1
|
Miao J, Tsang ACH. Reconfigurability-Encoded Hierarchical Rectifiers for Versatile 3D Liquid Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405641. [PMID: 39072942 PMCID: PMC11497013 DOI: 10.1002/advs.202405641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Manipulating small-volume liquids is crucial in natural processes and industrial applications. However, most liquid manipulation technologies involve complex energy inputs or non-adjustable wetting gradient surfaces. Here, a simple and adjustable 3D liquid manipulation paradigm is reported to control liquid behaviors by coupling liquid-air-solid interfacial energy with programmable magnetic fields. This paradigm centers around a hierarchical rectifier with magnetized microratchets, using Laplace pressure asymmetry to enable multimodal directional steering of various surface tension liquids (23-72 mN m-1). The scale-dependent effect in microratchet design shows its superiority in handling small-volume liquids across three orders of magnitude (100-103 µL). Under programmed magnetic fields, the rectifier can reconfigure its morphology to harness interfacial energy to exhibit richer liquid behaviors without dynamic real-time control. Reconfigured rectifiers show improved rectification performance in the inertia-dominant fluid regime, i.e., a remarkable 2000-fold increase in the critical Weber number for pure ethanol. Moreover, the rectifier's switchable reconfigurations offer flexible control over liquid transport directions and spatiotemporally controllable 3D liquid manipulation reminiscent of inchworm motions. This scalable liquid manipulation paradigm promotes versatile engineering and biochemistry applications, e.g., portable liquid purity testing (screening resolution <1 mN m-1), logical open-channel microfluidics, and automated chemical reaction platforms.
Collapse
Affiliation(s)
- Jiaqi Miao
- Department of Mechanical EngineeringThe University of Hong KongPokfulamHong Kong999077China
| | - Alan C. H. Tsang
- Department of Mechanical EngineeringThe University of Hong KongPokfulamHong Kong999077China
| |
Collapse
|
2
|
Deng Y, Long G, Zhang Y, Zhao W, Zhou G, Feringa BL, Chen J. Photo-responsive functional materials based on light-driven molecular motors. LIGHT, SCIENCE & APPLICATIONS 2024; 13:63. [PMID: 38429259 PMCID: PMC10907585 DOI: 10.1038/s41377-024-01391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
In the past two decades, the research and development of light-triggered molecular machines have mainly focused on developing molecular devices at the nanoscale. A key scientific issue in the field is how to amplify the controlled motion of molecules at the nanoscale along multiple length scales, such as the mesoscopic or the macroscopic scale, or in a more practical perspective, how to convert molecular motion into changes of properties of a macroscopic material. Light-driven molecular motors are able to perform repetitive unidirectional rotation upon irradiation, which offers unique opportunities for responsive macroscopic systems. With several reviews that focus on the design, synthesis and operation of the motors at the nanoscale, photo-responsive macroscopic materials based on light-driven molecular motors have not been comprehensively summarized. In the present review, we first discuss the strategy of confining absolute molecular rotation into relative rotation by grafting motors on surfaces. Secondly, examples of self-assemble motors in supramolecular polymers with high internal order are illustrated. Moreover, we will focus on building of motors in a covalently linked system such as polymeric gels and polymeric liquid crystals to generate complex responsive functions. Finally, a perspective toward future developments and opportunities is given. This review helps us getting a more and more clear picture and understanding on how complex movement can be programmed in light-responsive systems and how man-made adaptive materials can be invented, which can serve as an important guideline for further design of complex and advanced responsive materials.
Collapse
Affiliation(s)
- Yanping Deng
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guiying Long
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Yang Zhang
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Wei Zhao
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guofu Zhou
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Ben L Feringa
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| | - Jiawen Chen
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Teng X, Yao C, McCoy CP, Zhang S. Comparison of Superhydrophilic, Liquid-Like, Liquid-Infused, and Superhydrophobic Surfaces in Preventing Catheter-Associated Urinary Tract Infection and Encrustation. ACS Biomater Sci Eng 2024; 10:1162-1172. [PMID: 38183269 PMCID: PMC10865292 DOI: 10.1021/acsbiomaterials.3c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Over the past decade, superhydrophilic zwitterionic surfaces, slippery liquid-infused porous surfaces, covalently attached liquid-like surfaces, and superhydrophobic surfaces have emerged as the most promising strategies to prevent biofouling on biomedical devices. Despite working through different mechanisms, they have demonstrated superior efficacy in preventing the adhesion of biomolecules (e.g., proteins and bacteria) compared with conventional material surfaces. However, their potential in combating catheter-associated urinary tract infection (CAUTI) remains uncertain. In this research, we present the fabrication of these four coatings for urinary catheters and conduct a comparative assessment of their antifouling properties through a stepwise approach. Notably, the superhydrophilic zwitterionic coating demonstrated the highest antifouling activity, reducing 72.3% of fibrinogen deposition and over 75% of bacterial adhesion (Escherichia coli and Staphylococcus aureus) when compared with an uncoated polyvinyl chloride (PVC) surface. The zwitterionic coating also exhibited robust repellence against blood and improved surface lubricity, decreasing the dynamic coefficient of friction from 0.63 to 0.35 as compared with the PVC surface. Despite the fact that the superhydrophilic zwitterionic and hydrophobic liquid-like surfaces showed great promise in retarding crystalline biofilm formation in the presence of Proteus mirabilis, it is worth noting that their long-term antifouling efficacy may be compromised by the proliferation and migration of colonized bacteria as they are unable to kill them or inhibit their swarming. These findings underscore both the potential and limitations of these ultralow fouling materials as urinary catheter coatings for preventing CAUTI.
Collapse
Affiliation(s)
- Xiao Teng
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| | - Chenghao Yao
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| | - Colin P. McCoy
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| | - Shuai Zhang
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| |
Collapse
|