1
|
Didier CM, Fox D, Pollard KJ, Baksh A, Iyer NR, Bosak A, Li Sip YY, Orrico JF, Kundu A, Ashton RS, Zhai L, Moore MJ, Rajaraman S. Fully Integrated 3D Microelectrode Arrays with Polydopamine-Mediated Silicon Dioxide Insulation for Electrophysiological Interrogation of a Novel 3D Human, Neural Microphysiological Construct. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37157-37173. [PMID: 37494582 DOI: 10.1021/acsami.3c05788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Advances within in vitro biological system complexity have enabled new possibilities for the "Organs-on-a-Chip" field. Microphysiological systems (MPS) as such incorporate sophisticated biological constructs with custom biological sensors. For microelectromechanical systems (MEMS) sensors, the dielectric layer is critical for device performance, where silicon dioxide (SiO2) represents an excellent candidate due to its biocompatibility and wide utility in MEMS devices. Yet, high temperatures traditionally preclude SiO2 from incorporation in polymer-based BioMEMS. Electron-beam deposition of SiO2 may provide a low-temperature, dielectric serving as a nanoporous MPS growth substrate. Herein, we enable improved adherence of nanoporous SiO2 to polycarbonate (PC) and 316L stainless steel (SS) via polydopamine (PDA)-mediated chemistry. The resulting stability of the combinatorial PDA-SiO2 film was interrogated, along with the nature of the intrafilm interactions. A custom polymer-metal three-dimensional (3D) microelectrode array (3D MEA) is then reported utilizing PDA-SiO2 insulation, for definition of novel dorsal root ganglion (DRG)/nociceptor and dorsal horn (DH) 3D neural constructs in excess of 6 months for the first time. Spontaneous/evoked compound action potentials (CAPs) are successfully reported. Finally, inhibitory drugs treatments showcase pharmacological responsiveness of the reported multipart biological activity. These results represent the initiation of a novel 3D MEA-integrated, 3D neural MPS for the long-term electrophysiological study.
Collapse
Affiliation(s)
- Charles M Didier
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - David Fox
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Kevin J Pollard
- Tulane University, 6823 St Charles Ave, New Orleans, Louisiana 70118, United States
| | - Aliyah Baksh
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Nisha R Iyer
- University of Wisconsin-Madison, 330 N. Orchard Street, Madison, Wisconsin 53717, United States
| | - Alexander Bosak
- Tulane University, 6823 St Charles Ave, New Orleans, Louisiana 70118, United States
| | - Yuen Yee Li Sip
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Julia F Orrico
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Avra Kundu
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Randolph S Ashton
- University of Wisconsin-Madison, 330 N. Orchard Street, Madison, Wisconsin 53717, United States
| | - Lei Zhai
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
| | - Michael J Moore
- Tulane University, 6823 St Charles Ave, New Orleans, Louisiana 70118, United States
- AxoSim Inc., 1441 Canal St., New Orleans, Louisiana 70112, United States
| | - Swaminathan Rajaraman
- University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States
- Primordia Biosystems Inc., 1317 Edgewater Drive, #2701, Orlando, Florida 32804, United States
| |
Collapse
|
2
|
Theyagarajan K, Kim YJ. Recent Developments in the Design and Fabrication of Electrochemical Biosensors Using Functional Materials and Molecules. BIOSENSORS 2023; 13:bios13040424. [PMID: 37185499 PMCID: PMC10135976 DOI: 10.3390/bios13040424] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Electrochemical biosensors are superior technologies that are used to detect or sense biologically and environmentally significant analytes in a laboratory environment, or even in the form of portable handheld or wearable electronics. Recently, imprinted and implantable biosensors are emerging as point-of-care devices, which monitor the target analytes in a continuous environment and alert the intended users to anomalies. The stability and performance of the developed biosensor depend on the nature and properties of the electrode material or the platform on which the biosensor is constructed. Therefore, the biosensor platform plays an integral role in the effectiveness of the developed biosensor. Enormous effort has been dedicated to the rational design of the electrode material and to fabrication strategies for improving the performance of developed biosensors. Every year, in the search for multifarious electrode materials, thousands of new biosensor platforms are reported. Moreover, in order to construct an effectual biosensor, the researcher should familiarize themself with the sensible strategies behind electrode fabrication. Thus, we intend to shed light on various strategies and methodologies utilized in the design and fabrication of electrochemical biosensors that facilitate sensitive and selective detection of significant analytes. Furthermore, this review highlights the advantages of various electrode materials and the correlation between immobilized biomolecules and modified surfaces.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|