1
|
Lehnert T, Gijs MAM. Microfluidic systems for infectious disease diagnostics. LAB ON A CHIP 2024; 24:1441-1493. [PMID: 38372324 DOI: 10.1039/d4lc00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microorganisms, encompassing both uni- and multicellular entities, exhibit remarkable diversity as omnipresent life forms in nature. They play a pivotal role by supplying essential components for sustaining biological processes across diverse ecosystems, including higher host organisms. The complex interactions within the human gut microbiota are crucial for metabolic functions, immune responses, and biochemical signalling, particularly through the gut-brain axis. Viruses also play important roles in biological processes, for example by increasing genetic diversity through horizontal gene transfer when replicating inside living cells. On the other hand, infection of the human body by microbiological agents may lead to severe physiological disorders and diseases. Infectious diseases pose a significant burden on global healthcare systems, characterized by substantial variations in the epidemiological landscape. Fast spreading antibiotic resistance or uncontrolled outbreaks of communicable diseases are major challenges at present. Furthermore, delivering field-proven point-of-care diagnostic tools to the most severely affected populations in low-resource settings is particularly important and challenging. New paradigms and technological approaches enabling rapid and informed disease management need to be implemented. In this respect, infectious disease diagnostics taking advantage of microfluidic systems combined with integrated biosensor-based pathogen detection offers a host of innovative and promising solutions. In this review, we aim to outline recent activities and progress in the development of microfluidic diagnostic tools. Our literature research mainly covers the last 5 years. We will follow a classification scheme based on the human body systems primarily involved at the clinical level or on specific pathogen transmission modes. Important diseases, such as tuberculosis and malaria, will be addressed more extensively.
Collapse
Affiliation(s)
- Thomas Lehnert
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
2
|
Julius LA, Torres Delgado SM, Mishra R, Kent N, Carthy E, Korvink JG, Mager D, Ducrée J, Kinahan DJ. Programmable fluidic networks on centrifugal microfluidic discs. Anal Chim Acta 2024; 1288:342159. [PMID: 38220291 DOI: 10.1016/j.aca.2023.342159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Biomedical diagnostic and lab automation solutions built on the Lab-on-a-Disc (LoaD) platform has great potential due to their independence from specialised micro-pumps and their ease of integration, through direct pipetting, with manual or automated workflows. However, a challenge for all microfluidic chips is their cost of manufacture when each microfluidic disc must be customized for a specific application. In this paper, we present centrifugal discs with programmable fluidic networks. RESULTS Based on dissolvable film valves, we present two technologies. The first, based on recently introduced pulse-actuated dissolvable film valves, is a centrifugal disc which, depending on how it is loaded, is configured to perform either six sequential reagent releases through one reaction chamber or three sequential reagent releases through two reaction chambers. In the second approach, we use the previously introduced electronic Lab-on-a-Disc (eLoaD) wireless valve array, which can actuate up to 128 centrifugo-pneumatic dissolvable film valves in a pre-defined sequence. In this approach we present a disc which can deliver any one of 8 reagent washes to any one of four reaction chambers. We use identical discs to demonstrate the first four sequential washes through two reaction chambers and then two sequential washes through four reaction chambers. SIGNIFICANCE These programmable fluidic networks have the potential to allow a single disc architecture to be applied to multiple different assay types and so can offer a lower-cost and more integrated alternative to the standard combination of micro-titre plate and liquid handling robot. Indeed, it may even be possible to conduct multiple different assays concurrently. This can have the effect of reducing manufacturing costs and streamlining supply-chains and so results in a more accessible diagnostic platform.
Collapse
Affiliation(s)
- Lourdes An Julius
- Fraunhofer Project Center at Dublin City University (FPC@DCU), Dublin City University, Glasnevin, Dublin 9, Ireland; School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Sarai M Torres Delgado
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Lepolshafen, 76344, Germany
| | - Rohit Mishra
- Fraunhofer Project Center at Dublin City University (FPC@DCU), Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Nigel Kent
- School of Mechanical & Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Eadaoin Carthy
- School of Mechanical & Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Lepolshafen, 76344, Germany
| | - Dario Mager
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Lepolshafen, 76344, Germany
| | - Jens Ducrée
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - David J Kinahan
- School of Mechanical & Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Glasnevin, Dublin 9, Ireland; I-Form, The SFI Research Centre for Advanced Manufacturing, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
3
|
Lee SM, Balakrishnan HK, Doeven EH, Yuan D, Guijt RM. Chemical Trends in Sample Preparation for Nucleic Acid Amplification Testing (NAAT): A Review. BIOSENSORS 2023; 13:980. [PMID: 37998155 PMCID: PMC10669371 DOI: 10.3390/bios13110980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Nucleic acid amplification testing facilitates the detection of disease through specific genomic sequences and is attractive for point-of-need testing (PONT); in particular, the early detection of microorganisms can alert early response systems to protect the public and ecosystems from widespread outbreaks of biological threats, including infectious diseases. Prior to nucleic acid amplification and detection, extensive sample preparation techniques are required to free nucleic acids and extract them from the sample matrix. Sample preparation is critical to maximize the sensitivity and reliability of testing. As the enzymatic amplification reactions can be sensitive to inhibitors from the sample, as well as from chemicals used for lysis and extraction, avoiding inhibition is a significant challenge, particularly when minimising liquid handling steps is also desirable for the translation of the assay to a portable format for PONT. The reagents used in sample preparation for nucleic acid testing, covering lysis and NA extraction (binding, washing, and elution), are reviewed with a focus on their suitability for use in PONT.
Collapse
Affiliation(s)
- Soo Min Lee
- Centre for Regional and Rural Futures (CeRRF), Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| | - Hari Kalathil Balakrishnan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Egan H. Doeven
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia;
| | - Dan Yuan
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Rosanne M. Guijt
- Centre for Regional and Rural Futures (CeRRF), Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| |
Collapse
|
4
|
Early PL, Kilcawley NA, McArdle NA, Renou M, Kearney SM, Mishra R, Dimov N, Glynn MT, Ducrée J, Kinahan DJ. Digital process control of multi-step assays on centrifugal platforms using high-low-high rotational-pulse triggered valving. PLoS One 2023; 18:e0291165. [PMID: 37682949 PMCID: PMC10490917 DOI: 10.1371/journal.pone.0291165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Due to their capability for comprehensive sample-to-answer automation, the interest in centrifugal microfluidic systems has greatly increased in industry and academia over the last quarter century. The main applications of these "Lab-on-a-Disc" (LoaD) platforms are in decentralised bioanalytical point-of-use / point-of-care testing. Due to the unidirectional and omnipresent nature of the centrifugal force, advanced flow control is key to coordinate multi-step / multi-reagent assay formats on the LoaD. Formerly, flow control was often achieved by capillary burst valves which require gradual increments of the spin speed of the system-innate spindle motor. Recent advanced introduced a flow control scheme called 'rotational pulse actuated valves'. In these valves the sequence of valve actuation is determined by the architecture of the disc while actuation is triggered by freely programmable upward spike (i.e. Low-High-Low (LHL)) in the rotational frequency. This paradigm shift from conventional 'analogue' burst valves to 'digital' pulsing significantly increases the number of sequential while also improving the overall robustness of flow control. In this work, we expand on these LHL valves by introducing High-Low-High (HLH) pulse-actuated (PA) valving which are actuated by 'downward' spike in the disc spin-rate. These HLH valves are particularly useful for high spin-rate operations such as centrifugation of blood. We introduce two different HLH architectures and then combine the most promising with LHL valves to implement the time-dependent liquid handling protocol underlying a common liver function test panel.
Collapse
Affiliation(s)
- Philip L. Early
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Niamh A. Kilcawley
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Niamh A. McArdle
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Marine Renou
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
- Telecom Physique Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Sinéad M. Kearney
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Rohit Mishra
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Nikolay Dimov
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Macdara T. Glynn
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Jens Ducrée
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - David J. Kinahan
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
5
|
Wu C, Sun J, Almuaalemi HYM, Sohan ASMMF, Yin B. Structural Optimization Design of Microfluidic Chips Based on Fast Sequence Pair Algorithm. MICROMACHINES 2023; 14:1577. [PMID: 37630113 PMCID: PMC10456452 DOI: 10.3390/mi14081577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
The market for microfluidic chips is experiencing significant growth; however, their development is hindered by a complex design process and low efficiency. Enhancing microfluidic chips' design quality and efficiency has emerged as an integral approach to foster their advancement. Currently, the existing structural design schemes lack careful consideration regarding the impact of chip area, microchannel length, and the number of intersections on chip design. This inadequacy leads to redundant chip structures resulting from the separation of layout and wiring design. This study proposes a structural optimization method for microfluidic chips to address these issues utilizing a simulated annealing algorithm. The simulated annealing algorithm generates an initial solution in advance using the fast sequence pair algorithm. Subsequently, an improved simulated annealing algorithm is employed to obtain the optimal solution for the device layout. During the wiring stage, an advanced wiring method is used to designate the high wiring area, thereby increasing the success rate of microfluidic chip wiring. Furthermore, the connection between layout and routing is reinforced through an improved layout adjustment method, which reduces the length of microchannels and the number of intersections. Finally, the effectiveness of the structural optimization approach is validated through six sets of test cases, successfully achieving the objective of enhancing the design quality of microfluidic chips.
Collapse
Affiliation(s)
- Chuang Wu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (J.S.); (H.Y.M.A.)
- Nantong Fuleda Vehicle Accessory Component Co., Ltd., Nantong 226300, China
- Jiangsu Tongshun Power Technology Co., Ltd., Nantong 226300, China
| | - Jiju Sun
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (J.S.); (H.Y.M.A.)
| | | | - A. S. M. Muhtasim Fuad Sohan
- Faculty of Engineering, Department of Mechanical Engineering, University of Adelaide, Adelaide, SA 5000, Australia;
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (J.S.); (H.Y.M.A.)
| |
Collapse
|
6
|
Peshin S, Madou M, Kulinsky L. Microvalves for Applications in Centrifugal Microfluidics. SENSORS (BASEL, SWITZERLAND) 2022; 22:8955. [PMID: 36433550 PMCID: PMC9693484 DOI: 10.3390/s22228955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Centrifugal microfluidic platforms (CDs) have opened new possibilities for inexpensive point-of-care (POC) diagnostics. They are now widely used in applications requiring polymerase chain reaction steps, blood plasma separation, serial dilutions, and many other diagnostic processes. CD microfluidic devices allow a variety of complex processes to transfer onto the small disc platform that previously were carried out by individual expensive laboratory equipment requiring trained personnel. The portability, ease of operation, integration, and robustness of the CD fluidic platforms requires simple, reliable, and scalable designs to control the flow of fluids. Valves play a vital role in opening/closing of microfluidic channels to enable a precise control of the flow of fluids on a centrifugal platform. Valving systems are also critical in isolating chambers from the rest of a fluidic network at required times, in effectively directing the reagents to the target location, in serial dilutions, and in integration of multiple other processes on a single CD. In this paper, we review the various available fluidic valving systems, discuss their working principles, and evaluate their compatibility with CD fluidic platforms. We categorize the presented valving systems into either "active", "passive", or "hybrid"-based on their actuation mechanism that can be mechanical, thermal, hydrophobic/hydrophilic, solubility-based, phase-change, and others. Important topics such as their actuation mechanism, governing physics, variability of performance, necessary disc spin rate for valve actuation, valve response time, and other parameters are discussed. The applicability of some types of valves for specialized functions such as reagent storage, flow control, and other applications is summarized.
Collapse
Affiliation(s)
- Snehan Peshin
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
| | - Marc Madou
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
- School of Engineering and Science, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Lawrence Kulinsky
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|