1
|
Singh OP, El-Badawy IM, Sundaram S, O'Mahony C. Microneedle electrodes: materials, fabrication methods, and electrophysiological signal monitoring-narrative review. Biomed Microdevices 2025; 27:9. [PMID: 40000499 DOI: 10.1007/s10544-024-00732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 02/27/2025]
Abstract
Flexible, microneedle-based electrodes offer an innovative solution for high-quality physiological signal monitoring, reducing the need for complex algorithms and hardware, thus streamlining health assessments, and enabling earlier disease detection. These electrodes are particularly promising for improving patient outcomes by providing more accurate, reliable, and long-term electrophysiological data, but their clinical adoption is hindered by the limited availability of large-scale population testing. This review examines the key advantages of flexible microneedle electrodes, including their ability to conform to the skin, enhance skin-electrode contact, reduce discomfort, and deliver superior signal fidelity. The mechanical and electrical properties of these electrodes are thoroughly explored, focusing on critical aspects like fracture force, skin penetration efficiency, and impedance measurements. Their applications in capturing electrophysiological signals such as ECG, EMG, and EEG are also highlighted, demonstrating their potential in clinical scenarios. Finally, the review outlines future research directions, emphasizing the importance of further studies to enhance the clinical and consumer use of flexible microneedle electrodes in medical diagnostics.
Collapse
Affiliation(s)
- Om Prakash Singh
- Digital Devices for Health Conditions, Centre for Health Technology, School of Nursing and Midwifery, Faculty of Health, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Ismail M El-Badawy
- Electronics and Communications Engineering Department, College of Engineering and Technology, Arab Academy for Science and Technology and Maritime Transport, Cairo, Egypt
| | - Sornambikai Sundaram
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Conor O'Mahony
- Tyndall National Institute, University College Cork, Cork, T12 RC5P, Ireland
| |
Collapse
|
2
|
Zhou C, Tian Y, Li G, Ye Y, Gao L, Li J, Liu Z, Su H, Lu Y, Li M, Zhou Z, Wei X, Qin L, Tao TH, Sun L. Through-polymer, via technology-enabled, flexible, lightweight, and integrated devices for implantable neural probes. MICROSYSTEMS & NANOENGINEERING 2024; 10:54. [PMID: 38654844 PMCID: PMC11035623 DOI: 10.1038/s41378-024-00691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
In implantable electrophysiological recording systems, the headstage typically comprises neural probes that interface with brain tissue and integrated circuit chips for signal processing. While advancements in MEMS and CMOS technology have significantly improved these components, their interconnection still relies on conventional printed circuit boards and sophisticated adapters. This conventional approach adds considerable weight and volume to the package, especially for high channel count systems. To address this issue, we developed a through-polymer via (TPV) method inspired by the through-silicon via (TSV) technique in advanced three-dimensional packaging. This innovation enables the vertical integration of flexible probes, amplifier chips, and PCBs, realizing a flexible, lightweight, and integrated device (FLID). The total weight of the FLIDis only 25% that of its conventional counterparts relying on adapters, which significantly increased the activity levels of animals wearing the FLIDs to nearly match the levels of control animals without implants. Furthermore, by incorporating a platinum-iridium alloy as the top layer material for electrical contact, the FLID realizes exceptional electrical performance, enabling in vivo measurements of both local field potentials and individual neuron action potentials. These findings showcase the potential of FLIDs in scaling up implantable neural recording systems and mark a significant advancement in the field of neurotechnology.
Collapse
Grants
- This work was partially supported by the National Key R & D Program of China (Grant Nos. 2021ZD0201600, 2022YFF0706504, 2022ZD0209300, 2019YFA0905200, 2021YFC2501500, 2021YFF1200700, 2022ZD0212300), National Natural Science Foundation of China (Grant No. 61974154), Key Research Program of Frontier Sciences, CAS (Grant No. ZDBS-LY-JSC024), Shanghai Pilot Program for Basic Research-Chinese Academy of Science, Shanghai Branch (Grant No. JCYJ-SHFY-2022-01 and JCYJ-SHFY-2022-0xx), Shanghai Municipal Science and Technology Major Project (Grant No. 2021SHZDZX), CAS Pioneer Hundred Talents Program, Shanghai Pujiang Program (Grant Nos. 21PJ1415100, 19PJ1410900), the Science and Technology Commission Foundation of Shanghai (Nos. 21JM0010200 and 21142200300), Shanghai Rising-Star Program (Grant No. 22QA1410900), Shanghai Sailing Program (No. 22YF1454700), the Innovative Research Team of High-level Local Universities in Shanghai, the Jiangxi Province 03 Special Project and 5G Project (Grant No. 20212ABC03W07), Fund for Central Government in Guidance of Local Science and Technology Development (Grant No. 20201ZDE04013), Special Fund for Science and Technology Innovation Strategy of Guangdong Province (Grant Nos. 2021B0909060002, 2021B0909050004).
Collapse
Affiliation(s)
- Cunkai Zhou
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ye Tian
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China
| | - Yifei Ye
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lusha Gao
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiazhi Li
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ziwei Liu
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Haoyang Su
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yunxiao Lu
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Meng Li
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhitao Zhou
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoling Wei
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lunming Qin
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Tiger H. Tao
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Neuroxess Co., Ltd. (Jiangxi), Nanchang, Jiangxi China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong China
- Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, China
| | - Liuyang Sun
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Bhat K, Schlotterose L, Hanke L, Helmholz H, Quandt E, Hattermann K, Willumeit-Römer R. Magnesium-lithium thin films for neurological applications-An in vitro investigation of glial cytocompatibility and neuroinflammatory response. Acta Biomater 2024; 178:307-319. [PMID: 38382831 DOI: 10.1016/j.actbio.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Lithium (Li), a widely used drug for bipolar disorder management, is associated with many side effects due to systemic exposure. The localized delivery of lithium through implants could be an approach to overcome this challenge, for which biodegradable magnesium (Mg)-based materials are a promising choice. In this study, we focus on Mg-Li thin film alloys as potential Li-releasing implants. Therefore, we investigated the in vitro short-term corrosion behavior and cytocompatibility of two alloys, Mg-1.6wt%Li and Mg-9.5wt%Li. As glial cells are the key players of foreign body responses to implants, we used human glial cell lines for cytocompatibility studies, and a murine brain slice model for a more holistic view at the neuroinflammatory response. We found that Mg-1.6wt%Li corrodes approximately six times slower than Mg-9.5wt%Li. Microscopic analysis showed that the material surface (Mg-1.6wt%Li) is suitable for cell adhesion. The cytocompatibility test with Mg-1.6wt%Li and Mg-9.5wt%Li alloy extracts revealed that both cell types proliferated well up to 10 mM Mg concentration, irrespective of the Li concentration. In the murine brain slice model, Mg-1.6wt%Li and Mg-9.5wt%Li alloy extracts did not provoke a significant upregulation of glial inflammatory/ reactivity markers (IL-1β, IL-6, FN1, TNC) after 24 h of exposure. Furthermore, the gene expression of IL-1β (up to 3-fold) and IL-6 (up to 16-fold) were significantly downregulated after 96 h, and IL-6 downregulation showed a Li concentration dependency. Together, these results indicate the acute cytocompatibility of two Mg-Li thin film alloys and provide basis for future studies to explore promising applications of the material. STATEMENT OF SIGNIFICANCE: We propose the idea of lithium delivery to the brain via biodegradable implants to reduce systemic side effects of lithium for bipolar disorder therapy and other neurological applications. This is the first in vitro study investigating Mg-xLi thin film degradation under physiological conditions and its influence on cellular responses such as proliferation, viability, morphology and inflammation. Utilizing human brain-derived cell lines, we showed that the material surface of such a thin film alloy is suitable for normal cell attachment. Using murine brain slices, which comprise a multicellular network, we demonstrated that the material extracts did not elicit a pro-inflammatory response. These results substantiate that degradable Mg-Li materials are biocompatible and support the further investigation of their potential as neurological implants.
Collapse
Affiliation(s)
- Krathika Bhat
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| | - Luise Schlotterose
- Institute of Anatomy, Kiel University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Lisa Hanke
- Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Heike Helmholz
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Eckhard Quandt
- Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Kirsten Hattermann
- Institute of Anatomy, Kiel University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| |
Collapse
|