1
|
Neirinck J, Buysse M, De Vriendt C, Hofmans M, Bonroy C. The role of immunophenotyping in common variable immunodeficiency: a narrative review. Crit Rev Clin Lab Sci 2024:1-20. [PMID: 39364936 DOI: 10.1080/10408363.2024.2404842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
Common variable immunodeficiency (CVID) is a heterogeneous primary immunodeficiency (PID) characterized by an impaired immunoglobulin production, in association with an increased susceptibility to infections and a diversity of clinical manifestations. This narrative review summarizes immunophenotypic abnormalities in CVID patients and their relevance for diagnosis and disease classification. A comprehensive search across four databases - PubMED, Web of Science, EMBASE and Google Scholar - yielded 170 relevant studies published between 1988 and April 31, 2023. Over the past decades, the role of immunophenotyping in CVID diagnosis has become evident by identifying "hallmark" immunophenotypic aberrancies in patient subsets, with some now integrated in the consensus diagnostic criteria. Furthermore, the role of immunophenotyping in subclassifying CVID in relation to clinical presentation and prognosis has been extensively studied. Certain immunophenotypic patterns consistently correlate with clinical manifestations and/or subsets of CVID, particularly those associated with noninfectious complications (i.e. low switched memory B cells, shifts in follicular helper T cell subsets, low naïve CD4+ T cells, low regulatory T cells, and expansion of CD21low B cells, often associated with autoimmunity and/or splenomegaly). Also, efforts to associate subset levels of innate immune cells, such as Natural Killer (NK) cells, invariant (i)NKT cells, innate lymphoid cells (ILCs), and dendritic cells (DCs) to CVID complications are evident albeit in a lesser degree. However, inconsistencies regarding the role of flow cytometry in classification and prognosis persist, reflecting the disease complexity, but probably also cohort variations and methodological differences between published studies. This underscores the need for collaborative efforts to integrate emerging concepts, such as standardized flow cytometry and computational tools, for a more precise CVID classification approach. Additionally, recent studies suggest a potential value of (epi)genetic-based molecular assays to this effort.
Collapse
Affiliation(s)
- Jana Neirinck
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Malicorne Buysse
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ciel De Vriendt
- Department of Haematology, University Hospital Ghent, Ghent, Belgium
| | - Mattias Hofmans
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Carolien Bonroy
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
2
|
Verbeek MWC, Rodríguez BS, Sedek L, Laqua A, Buracchi C, Buysse M, Reiterová M, Oliveira E, Morf D, Oude Alink SR, Barrena S, Kohlscheen S, Nierkens S, Hofmans M, Fernandez P, de Costa ES, Mejstrikova E, Szczepanski T, Slota L, Brüggemann M, Gaipa G, Grigore G, van Dongen JJM, Orfao A, van der Velden VHJ. Minimal residual disease assessment in B-cell precursor acute lymphoblastic leukemia by semi-automated identification of normal hematopoietic cells: A EuroFlow study. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:252-263. [PMID: 37740440 DOI: 10.1002/cyto.b.22143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/28/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
Presence of minimal residual disease (MRD), detected by flow cytometry, is an important prognostic biomarker in the management of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, data-analysis remains mainly expert-dependent. In this study, we designed and validated an Automated Gating & Identification (AGI) tool for MRD analysis in BCP-ALL patients using the two tubes of the EuroFlow 8-color MRD panel. The accuracy, repeatability, and reproducibility of the AGI tool was validated in a multicenter study using bone marrow follow-up samples from 174 BCP-ALL patients, stained with the EuroFlow BCP-ALL MRD panel. In these patients, MRD was assessed both by manual analysis and by AGI tool supported analysis. Comparison of MRD levels obtained between both approaches showed a concordance rate of 83%, with comparable concordances between MRD tubes (tube 1, 2 or both), treatment received (chemotherapy versus targeted therapy) and flow cytometers (FACSCanto versus FACSLyric). After review of discordant cases by additional experts, the concordance increased to 97%. Furthermore, the AGI tool showed excellent intra-expert concordance (100%) and good inter-expert concordance (90%). In addition to MRD levels, also percentages of normal cell populations showed excellent concordance between manual and AGI tool analysis. We conclude that the AGI tool may facilitate MRD analysis using the EuroFlow BCP-ALL MRD protocol and will contribute to a more standardized and objective MRD assessment. However, appropriate training is required for the correct analysis of MRD data.
Collapse
Affiliation(s)
- Martijn W C Verbeek
- Laboratory for Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Beatriz Soriano Rodríguez
- Translational and Clinical Research program, Cancer Research Centre (IBMCC, CSIC-USAL), Cytometry Service, NUCLEUS, Salamanca, Spain
- Department of Medicine, University of Salamanca (USAL), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lukasz Sedek
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Zabrze, Poland
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Anna Laqua
- Department of Hematology, University of Schleswig-Holstein, Kiel, Germany
| | - Chiara Buracchi
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Malicorne Buysse
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Michaela Reiterová
- CLIP-Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Elen Oliveira
- Pediatrics Institute IPPMG, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela Morf
- Institute for Laboratory Medicine, Aarau, Switzerland
| | - Sjoerd R Oude Alink
- Laboratory for Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Susana Barrena
- Translational and Clinical Research program, Cancer Research Centre (IBMCC, CSIC-USAL), Cytometry Service, NUCLEUS, Salamanca, Spain
- Department of Medicine, University of Salamanca (USAL), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Saskia Kohlscheen
- Department of Hematology, University of Schleswig-Holstein, Kiel, Germany
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mattias Hofmans
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Elaine Sobral de Costa
- Pediatrics Institute IPPMG, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ester Mejstrikova
- CLIP-Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Tomasz Szczepanski
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Lukasz Slota
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Monika Brüggemann
- Department of Hematology, University of Schleswig-Holstein, Kiel, Germany
| | - Giuseppe Gaipa
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | - Jacques J M van Dongen
- Translational and Clinical Research program, Cancer Research Centre (IBMCC, CSIC-USAL), Cytometry Service, NUCLEUS, Salamanca, Spain
- Department of Medicine, University of Salamanca (USAL), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Leiden University Medical Center (LUMC), The Netherlands
| | - Alberto Orfao
- Translational and Clinical Research program, Cancer Research Centre (IBMCC, CSIC-USAL), Cytometry Service, NUCLEUS, Salamanca, Spain
- Department of Medicine, University of Salamanca (USAL), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Vincent H J van der Velden
- Laboratory for Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Park M, Lim J, Ahn A, Oh EJ, Song J, Kim KH, Han JY, Choi HW, Park JH, Shin KH, Kim H, Kim M, Hwang SH, Kim HY, Cho D, Kang ES. Current Status of Flow Cytometric Immunophenotyping of Hematolymphoid Neoplasms in Korea. Ann Lab Med 2024; 44:222-234. [PMID: 38145891 PMCID: PMC10813832 DOI: 10.3343/alm.2023.0298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/12/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023] Open
Abstract
Background Flow cytometric immunophenotyping of hematolymphoid neoplasms (FCI-HLN) is essential for diagnosis, classification, and minimal residual disease (MRD) monitoring. FCI-HLN is typically performed using in-house protocols, raising the need for standardization. Therefore, we surveyed the current status of FCI-HLN in Korea to obtain fundamental data for quality improvement and standardization. Methods Eight university hospitals actively conducting FCI-HLN participated in our survey. We analyzed responses to a questionnaire that included inquiries regarding test items, reagent antibodies (RAs), fluorophores, sample amounts (SAs), reagent antibody amounts (RAAs), acquisition cell number (ACN), isotype control (IC) usage, positive/negative criteria, and reporting. Results Most hospitals used acute HLN, chronic HLN, plasma cell neoplasm (PCN), and MRD panels. The numbers of RAs were heterogeneous, with a maximum of 32, 26, 12, 14, and 10 antibodies used for acute HLN, chronic HLN, PCN, ALL-MRD, and multiple myeloma-MRD, respectively. The number of fluorophores ranged from 4 to 10. RAs, SAs, RAAs, and ACN were diverse. Most hospitals used a positive criterion of 20%, whereas one used 10% for acute and chronic HLN panels. Five hospitals used ICs for the negative criterion. Positive/negative assignments, percentages, and general opinions were commonly reported. In MRD reporting, the limit of detection and lower limit of quantification were included. Conclusions This is the first comprehensive study on the current status of FCI-HLN in Korea, confirming the high heterogeneity and complexity of FCI-HLN practices. Standardization of FCI-HLN is urgently needed. The findings provide a reference for establishing standard FCI-HLN guidelines.
Collapse
Affiliation(s)
- Mikyoung Park
- Department of Laboratory Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jihyang Lim
- Department of Laboratory Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ari Ahn
- Department of Laboratory Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Jee Oh
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaewoo Song
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyeong-Hee Kim
- Department of Laboratory Medicine, Dong-A University Hospital, College of Medicine, Dong-A University, Busan, Korea
| | - Jin-Yeong Han
- Department of Laboratory Medicine, Dong-A University Hospital, College of Medicine, Dong-A University, Busan, Korea
| | - Hyun-Woo Choi
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Joo-Heon Park
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Kyung-Hwa Shin
- Department of Laboratory Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Hyerim Kim
- Department of Laboratory Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Miyoung Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Bugarin C, Antolini L, Buracchi C, Matarraz S, Coliva TA, Van der Velden VH, Szczepanski T, Da Costa ES, Van der Sluijs A, Novakova M, Mejstrikova E, Nierkens S, De Mello FV, Fernandez P, Aanei C, Sędek Ł, Strocchio L, Masetti R, Sainati L, Philippé J, Valsecchi MG, Locatelli F, Van Dongen JJM, Biondi A, Orfao A, Gaipa G. Phenotypic profiling of CD34 + cells by advanced flow cytometry improves diagnosis of juvenile myelomonocytic leukemia. Haematologica 2024; 109:521-532. [PMID: 37534527 PMCID: PMC10828789 DOI: 10.3324/haematol.2023.282805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
Diagnostic criteria for juvenile myelomonocytic leukemia (JMML) are currently well defined, however in some patients diagnosis still remains a challenge. Flow cytometry is a well established tool for diagnosis and follow-up of hematological malignancies, nevertheless it is not routinely used for JMML diagnosis. Herewith, we characterized the CD34+ hematopoietic precursor cells collected from 31 children with JMML using a combination of standardized EuroFlow antibody panels to assess the ability to discriminate JMML cells from normal/reactive bone marrow cell as controls (n=29) or from cells of children with other hematological diseases mimicking JMML (n=9). CD34+ precursors in JMML showed markedly reduced B-cell and erythroid-committed precursors compared to controls, whereas monocytic and CD7+ lymphoid precursors were significantly expanded. Moreover, aberrant immunophenotypes were consistently present in CD34+ precursors in JMML, while they were virtually absent in controls. Multivariate logistic regression analysis showed that combined assessment of the number of CD34+CD7+ lymphoid precursors and CD34+ aberrant precursors or erythroid precursors had a great potential in discriminating JMMLs versus controls. Importantly our scoring model allowed highly efficient discrimination of truly JMML versus patients with JMML-like diseases. In conclusion, we show for the first time that CD34+ precursors from JMML patients display a unique immunophenotypic profile which might contribute to a fast and accurate diagnosis of JMML worldwide by applying an easy to standardize single eight-color antibody combination.
Collapse
Affiliation(s)
- Cristina Bugarin
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza (MB)
| | - Laura Antolini
- Center of Biostatistics for Clinical Epidemiology, Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza (MB)
| | - Chiara Buracchi
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza (MB)
| | - Sergio Matarraz
- Cancer Research Center (IBMCC-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, CIBERONC and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca
| | | | | | - Tomasz Szczepanski
- Department of Pediatric Hematology and Oncology, Medical University of Silesia (SUM), Zabrze
| | | | - Alita Van der Sluijs
- Department of Immunohematology and Blood Transfusion (IHB) Leiden University Medical Center (LUMC), Leiden
| | - Michaela Novakova
- CLIP-Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ester Mejstrikova
- CLIP-Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Paula Fernandez
- Institute for Laboratory Medicine, Kantonsspital Aarau AG, Aarau
| | - Carmen Aanei
- Hematology Laboratory CHU de Saint-Etienne, Saint-Etienne, Cedex 2
| | - Łukasz Sędek
- Department of Pediatric Hematology and Oncology, Medical University of Silesia (SUM), Zabrze
| | - Luisa Strocchio
- Department of Pediatric Hematology and Oncology IRCCS Ospedale Pediatrico Bambino Gesu', Sapienza University of Rome
| | - Riccardo Masetti
- Pediatric Oncology and Hematology Unit 'Lalla Seràgnoli', IRCCS Azienda Ospedaliero- Universitaria di Bologna, Bologna
| | - Laura Sainati
- Dipartimento di Salute della Donna e del Bambino, Clinica di Oncoematologia Pediatrica, Azienda Ospedale Università di Padova, Padua
| | - Jan Philippé
- Department of Laboratory Medicine, Ghent University Hospital, Ghent
| | - Maria Grazia Valsecchi
- Center of Biostatistics for Clinical Epidemiology, Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza (MB).
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology IRCCS Ospedale Pediatrico Bambino Gesu', Sapienza University of Rome
| | - Jacques J M Van Dongen
- Cancer Research Center (IBMCC-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, CIBERONC and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Department of Immunohematology and Blood Transfusion (IHB) Leiden University Medical Center (LUMC), Leiden
| | - Andrea Biondi
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza (MB), Italy; Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza (MB).
| | - Alberto Orfao
- Cancer Research Center (IBMCC-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, CIBERONC and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca
| | - Giuseppe Gaipa
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza (MB)
| |
Collapse
|
5
|
Delgado AH, Fluxa R, Perez-Andres M, Diks AM, van Gaans-van den Brink JAM, Barkoff AM, Blanco E, Torres-Valle A, Berkowska MA, Grigore G, van Dongen J.J.M, Orfao A. Automated EuroFlow approach for standardized in-depth dissection of human circulating B-cells and plasma cells. Front Immunol 2023; 14:1268686. [PMID: 37915569 PMCID: PMC10616957 DOI: 10.3389/fimmu.2023.1268686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Background Multiparameter flow cytometry (FC) immunophenotyping is a key tool for detailed identification and characterization of human blood leucocytes, including B-lymphocytes and plasma cells (PC). However, currently used conventional data analysis strategies require extensive expertise, are time consuming, and show limited reproducibility. Objective Here, we designed, constructed and validated an automated database-guided gating and identification (AGI) approach for fast and standardized in-depth dissection of B-lymphocyte and PC populations in human blood. Methods For this purpose, 213 FC standard (FCS) datafiles corresponding to umbilical cord and peripheral blood samples from healthy and patient volunteers, stained with the 14-color 18-antibody EuroFlow BIgH-IMM panel, were used. Results The BIgH-IMM antibody panel allowed identification of 117 different B-lymphocyte and PC subsets. Samples from 36 healthy donors were stained and 14 of the datafiles that fulfilled strict inclusion criteria were analysed by an expert flow cytometrist to build the EuroFlow BIgH-IMM database. Data contained in the datafiles was then merged into a reference database that was uploaded in the Infinicyt software (Cytognos, Salamanca, Spain). Subsequently, we compared the results of manual gating (MG) with the performance of two classification algorithms -hierarchical algorithm vs two-step algorithm- for AGI of the cell populations present in 5 randomly selected FCS datafiles. The hierarchical AGI algorithm showed higher correlation values vs conventional MG (r2 of 0.94 vs. 0.88 for the two-step AGI algorithm) and was further validated in a set of 177 FCS datafiles against conventional expert-based MG. For virtually all identifiable cell populations a highly significant correlation was observed between the two approaches (r2>0.81 for 79% of all B-cell populations identified), with a significantly lower median time of analysis per sample (6 vs. 40 min, p=0.001) for the AGI tool vs. MG, respectively and both intra-sample (median CV of 1.7% vs. 10.4% by MG, p<0.001) and inter-expert (median CV of 3.9% vs. 17.3% by MG by 2 experts, p<0.001) variability. Conclusion Our results show that compared to conventional FC data analysis strategies, the here proposed AGI tool is a faster, more robust, reproducible, and standardized approach for in-depth analysis of B-lymphocyte and PC subsets circulating in human blood.
Collapse
Affiliation(s)
- Alejandro H. Delgado
- Cytognos SL, Salamanca, Spain
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
| | | | - Martin Perez-Andres
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Annieck M. Diks
- Department of Immunology (IMMU), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | | | - Elena Blanco
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Alba Torres-Valle
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Magdalena A. Berkowska
- Department of Immunology (IMMU), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - J .J .M. van Dongen
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Department of Immunology (IMMU), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Bourgoin P, Busnel JM. Promises and Remaining Challenges for Further Integration of Basophil Activation Test in Allergy-Related Research and Clinical Practice. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3000-3007. [PMID: 37634807 DOI: 10.1016/j.jaip.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
More than 20 years after having been initially proposed, the relevance and usefulness of basophil activation test (BAT) for the field of allergy research and testing were demonstrated on many occasions. Leveraging the fully open format of a flexible, whole blood-based functional assay, BAT has been shown to be equally important for fundamental research, clinical research, and diagnosis. Regardless of whether the focus of a study is on the characterization of the allergenic moiety, on the patient side, or on the study of the fundamental processes involved in the allergic disease or its treatment, BAT enables the gathering of very important insights. In spite of this, its full capabilities have yet to be leveraged. Various bottlenecks, including but not limited to assay logistics, robustness, flow cytometry access, and/or expertise, have indeed been limiting its development beyond experts and long-term users. Now, various initiatives, aiming at resolving these bottlenecks, have been launched. If successful, a broader use of BAT could then be contemplated. In such a situation, its more thorough integration in clinical practice has the potential to significantly change the allergic patient's journey.
Collapse
Affiliation(s)
- Pénélope Bourgoin
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, France
| | - Jean-Marc Busnel
- Global Research Organization, Beckman Coulter Life Sciences, Marseille, France.
| |
Collapse
|
7
|
Guijarro F, Garrote M, Villamor N, Colomer D, Esteve J, López-Guerra M. Novel Tools for Diagnosis and Monitoring of AML. Curr Oncol 2023; 30:5201-5213. [PMID: 37366878 DOI: 10.3390/curroncol30060395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
In recent years, major advances in the understanding of acute myeloid leukemia (AML) pathogenesis, together with technological progress, have led us into a new era in the diagnosis and follow-up of patients with AML. A combination of immunophenotyping, cytogenetic and molecular studies are required for AML diagnosis, including the use of next-generation sequencing (NGS) gene panels to screen all genetic alterations with diagnostic, prognostic and/or therapeutic value. Regarding AML monitoring, multiparametric flow cytometry and quantitative PCR/RT-PCR are currently the most implemented methodologies for measurable residual disease (MRD) evaluation. Given the limitations of these techniques, there is an urgent need to incorporate new tools for MRD monitoring, such as NGS and digital PCR. This review aims to provide an overview of the different technologies used for AML diagnosis and MRD monitoring and to highlight the limitations and challenges of current versus emerging tools.
Collapse
Affiliation(s)
- Francesca Guijarro
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marta Garrote
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Neus Villamor
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Dolors Colomer
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Jordi Esteve
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Hematology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Mónica López-Guerra
- Hematopathology Section, Pathology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
8
|
Lin CL, Lin CC, Chen TT, Lo WJ, Tzeng SL. Analysis of Immune-Cell Distribution of Bone Marrow in Patients with Myelodysplastic Syndrome. Hematol Rep 2023; 15:50-56. [PMID: 36648883 PMCID: PMC9844488 DOI: 10.3390/hematolrep15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Myelodysplastic syndrome (MDS) immunity plays an important role in the proliferation and apoptosis of aberrant cells. Immune dysregulation has been studied in various prognostic subgroups. This study analyzed 60 patients with MDS via multidimensional flow cytometry to evaluate the expression of aberrant markers, such as CD7 and cytoplasmic CD3 on lymphocytes. The Revised International Prognostic Scoring System (IPSS-R) scores were used to classify the patients into risk groups. The results showed a significant downregulation of CyCD3- T cells in low-intermediate versus high-risk patients (p = 0.013). This study is the first to show that a significant decrease in cyCD3- T cells in patients with a lower IPSS-R score may indicate microenvironmental changes conducive to transformation in MDS.
Collapse
Affiliation(s)
- Chun-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Internal Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung 40343, Taiwan
- Department of Hematology and Oncology, China Medical University Hospital, Taichung 404332, Taiwan
| | - Ching-Chan Lin
- Department of Hematology and Oncology, China Medical University Hospital, Taichung 404332, Taiwan
| | - Tzu-Ting Chen
- Department of Hematology and Oncology, China Medical University Hospital, Taichung 404332, Taiwan
| | - Wen-Jyi Lo
- Department of Hematology and Oncology, China Medical University Hospital, Taichung 404332, Taiwan
| | - Shu-Ling Tzeng
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-24730022 (ext. 12226)
| |
Collapse
|
9
|
van de Loosdrecht AA, Kern W, Porwit A, Valent P, Kordasti S, Cremers E, Alhan C, Duetz C, Dunlop A, Hobo W, Preijers F, Wagner-Ballon O, Chapuis N, Fontenay M, Bettelheim P, Eidenschink-Brodersen L, Font P, Johansson U, Loken MR, Te Marvelde JG, Matarraz S, Ogata K, Oelschlaegel U, Orfao A, Psarra K, Subirá D, Wells DA, Béné MC, Della Porta MG, Burbury K, Bellos F, van der Velden VHJ, Westers TM, Saft L, Ireland R. Clinical application of flow cytometry in patients with unexplained cytopenia and suspected myelodysplastic syndrome: A report of the European LeukemiaNet International MDS-Flow Cytometry Working Group. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:77-86. [PMID: 34897979 DOI: 10.1002/cyto.b.22044] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
This article discusses the rationale for inclusion of flow cytometry (FCM) in the diagnostic investigation and evaluation of cytopenias of uncertain origin and suspected myelodysplastic syndromes (MDS) by the European LeukemiaNet international MDS Flow Working Group (ELN iMDS Flow WG). The WHO 2016 classification recognizes that FCM contributes to the diagnosis of MDS and may be useful for prognostication, prediction, and evaluation of response to therapy and follow-up of MDS patients.
Collapse
Affiliation(s)
- Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Anna Porwit
- Department of Clinical Sciences, Division of Oncology and Pathology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Eline Cremers
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Canan Alhan
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Carolien Duetz
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alan Dunlop
- Department of Haemato-Oncology, Royal Marsden Hospital, London, UK
| | - Willemijn Hobo
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank Preijers
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Orianne Wagner-Ballon
- Department of Hematology and Immunology, Assistance Publique-Hôpitaux de Paris, University Hospital Henri Mondor, Créteil, France
- Université Paris-Est Créteil, Inserm U955, Créteil, France
| | - Nicolas Chapuis
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Centre-Université de Paris, Paris, France
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Michaela Fontenay
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Centre-Université de Paris, Paris, France
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Peter Bettelheim
- Department of Hematology, Ordensklinikum Linz, Elisabethinen, Linz, Austria
| | | | - Patricia Font
- Department of Hematology, Hospital General Universitario Gregorio Marañon - IiSGM, Madrid, Spain
| | - Ulrika Johansson
- Laboratory Medicine, SI-HMDS, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Jeroen G Te Marvelde
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sergio Matarraz
- Cancer Research Center (CIC/IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, Salamanca, Spain
| | - Kiyoyuki Ogata
- Metropolitan Research and Treatment Centre for Blood Disorders (MRTC Japan), Tokyo, Japan
| | - Uta Oelschlaegel
- Department of Internal Medicine, University Hospital Carl-Gustav-Carus TU Dresden, Dresden, Germany
| | - Alberto Orfao
- Cancer Research Center (CIC/IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, Salamanca, Spain
| | - Katherina Psarra
- Department of Immunology - Histocompatibility, Evangelismos Hospital, Athens, Greece
| | - Dolores Subirá
- Department of Hematology, Flow Cytometry Unit, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | | | - Marie C Béné
- Hematology Biology, Nantes University Hospital and CRCINA, Nantes, France
| | - Matteo G Della Porta
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Kate Burbury
- Department of Haematology, Peter MacCallum Cancer Centre, and University of Melbourne, Melbourne, Australia
| | | | - Vincent H J van der Velden
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Theresia M Westers
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Leonie Saft
- Department of Clinical Pathology, Division of Hematopathology, Karolinska University Hospital and Institute, Stockholm, Sweden
| | - Robin Ireland
- Department of Haematology and SE-HMDS, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
10
|
Piñero P, Morillas M, Gutierrez N, Barragán E, Such E, Breña J, García-Hernández MC, Gil C, Botella C, González-Navajas JM, Zapater P, Montesinos P, Sempere A, Tarín F. Identification of Leukemia-Associated Immunophenotypes by Databaseguided Flow Cytometry Provides a Highly Sensitive and Reproducible Strategy for the Study of Measurable Residual Disease in Acute Myeloblastic Leukemia. Cancers (Basel) 2022; 14:cancers14164010. [PMID: 36011002 PMCID: PMC9406948 DOI: 10.3390/cancers14164010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The complete immunophenotypic characterization of acute myeloid leukemia is essential for an accurate diagnosis and follow-up, which is determinant in the course of the disease. In many cases, the only option for the evaluation of minimal residual disease is flow cytometry, so the aim of this study is to develop an automatized multidimensional strategy to identify and characterize LAIPs as well as to detect new emerging aberrances in AML patients during the follow-up. The integrated DFN/LAIP strategy that we propose allows the identification of the most useful markers for minimal residual disease monitoring, improving the sensitivity and specificity of these studies. Furthermore, the use of databases and the automation of the analysis provide the basis for the generation of objective conclusions in minimal residual disease evaluations. Abstract Background: Multiparametric Flow Cytometry (MFC) is an essential tool to study the involved cell lineages, the aberrant differentiation/maturation patterns and the expression of aberrant antigens in acute myeloid leukemia (AML). The characterization of leukemia-associated immunophenotypes (LAIPs) at the moment of diagnosis is critical to establish reproducible strategies for the study of measurable residual disease using MFC (MFC-MRD). Methods: In this study, we identify and characterize LAIPs by comparing the leukemic populations of 145 AML patients, using the EuroFlow AML/ MDS MFC panel, with six databases of normal myeloid progenitors (MPCs). Principal component analysis was used to identify and characterize the LAIPs, which were then used to generate individual profiles for MFC-MRD monitoring. Furthermore, we investigated the relationship between the expression patterns of LAIPs and the different subtypes of AML. The MFC-MRD study was performed by identifying residual AML populations that matched with the LAIPs at diagnosis. To further validate this approach, the presence of MRD was also assessed by qPCR (qPCR-MRD). Finally, we studied the association between MFC-MRD and progression-free survival (PFS). Results: The strategy used in this study allowed us to describe more than 300 different LAIPs and facilitated the association of specific phenotypes with certain subtypes of AML. The MFC-MRD monitoring based on LAIPs with good/strong specificity was applicable to virtually all patients and showed a good correlation with qPCR-MRD and PFS. Conclusions: The described methodology provides an objective method to identify and characterize LAIPs. Furthermore, it provides a theoretical basis to develop highly sensitive MFC-MRD strategies.
Collapse
Affiliation(s)
- Paula Piñero
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- Correspondence:
| | - Marina Morillas
- Hematology Department, Dr. Balmis General University Hospital, 03010 Alicante, Spain
| | - Natalia Gutierrez
- Hematology Department, Dr. Balmis General University Hospital, 03010 Alicante, Spain
| | - Eva Barragán
- Hematology Department, La Fe University Hospital, 46026 Valencia, Spain
| | - Esperanza Such
- Hematology Department, La Fe University Hospital, 46026 Valencia, Spain
| | - Joaquin Breña
- Hematology Department, La Candelaria General University Hospital, 38010 Santa Cruz de Tenerife, Spain
| | | | - Cristina Gil
- Hematology Department, Dr. Balmis General University Hospital, 03010 Alicante, Spain
| | - Carmen Botella
- Hematology Department, Dr. Balmis General University Hospital, 03010 Alicante, Spain
| | | | - Pedro Zapater
- Pharmacology Department, Dr. Balmis General University Hospital, Miguel Hernández University, 03202 Elche, Spain
| | - Pau Montesinos
- Hematology Department, La Fe University Hospital, 46026 Valencia, Spain
| | - Amparo Sempere
- Hematology Department, La Fe University Hospital, 46026 Valencia, Spain
| | - Fabian Tarín
- Hematology Department, Dr. Balmis General University Hospital, 03010 Alicante, Spain
| |
Collapse
|
11
|
Brando B. Issue Highlights-May 2022. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:185-188. [PMID: 35567410 DOI: 10.1002/cyto.b.22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Bruno Brando
- Hematology Laboratory and Transfusion Center Western Milan Area Hospital Consortium 20025 Legnano (Milano), Italy
| |
Collapse
|
12
|
Bras AE, Matarraz S, Nierkens S, Fernández P, Philippé J, Aanei CM, de Mello FV, Burgos L, van der Sluijs-Gelling AJ, Grigore GE, van Dongen JJM, Orfao A, van der Velden VHJ. Quality Assessment of a Large Multi-Center Flow Cytometric Dataset of Acute Myeloid Leukemia Patients-A EuroFlow Study. Cancers (Basel) 2022; 14:cancers14082011. [PMID: 35454917 PMCID: PMC9033003 DOI: 10.3390/cancers14082011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Flowcytometric analysis allows for detailed identification and characterization of large numbers of cells in blood, bone marrow, and other body fluids and tissue samples and therefore contributes to the diagnostics of hematological malignancies. Novel data analysis tools allow for multidimensional analysis and comparison of patient samples with reference databases of normal, reactive, and/or leukemia/lymphoma patient samples. Building such reference databases requires strict quality assessment (QA) procedures. Here, we compiled a dataset and developed a QA methodology of the EuroFlow Acute Myeloid Leukemia (AML) database, based on the eight-color EuroFlow AML panel consisting of six different antibody combinations, including four backbone markers. In total, 1142 AML cases and 42 normal bone marrow samples were included in this analysis. QA was performed on 803 AML cases using multidimensional analysis of backbone markers, as well as tube-specific markers, and data were compared using classical analysis employing median and peak expression values. Validation of the QA procedure was performed by re-analysis of >300 cases and by running an independent cohort of 339 AML cases. Initial evaluation of the final cohort confirmed specific immunophenotypic patterns in AML subgroups; the dataset therefore can reliably be used for more detailed exploration of the immunophenotypic variability of AML. Our data show the potential pitfalls and provide possible solutions for constructing large flowcytometric databases. In addition, the provided approach may facilitate the building of other databases and thereby support the development of novel tools for (semi)automated QA and subsequent data analysis.
Collapse
Affiliation(s)
- Anne E. Bras
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
| | - Sergio Matarraz
- Cancer Research Center (IBMCC-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, CIBERONC and Institute of Biomedical Research of Salamanca (IBSAL), Campus Miguel de Unamuno, Paseo de la Universidad de Coimbra s/n, 37007 Salamanca, Spain; (S.M.); (A.O.)
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands;
| | - Paula Fernández
- Institute for Laboratory Medicine, Kantonsspital Aarau AG, Tellstrasse 25, 5001 Aarau, Switzerland;
| | - Jan Philippé
- Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium;
| | - Carmen-Mariana Aanei
- Laboratory of Hematology, University Hospital of Saint-Etienne, Av. Albert Raimond, 42055 Saint-Etienne, France;
| | - Fabiana Vieira de Mello
- Cytometry Service, Institute of Pediatrics (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rua Bruno Lobo 50, Cidade Universitária, Rio de Janeiro 21941-912, RJ, Brazil;
| | - Leire Burgos
- Applied Medical Research Center (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), Clinica Universidad de Navarra, 31008 Pamplona, Spain;
| | - Alita J. van der Sluijs-Gelling
- Department of Immunology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (A.J.v.d.S.-G.); (J.J.M.v.D.)
| | - Georgiana Emilia Grigore
- Cytognos SL, Carretera de Madrid Km. 0 Nave 9, Pol. La Serna, Santa Marta de Tormes, 37900 Salamanca, Spain;
| | - Jacques J. M. van Dongen
- Department of Immunology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (A.J.v.d.S.-G.); (J.J.M.v.D.)
- Cancer Research Center (CIC), Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Alberto Orfao
- Cancer Research Center (IBMCC-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, CIBERONC and Institute of Biomedical Research of Salamanca (IBSAL), Campus Miguel de Unamuno, Paseo de la Universidad de Coimbra s/n, 37007 Salamanca, Spain; (S.M.); (A.O.)
| | - Vincent H. J. van der Velden
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
- Correspondence: ; Tel.: +31-10-704-4253
| | | |
Collapse
|
13
|
Brestoff JR, Frater JL. Contemporary Challenges in Clinical Flow Cytometry: Small Samples, Big Data, Little Time. J Appl Lab Med 2022; 7:931-944. [DOI: 10.1093/jalm/jfab176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
Abstract
Background
Immunophenotypic analysis of cell populations by flow cytometry has an established role in primary diagnosis and disease monitoring of many hematologic diseases. A persistent problem in evaluation of specimens is suboptimal cell counts and low cell viability, which results in an undesirable rate of analysis failure. In addition, the increased amount of data generated in flow cytometry challenges existing data analysis and reporting paradigms.
Content
We describe current and emerging technological improvements in cell analysis that allow the clinical laboratory to perform multiparameter analysis of specimens, including those with low cell counts and other quality issues. These technologies include conventional multicolor flow cytometry and new high-dimensional technologies, such as spectral flow cytometry and mass cytometry that enable detection of over 40 antigens simultaneously. The advantages and disadvantages of each approach are discussed. We also describe new innovations in flow cytometry data analysis, including artificial intelligence-aided techniques.
Summary
Improvements in analytical technology, in tandem with innovations in data analysis, data storage, and reporting mechanisms, help to optimize the quality of clinical flow cytometry. These improvements are essential because of the expanding role of flow cytometry in patient care.
Collapse
Affiliation(s)
- Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - John L Frater
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
14
|
Novakova M. Finding a treasure in the rear-view mirror? Cytometry A 2021; 99:965-966. [PMID: 34173321 DOI: 10.1002/cyto.a.24478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Michaela Novakova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
15
|
Lefeivre T, Jones L, Trinquand A, Pinton A, Macintyre E, Laurenti E, Bond J. Immature acute leukaemias: lessons from the haematopoietic roadmap. FEBS J 2021; 289:4355-4370. [PMID: 34028982 DOI: 10.1111/febs.16030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022]
Abstract
It is essential to relate the biology of acute leukaemia to normal blood cell development. In this review, we discuss how modern models of haematopoiesis might inform approaches to diagnosis and management of immature leukaemias, with a specific focus on T-lymphoid and myeloid cases. In particular, we consider whether next-generation analytical tools could provide new perspectives that could improve our understanding of immature blood cancer biology.
Collapse
Affiliation(s)
- Thomas Lefeivre
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Luke Jones
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Amélie Trinquand
- National Children's Research Centre, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Antoine Pinton
- Laboratory of Onco-Haematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Université de Paris, Paris, France.,Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, Paris, France
| | - Elizabeth Macintyre
- Laboratory of Onco-Haematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Université de Paris, Paris, France.,Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, Paris, France
| | - Elisa Laurenti
- Department of Haematology, University of Cambridge, Cambridge, UK.,Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jonathan Bond
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|