangodage C. Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo OH, United States
- Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States
| |
Collapse
|
21
|
Human Maternal-Fetal Interface Cellular Models to Assess Antiviral Drug Toxicity during Pregnancy. REPRODUCTIVE MEDICINE 2022. [DOI: 10.3390/reprodmed3040024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Pregnancy is a period of elevated risk for viral disease severity, resulting in serious health consequences for both the mother and the fetus; yet antiviral drugs lack comprehensive safety and efficacy data for use among pregnant women. In fact, pregnant women are systematically excluded from therapeutic clinical trials to prevent potential fetal harm. Current FDA-recommended reproductive toxicity assessments are studied using small animals which often do not accurately predict the human toxicological profiles of drug candidates. Here, we review the potential of human maternal-fetal interface cellular models in reproductive toxicity assessment of antiviral drugs. We specifically focus on the 2- and 3-dimensional maternal placental models of different gestational stages and those of fetal embryogenesis and organ development. Screening of drug candidates in physiologically relevant human maternal-fetal cellular models will be beneficial to prioritize selection of safe antiviral therapeutics for clinical trials in pregnant women.
Collapse
|
22
|
Zang Z, Yin H, Du Z, Xie R, Yang L, Cai Y, Wang L, Zhang D, Li X, Liu T, Gong H, Gao J, Yang H, Warner M, Gustafsson JA, Xu H, Fan X. Valproic acid exposure decreases neurogenic potential of outer radial glia in human brain organoids. Front Mol Neurosci 2022; 15:1023765. [PMID: 36523605 PMCID: PMC9744776 DOI: 10.3389/fnmol.2022.1023765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/08/2022] [Indexed: 07/29/2023] Open
Abstract
Valproic acid (VPA) exposure during pregnancy leads to a higher risk of autism spectrum disorder (ASD) susceptibility in offspring. Human dorsal forebrain organoids were used to recapitulate course of cortical neurogenesis in the developing human brain. Combining morphological characterization with massive parallel RNA sequencing (RNA-seq) on organoids to analyze the pathogenic effects caused by VPA exposure and critical signaling pathway. We found that VPA exposure in organoids caused a reduction in the size and impairment in the proliferation and expansion of neural progenitor cells (NPCs) in a dose-dependent manner. VPA exposure typically decreased the production of outer radial glia-like cells (oRGs), a subtype of NPCs contributing to mammalian neocortical expansion and delayed their fate toward upper-layer neurons. Transcriptomics analysis revealed that VPA exposure influenced ASD risk gene expression in organoids, which markedly overlapped with irregulated genes in brains or organoids originating from ASD patients. We also identified that VPA-mediated Wnt/β-catenin signaling pathway activation is essential for sustaining cortical neurogenesis and oRGs output. Taken together, our study establishes the use of dorsal forebrain organoids as an effective platform for modeling VPA-induced teratogenic pathways involved in the cortical neurogenesis and oRGs output, which might contribute to ASD pathogenesis in the developing brain.
Collapse
Affiliation(s)
- Zhenle Zang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huachun Yin
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhulin Du
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ruxin Xie
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ling Yang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yun Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liuyongwei Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dandan Zhang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Li
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hong Gong
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junwei Gao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Margaret Warner
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, United States
| | - Jan-Ake Gustafsson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, United States
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Haiwei Xu
- Southwest Hospital and Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
23
|
Feleke R, Jazayeri D, Abouzeid M, Powell KL, Srivastava PK, O’Brien TJ, Jones NC, Johnson MR. Integrative genomics reveals pathogenic mediator of valproate-induced neurodevelopmental disability. Brain 2022; 145:3832-3842. [PMID: 36071595 PMCID: PMC9679160 DOI: 10.1093/brain/awac296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Prenatal exposure to the anti-seizure medication sodium valproate (VPA) is associated with an increased risk of adverse postnatal neurodevelopmental outcomes, including lowered intellectual ability, autism spectrum disorder and attention-deficit hyperactivity disorder. In this study, we aimed to clarify the molecular mechanisms underpinning the neurodevelopmental consequences of gestational VPA exposure using integrative genomics. We assessed the effect of gestational VPA on foetal brain gene expression using a validated rat model of valproate teratogenicity that mimics the human scenario of chronic oral valproate treatment during pregnancy at doses that are therapeutically relevant to the treatment of epilepsy. Two different rat strains were studied-inbred Genetic Absence Epilepsy Rats from Strasbourg, a model of genetic generalized epilepsy, and inbred non-epileptic control rats. Female rats were fed standard chow or VPA mixed in standard chow for 2 weeks prior to conception and then mated with same-strain males. In the VPA-exposed rats maternal oral treatment was continued throughout pregnancy. Foetuses were extracted via C-section on gestational Day 21 (1 day prior to birth) and foetal brains were snap-frozen and genome-wide gene expression data generated. We found that gestational VPA exposure via chronic maternal oral dosing was associated with substantial drug-induced differential gene expression in the pup brains, including dysregulated splicing, and observed that this occurred in the absence of evidence for significant neuronal gain or loss. The functional consequences of VPA-induced gene expression were explored using pathway analysis and integration with genetic risk data for psychiatric disease and behavioural traits. The set of genes downregulated by VPA in the pup brains were significantly enriched for pathways related to neurodevelopment and synaptic function and significantly enriched for heritability to human intelligence, schizophrenia and bipolar disorder. Our results provide a mechanistic link between chronic foetal VPA exposure and neurodevelopmental disability mediated by VPA-induced transcriptional dysregulation.
Collapse
Affiliation(s)
- Rahel Feleke
- Department of Brain Sciences, Imperial College London, London, UK
| | - Dana Jazayeri
- The Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- The ALIVE National Centre for Mental Health Research Translation, The Department of General Practice, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Maya Abouzeid
- Department of Brain Sciences, Imperial College London, London, UK
| | - Kim L Powell
- The Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neuroscience, The Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | | | - Terence J O’Brien
- The Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neuroscience, The Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Nigel C Jones
- The Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neuroscience, The Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
24
|
Castiglione H, Vigneron PA, Baquerre C, Yates F, Rontard J, Honegger T. Human Brain Organoids-on-Chip: Advances, Challenges, and Perspectives for Preclinical Applications. Pharmaceutics 2022; 14:2301. [PMID: 36365119 PMCID: PMC9699341 DOI: 10.3390/pharmaceutics14112301] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023] Open
Abstract
There is an urgent need for predictive in vitro models to improve disease modeling and drug target identification and validation, especially for neurological disorders. Cerebral organoids, as alternative methods to in vivo studies, appear now as powerful tools to decipher complex biological processes thanks to their ability to recapitulate many features of the human brain. Combining these innovative models with microfluidic technologies, referred to as brain organoids-on-chips, allows us to model the microenvironment of several neuronal cell types in 3D. Thus, this platform opens new avenues to create a relevant in vitro approach for preclinical applications in neuroscience. The transfer to the pharmaceutical industry in drug discovery stages and the adoption of this approach by the scientific community requires the proposition of innovative microphysiological systems allowing the generation of reproducible cerebral organoids of high quality in terms of structural and functional maturation, and compatibility with automation processes and high-throughput screening. In this review, we will focus on the promising advantages of cerebral organoids for disease modeling and how their combination with microfluidic systems can enhance the reproducibility and quality of these in vitro models. Then, we will finish by explaining why brain organoids-on-chips could be considered promising platforms for pharmacological applications.
Collapse
Affiliation(s)
- Héloïse Castiglione
- NETRI, 69007 Lyon, France
- Sup’Biotech/CEA-IBFJ-SEPIA, Bâtiment 60, 18 Route du Panorama, 94260 Fontenay-aux-Roses, France
| | - Pierre-Antoine Vigneron
- Sup’Biotech/CEA-IBFJ-SEPIA, Bâtiment 60, 18 Route du Panorama, 94260 Fontenay-aux-Roses, France
- Sup’Biotech, Ecole D’ingénieurs, 66 Rue Guy Môquet, 94800 Villejuif, France
| | | | - Frank Yates
- Sup’Biotech/CEA-IBFJ-SEPIA, Bâtiment 60, 18 Route du Panorama, 94260 Fontenay-aux-Roses, France
- Sup’Biotech, Ecole D’ingénieurs, 66 Rue Guy Môquet, 94800 Villejuif, France
| | | | | |
Collapse
|
25
|
Zhou B, Yan X, Yang L, Zheng X, Chen Y, Liu Y, Ren Y, Peng J, Zhang Y, Huang J, Tang L, Wen M. Effects of arginine vasopressin on the transcriptome of prefrontal cortex in autistic rat model. J Cell Mol Med 2022; 26:5493-5505. [PMID: 36239083 PMCID: PMC9639040 DOI: 10.1111/jcmm.17578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/04/2022] [Accepted: 09/25/2022] [Indexed: 11/25/2022] Open
Abstract
Our previous studies have also demonstrated that AVP can significantly improve social interaction disorders and stereotypical behaviours in rats with VPA‐induced autism model. To further explore the mechanisms of action of AVP, we compared the PFC transcriptome changes before and after AVP treatment in VPA‐induced autism rat model. The autism model was induced by intraperitoneally injected with VPA at embryonic day 12.5 and randomly assigned to two groups: the VPA‐induced autism model group and the AVP treatment group. The AVP treatment group were treated with intranasal AVP at postnatal day 21 and for 3 weeks. The gene expression levels and function changes on the prefrontal cortex were measured by RNA‐seq and bioinformatics analysis at PND42 and the mRNA expression levels of synaptic and myelin development related genes were validated by qPCR. Our results confirmed that AVP could significantly improve synaptic and axon dysplasia and promote oligodendrocyte development in the prefrontal cortex in VPA‐induced autism models by regulating multiple signalling pathways.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Xuehui Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Liu Yang
- Department of Neurology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Xiaoli Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Yunhua Chen
- College of Basic Medical, Guizhou Medical University, Guizhou, China
| | - Yibu Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Yibing Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Jingang Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Yi Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Jiayu Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Min Wen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| |
Collapse
|
26
|
Tran HN, Gautam V. Micro/nano devices for integration with human brain organoids. Biosens Bioelectron 2022; 218:114750. [DOI: 10.1016/j.bios.2022.114750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
|
27
|
Choi NY, Lee MY, Jeong S. Recent Advances in 3D-Cultured Brain Tissue Models Derived from Human iPSCs. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Kowalski TW, Lord VO, Sgarioni E, Gomes JDA, Mariath LM, Recamonde-Mendoza M, Vianna FSL. Transcriptome meta-analysis of valproic acid exposure in human embryonic stem cells. Eur Neuropsychopharmacol 2022; 60:76-88. [PMID: 35635998 DOI: 10.1016/j.euroneuro.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 11/04/2022]
Abstract
Valproic acid (VPA) is a widely used antiepileptic drug not recommended in pregnancy because it is teratogenic. Many assays have assessed the impact of the VPA exposure on the transcriptome of human embryonic stem-cells (hESC), but the molecular perturbations that VPA exerts in neurodevelopment are not completely understood. This study aimed to perform a transcriptome meta-analysis of VPA-exposed hESC to elucidate the main biological mechanisms altered by VPA effects on the gene expression. Publicly available microarray and RNA-seq transcriptomes were selected in the Gene Expression Omnibus (GEO) repository. Samples were processed according to the standard pipelines for each technology in the Galaxy server and R. Meta-analysis was performed using the Fisher-P method. Overrepresented genes were obtained by evaluating ontologies, pathways, and phenotypes' databases. The meta-analysis performed in seven datasets resulted in 61 perturbed genes, 54 upregulated. Ontology and pathway enrichments suggested neurodevelopment and neuroinflammatory effects; phenotype overrepresentation included epilepsy-related genes, such as SCN1A and GABRB2. The NDNF gene upregulation was also identified; this gene is involved in neuron migration and survival during development. Sub-network analysis proposed TGFβ and BMP pathways activation. These results suggest VPA exerts effects in epilepsy-related genes even in embryonic cells. Neurodevelopmental genes, such as NDNF were upregulated and VPA might also disturb several development pathways. These mechanisms might help to explain the spectrum of VPA-induced congenital anomalies and the molecular effects on neurodevelopment.
Collapse
Affiliation(s)
- Thayne Woycinck Kowalski
- Post-Graduation Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; National Institute of Medical Population Genetics (INAGEMP), Porto Alegre, Brazil; Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Centro Universitário CESUCA, Cachoeirinha, Brazil.
| | - Vinícius Oliveira Lord
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Centro Universitário CESUCA, Cachoeirinha, Brazil
| | - Eduarda Sgarioni
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Julia do Amaral Gomes
- Post-Graduation Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; National Institute of Medical Population Genetics (INAGEMP), Porto Alegre, Brazil
| | - Luiza Monteavaro Mariath
- Post-Graduation Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mariana Recamonde-Mendoza
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Post-Graduation Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; National Institute of Medical Population Genetics (INAGEMP), Porto Alegre, Brazil.
| |
Collapse
|
29
|
Deng P, Cui K, Shi Y, Zhu Y, Wang Y, Shao X, Qin J. Fluidic Flow Enhances the Differentiation of Placental Trophoblast-Like 3D Tissue from hiPSCs in a Perfused Macrofluidic Device. Front Bioeng Biotechnol 2022; 10:907104. [PMID: 35845423 PMCID: PMC9280037 DOI: 10.3389/fbioe.2022.907104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
The human placenta serves as a multifunctional organ to maintain the proper development of a fetus. However, our knowledge of the human placenta is limited due to the lack of appropriate experimental models. In this work, we created an in vitro placental trophoblast-like model via self-organization of human induced pluripotent stem cells (hiPSCs) in a perfused 3D culture macrofluidic device. This device allowed cell seeding, in situ trophoblast lineage differentiation, and formation of trophoblast-like tissues from hiPSCs in a biomimetic microenvironment. It incorporated extracellular matrix (ECM) and fluid flow in a single device. After trophoblast lineage differentiation, we were able to generate the 3D clusters with major cell types of the human placenta, including trophoblast progenitor cytotrophoblasts (CTBs), differentiated subtypes, syncytiotrophoblasts (STBs), and extravillous trophoblasts (EVTs) under long-term 3D culture (∼23 days). Moreover, the formed tissues exhibited enhanced expressions of CTB-, STB-, and EVT-related markers at the level of genes and proteins under a dynamic culture compared with static conditions. RNA-seq analysis revealed the higher expression of trophoblast-specific genes in 3D tissues, indicating the essential role of fluid flow to promote the trophoblast differentiation of hiPSCs. The established placental 3D model combined a bioengineering strategy with developmental principles, providing a promising platform for the study of placental biology in a biomimetic microenvironment in health and disease.
Collapse
Affiliation(s)
- Pengwei Deng
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Kangli Cui
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Shi
- Dalian Key Laboratory of Reproduction and Mother-child Genetics, Dalian Women and Children’s Medical Group, Dalian, China
| | - Yujuan Zhu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Yaqing Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiaoguang Shao
- Dalian Key Laboratory of Reproduction and Mother-child Genetics, Dalian Women and Children’s Medical Group, Dalian, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Jianhua Qin,
| |
Collapse
|
30
|
Chen P, Lin X, Liu A, Li J. The Brain Research Hotspot Database (BRHD): A Panoramic Database of the Latest Hotspots in Brain Research. Brain Sci 2022; 12:brainsci12050638. [PMID: 35625024 PMCID: PMC9139690 DOI: 10.3390/brainsci12050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 01/25/2023] Open
Abstract
Brain science, an emerging, dynamic, multidisciplinary basic research field, is generating numerous valuable data. However, there are still several obstacles for the utilization of these data, such as data fragmentation, heterogeneity, availability, and annotation divergence. Thus, to overcome these obstacles and construct an online community, we developed a panoramic database named Brain Research Hotspot Database (BRHD). As of 30 January 2022, the database had been integrated with standardized vocabularies from various resources, including 423,681 papers, 46,344 patents, 9585 transcriptomic datasets, 261 cell markers, as well as with information regarding brain initiatives that were officially launched and well-known scholars in brain research. Based on the keywords entered by users and the search options they set, data can be accessed and retrieved through exact and fuzzy search scenarios. In addition, for brain diseases, we developed three featured functions based on deep data mining: (1) a brain disease–genome network, which collects the associations between common brain diseases, genes, and mutations reported in the literature; (2) brain and gut microbiome associations, based on the literature related to this topic, with added annotations for reference; (3) 3D brain structure, containing a high-precision brain anatomy model with visual links to quickly connect to an organ-on-a-chip database. In short, the BRHD integrates data from a variety of brain science resources to provide a friendly user interface and freely accessible viewing and downloading environment. Furthermore, the original functions developed based on these data provide references and insights for brain research.
Collapse
Affiliation(s)
- Pin Chen
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing 210018, China; (P.C.); (A.L.)
| | - Xue Lin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China;
| | - Anna Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing 210018, China; (P.C.); (A.L.)
| | - Jian Li
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing 210018, China; (P.C.); (A.L.)
- Correspondence: ; Tel.: +86-130-5288-1142
| |
Collapse
|
31
|
Santos-Terra J, Deckmann I, Carello-Collar G, Nunes GDF, Bauer-Negrini G, Schwingel GB, Fontes-Dutra M, Riesgo R, Gottfried C. Resveratrol Prevents Cytoarchitectural and Interneuronal Alterations in the Valproic Acid Rat Model of Autism. Int J Mol Sci 2022; 23:ijms23084075. [PMID: 35456893 PMCID: PMC9027778 DOI: 10.3390/ijms23084075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by several alterations, including disorganized brain cytoarchitecture and excitatory/inhibitory (E/I) imbalance. We aimed to analyze aspects associated with the inhibitory components in ASD, using bioinformatics to develop notions about embryonic life and tissue analysis for postnatal life. We analyzed microarray and RNAseq datasets of embryos from different ASD models, demonstrating that regions involved in neuronal development are affected. We evaluated the effect of prenatal treatment with resveratrol (RSV) on the neuronal organization and quantity of parvalbumin-positive (PV+), somatostatin-positive (SOM+), and calbindin-positive (CB+) GABAergic interneurons, besides the levels of synaptic proteins and GABA receptors in the medial prefrontal cortex (mPFC) and hippocampus (HC) of the ASD model induced by valproic acid (VPA). VPA increased the total number of neurons in the mPFC, while it reduced the number of SOM+ neurons, as well as the proportion of SOM+, PV+, and CB+ neurons (subregion-specific manner), with preventive effects of RSV. In summary, metabolic alterations or gene expression impairments could be induced by VPA, leading to extensive damage in the late developmental stages. By contrast, due to its antioxidant, neuroprotective, and opposite action on histone properties, RSV may avoid damages induced by VPA.
Collapse
Affiliation(s)
- Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
- Autism Wellbeing and Research Development—AWARD—Initiative BR-UK-CA, Porto Alegre 90040-060, Brazil
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
- Autism Wellbeing and Research Development—AWARD—Initiative BR-UK-CA, Porto Alegre 90040-060, Brazil
| | - Giovanna Carello-Collar
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
| | - Gustavo Della-Flora Nunes
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
| | - Guilherme Bauer-Negrini
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
- Autism Wellbeing and Research Development—AWARD—Initiative BR-UK-CA, Porto Alegre 90040-060, Brazil
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
- Autism Wellbeing and Research Development—AWARD—Initiative BR-UK-CA, Porto Alegre 90040-060, Brazil
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
- Autism Wellbeing and Research Development—AWARD—Initiative BR-UK-CA, Porto Alegre 90040-060, Brazil
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
- Autism Wellbeing and Research Development—AWARD—Initiative BR-UK-CA, Porto Alegre 90040-060, Brazil
- Child Neurology Unit, Department of Pediatrics, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorder—GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil; (J.S.-T.); (I.D.); (G.C.-C.); (G.D.-F.N.); (G.B.-N.); (G.B.S.); (M.F.-D.); (R.R.)
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation—INCT-NIM, Rio de Janeiro 21040-900, Brazil
- Autism Wellbeing and Research Development—AWARD—Initiative BR-UK-CA, Porto Alegre 90040-060, Brazil
- Correspondence:
| |
Collapse
|
32
|
Human forebrain organoids reveal connections between valproic acid exposure and autism risk. Transl Psychiatry 2022; 12:130. [PMID: 35351869 PMCID: PMC8964691 DOI: 10.1038/s41398-022-01898-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Valproic acid (VPA) exposure as an environmental factor that confers risk of autism spectrum disorder (ASD), its functional mechanisms in the human brain remain unclear since relevant studies are currently restricted to two-dimensional cell cultures and animal models. To identify mechanisms by which VPA contribute to ASD risk in human, here we used human forebrain organoids (hFOs), in vitro derived three-dimensional cell cultures that recapitulate key human brain developmental features. We identified that VPA exposure in hFOs affected the expression of genes enriched in neural development, synaptic transmission, oxytocin signaling, calcium, and potassium signaling pathways, which have been implicated in ASD. Genes (e.g., CAMK4, CLCN4, DPP10, GABRB3, KCNB1, PRKCB, SCN1A, and SLC24A2) that affected by VPA were significantly overlapped with those dysregulated in brains or organoids derived from ASD patients, and known ASD risk genes, as well as genes in ASD risk-associated gene coexpression modules. Single-cell RNA sequencing analysis showed that VPA exposure affected the expression of genes in choroid plexus, excitatory neuron, immature neuron, and medial ganglionic eminence cells annotated in hFOs. Microelectrode array further identified that VPA exposure in hFOs disrupted synaptic transmission. Taken together, this study connects VPA exposure to ASD pathogenesis using hFOs, which is valuable for illuminating the etiology of ASD and screening for potential therapeutic targets.
Collapse
|
33
|
Cui K, Chen W, Cao R, Xie Y, Wang P, Wu Y, Wang Y, Qin J. Brain organoid-on-chip system to study the effects of breast cancer derived exosomes on the neurodevelopment of brain. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:7. [PMID: 35254502 PMCID: PMC8901935 DOI: 10.1186/s13619-021-00102-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
Early human brain development can be affected by multiple prenatal factors that involve chemical exposures in utero, maternal health characteristics such as psychiatric disorders, and cancer. Breast cancer is one of the most common cancers worldwide arising pregnancy. However, it is not clear whether the breast cancer might influence the brain development of fetus. Exosomes secreted by breast cancer cells play a critical role in mediating intercellular communication and interplay between different organs. In this work, we engineered human induced pluripotent stem cells (hiPSCs)-derived brain organoids in an array of micropillar chip and probed the influences of breast cancer cell (MCF-7) derived-exosomes on the early neurodevelopment of brain. The formed brain organoids can recapitulate essential features of embryonic human brain at early stages, in terms of neurogenesis, forebrain regionalization, and cortical organization. Treatment with breast cancer cell derived-exosomes, brain organoids exhibited enhanced expression of stemness-related marker OCT4 and forebrain marker PAX6. RNA-seq analysis reflected several activated signaling pathways associated with breast cancer, medulloblastoma and neurogenesis in brain organoids induced by tumor-derived exosomes. These results suggested that breast cancer cell-derived exosomes might lead to the impaired neurodevelopment in the brain organoids and the carcinogenesis of brain organoids. It potentially implies the fetus of pregnant women with breast cancer has the risk of impaired neurodevelopmental disorder after birth.
Collapse
Affiliation(s)
- Kangli Cui
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenwen Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rongkai Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Xie
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yunsong Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaqing Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. .,University of Chinese Academy of Sciences, Beijing, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
34
|
Fan P, Wang Y, Xu M, Han X, Liu Y. The Application of Brain Organoids in Assessing Neural Toxicity. Front Mol Neurosci 2022; 15:799397. [PMID: 35221913 PMCID: PMC8864968 DOI: 10.3389/fnmol.2022.799397] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
The human brain is a complicated and precisely organized organ. Exogenous chemicals, such as pollutants, drugs, and industrial chemicals, may affect the biological processes of the brain or its function and eventually lead to neurological diseases. Animal models may not fully recapitulate the human brain for testing neural toxicity. Brain organoids with self-assembled three-dimensional (3D) structures provide opportunities to generate relevant tests or predictions of human neurotoxicity. In this study, we reviewed recent advances in brain organoid techniques and their application in assessing neural toxicants. We hope this review provides new insights for further progress in brain organoid application in the screening studies of neural toxicants.
Collapse
Affiliation(s)
- Pan Fan
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
| | - YuanHao Wang
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
| | - Min Xu
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Adiletta A, Pedrana S, Rosa-Salva O, Sgadò P. Spontaneous Visual Preference for Face-Like Stimuli Is Impaired in Newly-Hatched Domestic Chicks Exposed to Valproic Acid During Embryogenesis. Front Behav Neurosci 2021; 15:733140. [PMID: 34858146 PMCID: PMC8632556 DOI: 10.3389/fnbeh.2021.733140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/22/2021] [Indexed: 12/03/2022] Open
Abstract
Faces convey a great amount of socially relevant information related to emotional and mental states, identity and intention. Processing of face information is a key mechanism for social and cognitive development, such that newborn babies are already tuned to recognize and orient to faces and simple schematic face-like patterns since the first hours of life. Similar to neonates, also non-human primates and domestic chicks have been shown to express orienting responses to faces and schematic face-like patterns. More importantly, existing studies have hypothesized that early disturbances of these mechanisms represent one of the earliest biomarker of social deficits in autism spectrum disorders (ASD). We used VPA exposure to induce neurodevelopmental changes associated with ASD in domestic chicks and tested whether VPA could impact the expression of the animals’ approach responses to schematic face-like stimuli. We found that VPA impairs the chicks’ preference responses to these social stimuli. Based on the results shown here and on previous studies, we propose the domestic chick as animal model to investigate the biological mechanisms underlying face processing deficits in ASD.
Collapse
Affiliation(s)
- Alice Adiletta
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Samantha Pedrana
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Paola Sgadò
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
36
|
Bose R, Banerjee S, Dunbar GL. Modeling Neurological Disorders in 3D Organoids Using Human-Derived Pluripotent Stem Cells. Front Cell Dev Biol 2021; 9:640212. [PMID: 34041235 PMCID: PMC8141848 DOI: 10.3389/fcell.2021.640212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/15/2021] [Indexed: 11/15/2022] Open
Abstract
Modeling neurological disorders is challenging because they often have both endogenous and exogenous causes. Brain organoids consist of three-dimensional (3D) self-organizing brain tissue which increasingly is being used to model various aspects of brain development and disorders, such as the generation of neurons, neuronal migration, and functional networks. These organoids have been recognized as important in vitro tools to model developmental features of the brain, including neurological disorders, which can provide insights into the molecular mechanisms involved in those disorders. In this review, we describe recent advances in the generation of two-dimensional (2D), 3D, and blood-brain barrier models that were derived from induced pluripotent stem cells (iPSCs) and we discuss their advantages and limitations in modeling diseases, as well as explore the development of a vascularized and functional 3D model of brain processes. This review also examines the applications of brain organoids for modeling major neurodegenerative diseases and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Raj Bose
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Soumyabrata Banerjee
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Gary L. Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute, Ascension St. Mary's, Saginaw, MI, United States
| |
Collapse
|
37
|
Vasistha NA, Khodosevich K. The impact of (ab)normal maternal environment on cortical development. Prog Neurobiol 2021; 202:102054. [PMID: 33905709 DOI: 10.1016/j.pneurobio.2021.102054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
The cortex in the mammalian brain is the most complex brain region that integrates sensory information and coordinates motor and cognitive processes. To perform such functions, the cortex contains multiple subtypes of neurons that are generated during embryogenesis. Newly born neurons migrate to their proper location in the cortex, grow axons and dendrites, and form neuronal circuits. These developmental processes in the fetal brain are regulated to a large extent by a great variety of factors derived from the mother - starting from simple nutrients as building blocks and ending with hormones. Thus, when the normal maternal environment is disturbed due to maternal infection, stress, malnutrition, or toxic substances, it might have a profound impact on cortical development and the offspring can develop a variety of neurodevelopmental disorders. Here we first describe the major developmental processes which generate neuronal diversity in the cortex. We then review our knowledge of how most common maternal insults affect cortical development, perturb neuronal circuits, and lead to neurodevelopmental disorders. We further present a concept of selective vulnerability of cortical neuronal subtypes to maternal-derived insults, where the vulnerability of cortical neurons and their progenitors to an insult depends on the time (developmental period), place (location in the developing brain), and type (unique features of a cell type and an insult). Finally, we provide evidence for the existence of selective vulnerability during cortical development and identify the most vulnerable neuronal types, stages of differentiation, and developmental time for major maternal-derived insults.
Collapse
Affiliation(s)
- Navneet A Vasistha
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
38
|
Fernandes DC, Reis RL, Oliveira JM. Advances in 3D neural, vascular and neurovascular models for drug testing and regenerative medicine. Drug Discov Today 2020; 26:754-768. [PMID: 33202252 DOI: 10.1016/j.drudis.2020.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/22/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Clinical trials continue to fall short regarding drugs to effectively treat brain-affecting diseases. Although there are many causes of these shortcomings, the most relevant are the inability of most therapeutic agents to cross the blood-brain barrier (BBB) and the failure to translate effects from animal models to patients. In this review, we analyze the most recent developments in BBB, neural, and neurovascular models, analyzing their impact on the drug development process by considering their quantitative and phenotypical characterization. We offer a perspective of the state-of-the-art of the models that could revolutionize the pharmaceutical industry.
Collapse
Affiliation(s)
- Diogo C Fernandes
- 3Bs Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's - Portuguese Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L Reis
- 3Bs Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's - Portuguese Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3Bs Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's - Portuguese Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| |
Collapse
|