1
|
Vellaichamy G, Poulik J, Palanisamy N, Kis O, Fang X, Al-Obaidy KI, Shwayder TA, Friedman BJ. Spitz-Type Proliferative Nodules Arising Within a Large Congenital Melanocytic Nevus Harboring a Novel LMNA-RAF1 Fusion. J Cutan Pathol 2025; 52:43-47. [PMID: 39462150 DOI: 10.1111/cup.14741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/23/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Affiliation(s)
| | - Janet Poulik
- Detroit Medical Center, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Nallasivam Palanisamy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Olena Kis
- Department of Pathology & Laboratory Medicine, Henry Ford Health, Detroit, Michigan, USA
| | - Xiaolan Fang
- Department of Pathology & Laboratory Medicine, Henry Ford Health, Detroit, Michigan, USA
| | - Khaleel I Al-Obaidy
- Department of Pathology & Laboratory Medicine, Henry Ford Health, Detroit, Michigan, USA
| | - Tor A Shwayder
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| | - Ben J Friedman
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| |
Collapse
|
2
|
Khaddour K, Haq R, Buchbinder EI, Liu D, Manos MP, Ott PA, Hodi FS, Insco ML. Targeting RAF1 gene fusions with MEK inhibition in metastatic melanoma. Oncologist 2024:oyae297. [PMID: 39504576 DOI: 10.1093/oncolo/oyae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/09/2024] [Indexed: 11/08/2024] Open
Abstract
The biological and clinical relevance of gene fusions in melanoma is unknown. Reports and preclinical data have suggested that tumor cells with specific rearrangements such as RAF1 gene fusions could be therapeutically targeted. To investigate the relevance of targeted therapy in patients with melanoma harboring RAF1 gene fusions, we reviewed records of 1268 melanoma patients with targeted sequencing data at the Dana-Farber Cancer Institute. We identified 9 cases and report here on their clinicopathologic characteristics. We describe the favorable outcome of 2 patients who received MEK inhibitor therapy, including 1 patient with a durable response. We coalesced our data with published reports of patients with RAF1 gene fusions who were treated with targeted therapy. We find that single-agent MEK inhibition has anti-tumor activity in melanoma patients harboring an RAF1 gene fusion, and we propose that patients with RAF1 gene fusions should be considered for single-agent MEK inhibitor therapy.
Collapse
Affiliation(s)
- Karam Khaddour
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Elizabeth I Buchbinder
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Michael P Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, MA 02115, United States
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Megan L Insco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
3
|
Conway JR, Gillani R, Crowdis J, Reardon B, Park J, Han S, Titchen B, Benamar M, Haq R, Van Allen EM. Somatic structural variants drive distinct modes of oncogenesis in melanoma. J Clin Invest 2024; 134:e177270. [PMID: 38758740 PMCID: PMC11213511 DOI: 10.1172/jci177270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
The diversity of structural variants (SVs) in melanoma and how they impact oncogenesis are incompletely known. We performed harmonized analysis of SVs across melanoma histologic and genomic subtypes, and we identified distinct global properties between subtypes. These included the frequency and size of SVs and SV classes, their relation to chromothripsis events, and the impact on cancer-related genes of SVs that alter topologically associated domain (TAD) boundaries. Following our prior identification of double-stranded break repair deficiency in a subset of triple-wild-type cutaneous melanoma, we identified MRE11 and NBN loss-of-function SVs in melanomas with this mutational signature. Experimental knockouts of MRE11 and NBN, followed by olaparib cell viability assays in melanoma cells, indicated that dysregulation of each of these genes may cause sensitivity to PARP inhibitors in cutaneous melanomas. Broadly, harmonized analysis of melanoma SVs revealed distinct global genomic properties and molecular drivers, which may have biological and therapeutic impact.
Collapse
Affiliation(s)
- Jake R. Conway
- Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Riaz Gillani
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Jett Crowdis
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Brendan Reardon
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jihye Park
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Seunghun Han
- Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Breanna Titchen
- Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Rizwan Haq
- Center for Cancer Precision Medicine and
| | - Eliezer M. Van Allen
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Center for Cancer Precision Medicine and
- Parker Institute for Cancer Immunotherapy, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Daruish M, Ambrogio F, Colagrande A, Marzullo A, Alaggio R, Trilli I, Ingravallo G, Cazzato G. Kinase Fusions in Spitz Melanocytic Tumors: The Past, the Present, and the Future. Dermatopathology (Basel) 2024; 11:112-123. [PMID: 38390852 PMCID: PMC10885070 DOI: 10.3390/dermatopathology11010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, particular interest has developed in molecular biology applied to the field of dermatopathology, with a focus on nevi of the Spitz spectrum. From 2014 onwards, an increasing number of papers have been published to classify, stratify, and correctly frame molecular alterations, including kinase fusions. In this paper, we try to synthesize the knowledge gained in this area so far. In December 2023, we searched Medline and Scopus for case reports and case series, narrative and systematic reviews, meta-analyses, observational studies-either longitudinal or historical, case series, and case reports published in English in the last 15 years using the keywords spitzoid neoplasms, kinase fusions, ALK, ROS1, NTRK (1-2-3), MET, RET, MAP3K8, and RAF1. ALK-rearranged Spitz tumors and ROS-1-rearranged tumors are among the most studied and characterized entities in the literature, in an attempt (although not always successful) to correlate histopathological features with the probable molecular driver alteration. NTRK-, RET-, and MET-rearranged Spitz tumors present another studied and characterized entity, with several rearrangements described but as of yet incomplete information about their prognostic significance. Furthermore, although rarer, rearrangements of serine-threonine kinases such as BRAF, RAF1, and MAP3K8 have also been described, but more cases with more detailed information about possible histopathological alterations, mechanisms of etiopathogenesis, and also prognosis are needed. The knowledge of molecular drivers is of great interest in the field of melanocytic diagnostics, and it is important to consider that in addition to immunohistochemistry, molecular techniques such as FISH, PCR, and/or NGS are essential to confirm and classify the different patterns of mutation. Future studies with large case series and molecular sequencing techniques are needed to allow for a more complete and comprehensive understanding of the role of fusion kinases in the spitzoid tumor family.
Collapse
Affiliation(s)
- Maged Daruish
- Dorset County Hospital NHS Foundation Trust, Dorchester DT1 2JY, UK
| | - Francesca Ambrogio
- Section of Dermatology and Venereology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Anna Colagrande
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Andrea Marzullo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
5
|
Riaud M, Maxwell J, Soria-Bretones I, Dankner M, Li M, Rose AAN. The role of CRAF in cancer progression: from molecular mechanisms to precision therapies. Nat Rev Cancer 2024; 24:105-122. [PMID: 38195917 DOI: 10.1038/s41568-023-00650-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
The RAF family of kinases includes key activators of the pro-tumourigenic mitogen-activated protein kinase pathway. Hyperactivation of RAF proteins, particularly BRAF and CRAF, drives tumour progression and drug resistance in many types of cancer. Although BRAF is the most studied RAF protein, partially owing to its high mutation incidence in melanoma, the role of CRAF in tumourigenesis and drug resistance is becoming increasingly clinically relevant. Here, we summarize the main known regulatory mechanisms and gene alterations that contribute to CRAF activity, highlighting the different oncogenic roles of CRAF, and categorize RAF1 (CRAF) mutations according to the effect on kinase activity. Additionally, we emphasize the effect that CRAF alterations may have on drug resistance and how precision therapies could effectively target CRAF-dependent tumours. Here, we discuss preclinical and clinical findings that may lead to improved treatments for all types of oncogenic RAF1 alterations in cancer.
Collapse
Affiliation(s)
- Melody Riaud
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jennifer Maxwell
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Isabel Soria-Bretones
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Matthew Dankner
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Meredith Li
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - April A N Rose
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada.
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Cordier F, Loontiens S, Van der Meulen J, Lapeire L, van Ramshorst GH, Sys G, Van Dorpe J, Creytens D. RAF1-rearranged Spindle Cell Mesenchymal Tumor With Calcification and Heterotopic Ossification: A Case Report and Review of Literature. Int J Surg Pathol 2024; 32:133-139. [PMID: 37141633 DOI: 10.1177/10668969231167493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We report an exceptional case of a spindle cell mesenchymal tumor with S100 and CD34 co-reactivity, which harbored a SLMAP::RAF1 fusion. To the best of our knowledge, this is the second case of a spindle cell mesenchymal tumor with S100 and CD34 co-reactivity with this specific fusion. Remarkable is the presence of calcification and heterotopic ossification in the center of our lesion, a feature that, to our knowledge, has not been described yet in RAF1-rearranged spindle cell mesenchymal tumors.
Collapse
Affiliation(s)
- Fleur Cordier
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Siebe Loontiens
- CRIG, Cancer Research Institute Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
- Molecular Diagnostics Ghent University Hospital (MDG), Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Joni Van der Meulen
- CRIG, Cancer Research Institute Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
- Molecular Diagnostics Ghent University Hospital (MDG), Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lore Lapeire
- CRIG, Cancer Research Institute Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Medical Oncology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Gabrielle H van Ramshorst
- Department of Gastrointestinal Surgery, Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Gwen Sys
- CRIG, Cancer Research Institute Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Traumatology and Orthopaedics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - David Creytens
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Shafi S, Jones D, Iwenofu OH, Satturwar S. Novel ATG7::RAF1 gene fusion in malignant glomus tumor. Genes Chromosomes Cancer 2024; 63:e23202. [PMID: 37724934 DOI: 10.1002/gcc.23202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023] Open
Abstract
Glomus tumors are classified as members of the perivascular myoid family of tumors. Nearly half of these show NOTCH-gene fusions and a smaller subset has BRAF V600E mutations. Here, we report a novel ATG7::RAF1 fusion in malignant glomus tumor occurring in a 40-year-old female which has not been reported in the malignant glomus tumor before. A 40-year-old female presented with a persistent lateral heel pain and an increase in the size of a mass along the lateral ankle for nearly 10 years. Resected specimen showed a well circumscribed lesion composed of spindled and epithelioid cells with moderate nuclear atypia and mitotic figures (7/10 high-power fields) including atypical forms without any necrosis, lymphovascular, or perineural invasion. The tumor was positive for smooth muscle actin, smooth muscle myosin heavy chain, H-caldesmon, collagen type IV, and discovered on gastronintestinal stromal tumors-1 but negative for AE1/3, desmin, S-100, CD34, and CD117. RNA sequencing showed presence of ATG7-RAF1 fusion. This fusion has not been reported in the malignant glomus tumor before. Future studies on larger cohorts are needed to ascertain the biological significance of these tumors with novel gene fusions.
Collapse
Affiliation(s)
- Saba Shafi
- Department of Pathology & Laboratory Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Dan Jones
- Department of Pathology & Laboratory Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - O Hans Iwenofu
- Department of Pathology & Laboratory Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Swati Satturwar
- Department of Pathology & Laboratory Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Wang P, Laster K, Jia X, Dong Z, Liu K. Targeting CRAF kinase in anti-cancer therapy: progress and opportunities. Mol Cancer 2023; 22:208. [PMID: 38111008 PMCID: PMC10726672 DOI: 10.1186/s12943-023-01903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
The RAS/mitogen-activated protein kinase (MAPK) signaling cascade is commonly dysregulated in human malignancies by processes driven by RAS or RAF oncogenes. Among the members of the RAF kinase family, CRAF plays an important role in the RAS-MAPK signaling pathway, as well as in the progression of cancer. Recent research has provided evidence implicating the role of CRAF in the physiological regulation and the resistance to BRAF inhibitors through MAPK-dependent and MAPK-independent mechanisms. Nevertheless, the effectiveness of solely targeting CRAF kinase activity remains controversial. Moreover, the kinase-independent function of CRAF may be essential for lung cancers with KRAS mutations. It is imperative to develop strategies to enhance efficacy and minimize toxicity in tumors driven by RAS or RAF oncogenes. The review investigates CRAF alterations observed in cancers and unravels the distinct roles of CRAF in cancers propelled by diverse oncogenes. This review also seeks to summarize CRAF-interacting proteins and delineate CRAF's regulation across various cancer hallmarks. Additionally, we discuss recent advances in pan-RAF inhibitors and their combination with other therapeutic approaches to improve treatment outcomes and minimize adverse effects in patients with RAF/RAS-mutant tumors. By providing a comprehensive understanding of the multifaceted role of CRAF in cancers and highlighting the latest developments in RAF inhibitor therapies, we endeavor to identify synergistic targets and elucidate resistance pathways, setting the stage for more robust and safer combination strategies for cancer treatment.
Collapse
Affiliation(s)
- Penglei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
- Basic Medicine Sciences Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
9
|
Lim SH, Jung J, Hong JY, Kim ST, Park SH, Park JO, Kim KM, Lee J. Prevalence of RAF1 Aberrations in Metastatic Cancer Patients: Real-World Data. Biomedicines 2023; 11:3264. [PMID: 38137485 PMCID: PMC10740931 DOI: 10.3390/biomedicines11123264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
PURPOSE Therapeutic targeting of RAF1 is a promising cancer treatment, but the relationship between clinical features and RAF1 aberrations in terms of the MAPK signaling pathway is poorly understood in various solid tumors. METHODS Between October 2019 and June 2023 at Samsung Medical Center, 3895 patients with metastatic solid cancers underwent next-generation sequencing (NGS) using TruSight Oncology 500 (TSO500) assays as routine clinical practice. We surveyed the incidence of RAF1 aberrations including mutations (single-nucleotide variants [SNVs]), amplifications (copy number variation), and fusions. RESULTS Among the 3895 metastatic cancer patients, 77 (2.0%) exhibited RAF1 aberrations. Of these 77 patients, 44 (1.1%) had RAF1 mutations (SNV), 25 (0.6%) had RAF1 amplifications, and 10 (0.3%) had RAF1 fusions. Among the 10 patients with RAF1 fusions, concurrent RAF1 amplifications and RAF1 mutations were detected in one patient each. The most common tumor types were bladder cancer (11.5%), followed by ampulla of Vater (AoV) cancer (5.3%), melanoma (3.0%), gallbladder (GB) cancer (2.6%), and gastric (2.3%) cancer. Microsatellite instability high (MSI-H) tumors were observed in five of 76 patients (6.6%) with RAF1 aberrations, while MSI-H tumors were found in only 2.1% of patients with wild-type RAF1 cancers (p < 0.0001). CONCLUSION We demonstrated that approximately 2.0% of patients with metastatic solid cancers have RAF1 aberrations according to NGS of tumor specimens.
Collapse
Affiliation(s)
- Sung Hee Lim
- Samsung Medical Center, Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.H.L.); (J.J.); (J.Y.H.); (S.T.K.); (S.H.P.); (J.O.P.)
| | - Jaeyun Jung
- Samsung Medical Center, Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.H.L.); (J.J.); (J.Y.H.); (S.T.K.); (S.H.P.); (J.O.P.)
- Experimental Therapeutics Development Center, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Jung Young Hong
- Samsung Medical Center, Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.H.L.); (J.J.); (J.Y.H.); (S.T.K.); (S.H.P.); (J.O.P.)
| | - Seung Tae Kim
- Samsung Medical Center, Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.H.L.); (J.J.); (J.Y.H.); (S.T.K.); (S.H.P.); (J.O.P.)
| | - Se Hoon Park
- Samsung Medical Center, Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.H.L.); (J.J.); (J.Y.H.); (S.T.K.); (S.H.P.); (J.O.P.)
| | - Joon Oh Park
- Samsung Medical Center, Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.H.L.); (J.J.); (J.Y.H.); (S.T.K.); (S.H.P.); (J.O.P.)
| | - Kyoung-Mee Kim
- Samsung Medical Center, Department of Pathology and Translational Genomics, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Jeeyun Lee
- Samsung Medical Center, Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.H.L.); (J.J.); (J.Y.H.); (S.T.K.); (S.H.P.); (J.O.P.)
| |
Collapse
|
10
|
Donati M, Nosek D, Olivares S, Lemahieu J, Loontiens S, Mansour B, Gerami P, Kazakov DV. Spitz tumor with RAF1 fusion: A report of 3 cases. Ann Diagn Pathol 2023; 67:152215. [PMID: 37856952 DOI: 10.1016/j.anndiagpath.2023.152215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Spitz tumors are melanocytic neoplasms morphologically characterized by spindled and/or epithelioid cells and specific stromal and epidermal changes associated with mutually exclusive fusion kinases involving ALK, ROS1, NTRK1, NTRK2, NTRK3, MET and RET, BRAF and MAP3K8 genes or, less commonly, HRAS mutation. RAF1 fusions have been recently detected in cutaneous melanocytic neoplasms, including conventional melanoma, congenital nevus and BAP-1 inactivated tumors. We report herewith three Spitz neoplasms with a RAF1 fusion, including a previously reported CTDSPL::RAF1 fusion and two novel PPAP2B::RAF1 and ATP2B4::RAF1 fusions. Two cases were classified as Spitz nevus, while the remaining neoplasm was classified as Spitz melanoma at the time of the diagnosis, given 9p21 homozygous deletion and positive sentinel lymph node biopsy. We suggest that RAF1 fused melanocytic neoplasms can represent a novel subgroup of Spitz tumors, with a RAF1 fusion representing an oncogenic driver.
Collapse
Affiliation(s)
- Michele Donati
- Department of Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy.
| | - Daniel Nosek
- Department of Pathology, Umeå University, Umeå, Sweden
| | - Shantel Olivares
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Siebe Loontiens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Molecular Diagnostics Ghent University Hospital (MDG), Ghent, Belgium; CRIG, Cancer Research Institute Ghent, Ghent University Hospital, Ghent, Belgium
| | - Boulos Mansour
- Department of Pathology, Ospedale Israelitico di Roma, Rome, Italy
| | - Pedram Gerami
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dmitry V Kazakov
- IDP Institut für Dermatohistopathologie, Pathologie Institut Enge, Zürich, Switzerland
| |
Collapse
|
11
|
Benhamida JK, Harmsen HJ, Ma D, William CM, Li BK, Villafania L, Sukhadia P, Mullaney KA, Dewan MC, Vakiani E, Karajannis MA, Snuderl M, Zagzag D, Ladanyi M, Rosenblum MK, Bale TA. Recurrent TRAK1::RAF1 Fusions in pediatric low-grade gliomas. Brain Pathol 2023; 33:e13185. [PMID: 37399073 PMCID: PMC10467040 DOI: 10.1111/bpa.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023] Open
Abstract
Fusions involving CRAF (RAF1) are infrequent oncogenic drivers in pediatric low-grade gliomas, rarely identified in tumors bearing features of pilocytic astrocytoma, and involving a limited number of known fusion partners. We describe recurrent TRAK1::RAF1 fusions, previously unreported in brain tumors, in three pediatric patients with low-grade glial-glioneuronal tumors. We present the associated clinical, histopathologic and molecular features. Patients were all female, aged 8 years, 15 months, and 10 months at diagnosis. All tumors were located in the cerebral hemispheres and predominantly cortical, with leptomeningeal involvement in 2/3 patients. Similar to previously described activating RAF1 fusions, the breakpoints in RAF1 all occurred 5' of the kinase domain, while the breakpoints in the 3' partner preserved the N-terminal kinesin-interacting domain and coiled-coil motifs of TRAK1. Two of the three cases demonstrated methylation profiles (v12.5) compatible with desmoplastic infantile ganglioglioma (DIG)/desmoplastic infantile astrocytoma (DIA) and have remained clinically stable and without disease progression/recurrence after resection. The remaining tumor was non-classifiable; with focal recurrence 14 months after initial resection; the patient remains symptom free and without further recurrence/progression (5 months post re-resection and 19 months from initial diagnosis). Our report expands the landscape of oncogenic RAF1 fusions in pediatric gliomas, which will help to further refine tumor classification and guide management of patients with these alterations.
Collapse
Affiliation(s)
- Jamal K. Benhamida
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Hannah J. Harmsen
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Deqin Ma
- Department of PathologyUniversity of Iowa Hospitals and ClinicsIowa CityIowaUSA
| | | | - Bryan K. Li
- Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Present address:
Division of Pediatric Hematology/OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Liliana Villafania
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Purvil Sukhadia
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Kerry A. Mullaney
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Michael C. Dewan
- Department of Neurological SurgeryVanderbilt University Medical Center
| | - Efsevia Vakiani
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | | | - Matija Snuderl
- Department of PathologyNYU Langone HealthNew YorkNew YorkUSA
| | - David Zagzag
- Department of PathologyNYU Langone HealthNew YorkNew YorkUSA
- Department of NeurosurgeryNYU Langone HealthNew YorkNew YorkUSA
| | - Marc Ladanyi
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Marc K. Rosenblum
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Tejus A. Bale
- Department of Pathology and Laboratory MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| |
Collapse
|
12
|
Dawood S, Ali ZJ. Entrectinib for NTRK Fusion-Positive Metastatic Melanoma Progressing on Combined PD-1 and CTLA-4 Inhibition: A Case Report. Case Rep Oncol 2023; 16:1451-1459. [PMID: 38028569 PMCID: PMC10673342 DOI: 10.1159/000534475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The burden of melanoma is increasing globally. Despite the use of immunotherapy and targeted therapy, the prognosis of metastatic melanoma remains relatively poor. The integration of comprehensive molecular profiling can lead to the detection of actionable biomarkers and the expansion of treatment options, thereby prolonging cancer patient survival. Case Presentation We herein present the case of a female 54-year-old patient diagnosed with melanoma of the right knee, for which she underwent surgery. Patient showed progression of disease after 10 cycles of adjuvant nivolumab. Ipilimumab (1 mg/kg every 3 weeks) was added to the treatment regimen but no clinical improvement was observed. Molecular profiling was conducted based on patient tissue, and an ANXA2-NTRK3 fusion was detected in the tumor. This specific fusion has not been previously reported; however, it is in-frame and similar to other known oncogenic NTRK fusions. At the time of entrectinib initiation, the patient had clear disease progression on the right leg on standard of care immunotherapy. She was commenced on entrectinib 200 mg once daily for 2 weeks. Dose escalation was attempted, and treatment intensity was managed based on drug tolerability. Good treatment response was observed on laboratory and radiologic parameters. As of September 2023, i.e., 2.5 years after treatment initiation, patient disease continues to be controlled with entrectinib. Conclusion Profiling of advanced tumors is important to determine the presence of agnostic markers that can be targeted and ultimately improve the prognostic outcome of patients after the failure of standard of care.
Collapse
Affiliation(s)
- Shaheenah Dawood
- Adjunct Clinical Professor, Mohammed Bin Rashid University of Medicine and Health Sciences, Consultant Medical Oncologist, Dubai, UAE
| | | |
Collapse
|
13
|
Li Y, Wang B, Wang C, Zhao D, Liu Z, Niu Y, Wang X, Li W, Zhu J, Tao H, Ma T, Li T. Genomic and Transcriptional Profiling of Chinese Melanoma Patients Enhanced Potentially Druggable Targets: A Multicenter Study. Cancers (Basel) 2022; 15:cancers15010283. [PMID: 36612279 PMCID: PMC9818204 DOI: 10.3390/cancers15010283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In contrast to Caucasian melanoma, which has been extensively studied, there are few studies on melanoma in Asian populations. Sporadic studies reported that only 40% of Asian melanoma patients could be druggable, which was much lower than that in Caucasians. More studies are required to refine this conclusion. METHODS Chinese melanoma patients (n = 469) were sequentially sequenced by DNA-NGS and RNA-NGS. The genomic alterations were determined, and potentially actionable targets were investigated. RESULTS Patients with potential druggable targets were identified in 75% of Chinese melanoma patients by DNA-NGS based on OncoKB, which was much higher than in a previous Asian study. NRG1 fusions were first identified in melanoma. In addition, up to 11.7% (7/60) of patients in the undruggable group could be recognized as actionable by including RNA-NGS analysis. By comparing the fusion detection rate between DNA-NGS and RNA-NGS, all available samples after DNA-NGS detection were further verified by RNA-NGS. The use of RNA-NGS enhanced the proportion of druggable fusions from 2.56% to 17.27%. In total, the use of RNA-NGS increased the druggable proportion from 75% to 78%. CONCLUSIONS In this study, we systemically analyzed the actionable landscape of melanoma in the largest Asian cohort. In addition, we first demonstrated how DNA and RNA sequential sequencing is essential in bringing clinical benefits to more patients with melanoma.
Collapse
Affiliation(s)
- Yue Li
- Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Baoming Wang
- Jichenjunchuang Clinical Laboratory, Hangzhou 310022, China
| | - Chunyang Wang
- Jichenjunchuang Clinical Laboratory, Hangzhou 310022, China
| | - Dandan Zhao
- Jichenjunchuang Clinical Laboratory, Hangzhou 310022, China
| | - Zhengchuang Liu
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yanling Niu
- Jichenjunchuang Clinical Laboratory, Hangzhou 310022, China
| | - Xiaojuan Wang
- Jichenjunchuang Clinical Laboratory, Hangzhou 310022, China
| | - Wei Li
- Jichenjunchuang Clinical Laboratory, Hangzhou 310022, China
| | - Jianhua Zhu
- Jichenjunchuang Clinical Laboratory, Hangzhou 310022, China
| | - Houquan Tao
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Department of Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Tonghui Ma
- Jichenjunchuang Clinical Laboratory, Hangzhou 310022, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (T.M.); (T.L.)
| | - Tao Li
- Institute of Basic Medicine and Cancer (IBMC), Department of Bone and Soft-tissue Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310022, China
- Correspondence: (T.M.); (T.L.)
| |
Collapse
|
14
|
Shukla P, Dange P, Mohanty BS, Gadewal N, Chaudhari P, Sarin R. ARID2 suppression promotes tumor progression and upregulates cytokeratin 8, 18 and β-4 integrin expression in TP53-mutated tobacco-related oral cancer and has prognostic implications. Cancer Gene Ther 2022; 29:1908-1917. [PMID: 35869277 DOI: 10.1038/s41417-022-00505-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 01/25/2023]
Abstract
Mutations in ARID2 and TP53 genes are found to be implicated in the tobacco related tumorigeneses. However, the effect of loss of ARID2 in the TP53 mutated background in tobacco related cancer including oral cancer has not been investigated yet. Hence, in this study we knockdown ARID2 using shRNA mediated knockdown strategy in TP53 mutated oral squamous cell carcinoma (OSCC) cell line and studied its tumorigenic role. Our study revealed that suppression of ARID2 in TP53 mutated oral cancer cells increases cell motility and invasion, induces drastic morphological changes and leads to a marked increase in the expression levels of cytokeratins, and integrins, CK8, CK18 and β4-Integrin, markers of cell migration/invasion in oral cancer. ARID2 suppression also showed early onset and increased tumorigenicity in-vivo. Interestingly, transcriptome profiling revealed differentially expressed genes associated with migration and invasion in oral cancer cells including AKR1C2, NCAM2, NOS1, ADAM23 and genes of S100A family in ARID2 knockdown TP53 mutated oral cancer cells. Pathway analysis of differentially regulated genes identified "cancer pathways" and "PI3K/AKT Pathway" to be significantly dysregulated upon suppression of ARID2 in TP53 mutated OSCC cells. Notably, decreased ARID2 expression and increased CK8, CK18 expression leads to poor prognosis in Head and Neck cancer (HNSC) patients as revealed by Pan-Cancer TCGA data analysis. To conclude, our study is the first to demonstrate tumor suppressor role of ARID2 in TP53 mutated background indicating their cooperative role in OSCC, and also highlights its prognostic implications suggesting ARID2 as an important therapeutic target in OSCC.
Collapse
Affiliation(s)
- Pallavi Shukla
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Prerana Dange
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Bhabani Shankar Mohanty
- Comparative Oncology & Small Animal Imaging Facility, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Nikhil Gadewal
- Bioinformatics Centre, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Pradip Chaudhari
- Comparative Oncology & Small Animal Imaging Facility, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Rajiv Sarin
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India.
- Cancer Genetics Clinic, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India.
| |
Collapse
|
15
|
Moran JMT, Le LP, Nardi V, Golas J, Farahani AA, Signorelli S, Onozato ML, Foreman RK, Duncan LM, Lawrence DP, Lennerz JK, Dias-Santagata D, Hoang MP. Identification of fusions with potential clinical significance in melanoma. Mod Pathol 2022; 35:1837-1847. [PMID: 35871080 DOI: 10.1038/s41379-022-01138-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022]
Abstract
Though uncommon in melanoma, gene fusions may have therapeutic implications. Next generation sequencing-based clinical assays, designed to detect relevant gene fusions, mutations, and copy number changes, were performed on 750 melanomas (375 primary and 375 metastases) at our institution from 2014-2021. These included 599 (80%) cutaneous, 38 (5%) acral, 11 (1.5%) anorectal, 23 (3%) sinonasal, 27 (3.6%) eye (uveal/ conjunctiva), 11 (1.5%) genital (vulva/penile), and 41 (5.5%) melanomas of unknown primary. Sixteen fusions (2%) were detected in samples from 16 patients: 12/599 (2%) cutaneous, 2/38 (5%) acral, 1/9 (11%) vulva, 1/23(4.3%) sinonasal; and 12/16 (75%) fusions were potentially targetable. We identified two novel rearrangements: NAGS::MAST2 and NOTCH1::GNB1; and two fusions that have been reported in other malignancies but not in melanoma: CANT1::ETV4 (prostate cancer) and CCDC6::RET (thyroid cancer). Additional fusions, previously reported in melanoma, included: EML4::ALK, MLPH::ALK, AGAP3::BRAF, AGK::BRAF, CDH3::BRAF, CCT8::BRAF, DIP2B::BRAF, EFNB1::RAF1, LRCH3::RAF1, MAP4::RAF1, RUFY1::RAF1, and ADCY2::TERT. Fusion positive melanomas harbored recurrent alterations in TERT and CDKN2A, among others. Gene fusions were exceedingly rare (0.2%) in BRAF/RAS/NF1-mutant tumors and were detected in 5.6% of triple wild-type melanomas. Interestingly, gene rearrangements were significantly enriched within the subset of triple wild-type melanomas that harbor TERT promoter mutations (18% versus 2%, p < 0.0001). Thirteen (81%) patients were treated with immunotherapy for metastatic disease or in the adjuvant setting. Six of 12 (50%) patients with potentially actionable fusions progressed on immunotherapy, and 3/6 (50%) were treated with targeted agents (ALK and MEK inhibitors), 2 off-label and 1 as part of a clinical trial. One patient with an AGAP3::BRAF fusion positive melanoma experienced a 30-month long response to trametinib. We show that, detecting fusions, especially in triple wild-type melanomas with TERT promoter mutations, may have a clinically significant impact in patients with advanced disease who have failed front-line immunotherapy.
Collapse
Affiliation(s)
- Jakob M T Moran
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Long P Le
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Josephine Golas
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander A Farahani
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvia Signorelli
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maristela L Onozato
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruth K Foreman
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lyn M Duncan
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donald P Lawrence
- Division of Medical Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dora Dias-Santagata
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Mai P Hoang
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
An S, Koh HH, Chang ES, Choi J, Song JY, Lee MS, Choi YL. Unearthing novel fusions as therapeutic targets in solid tumors using targeted RNA sequencing. Front Oncol 2022; 12:892918. [PMID: 36033527 PMCID: PMC9399837 DOI: 10.3389/fonc.2022.892918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Detection of oncogenic fusion genes in cancers, particularly in the diagnosis of uncertain tumors, is crucial for determining effective therapeutic strategies. Although novel fusion genes have been discovered through sequencing, verifying their oncogenic potential remain difficult. Therefore, we evaluated the utility of targeted RNA sequencing in 165 tumor samples by identifying known and unknown fusions. Additionally, by applying additional criteria, we discovered eight novel fusion genes that are expected to process oncogenicity. Among the novel fusion genes, RAF1 fusion genes were detected in two cases. PTPRG-RAF1 fusion led to an increase in cell growth; while dabrafenib, a BRAF inhibitor, reduced the growth of cells expressing RAF1. This study demonstrated the utility of RNA panel sequencing as a theragnostic tool and established criteria for identifying oncogenic fusion genes during post-sequencing analysis.
Collapse
Affiliation(s)
- Sungbin An
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Laboratory of Molecular Pathology and Theranotics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Hyun Hee Koh
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Sol Chang
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Laboratory of Molecular Pathology and Theranotics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Juyoung Choi
- Laboratory of Molecular Pathology and Theranotics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| | - Ji-Young Song
- Laboratory of Molecular Pathology and Theranotics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Mi-Sook Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Laboratory of Molecular Pathology and Theranotics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- *Correspondence: Mi-Sook Lee, ; Yoon-La Choi,
| | - Yoon-La Choi
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Laboratory of Molecular Pathology and Theranotics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- Department of Pathology and Translational Genomics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
- *Correspondence: Mi-Sook Lee, ; Yoon-La Choi,
| |
Collapse
|
17
|
Mito JK, Weber MC, Corbin A, Murphy GF, Zon LI. Modeling Spitz melanoma in zebrafish using sequential mutagenesis. Dis Model Mech 2022; 15:276442. [PMID: 36017742 PMCID: PMC9438928 DOI: 10.1242/dmm.049452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/13/2022] [Indexed: 01/13/2023] Open
Abstract
Spitz neoplasms are a diverse group of molecularly and histologically defined melanocytic tumors with varying biologic potentials. The precise classification of Spitz neoplasms can be challenging. Recent studies have revealed recurrent fusions involving multiple kinases in a large proportion of Spitz tumors. In this study, we generated a transgenic zebrafish model of Spitz melanoma using a previously identified ZCCHC8-ROS1 fusion gene. Animals developed grossly apparent melanocytic proliferations as early as 3 weeks of age and overt melanoma as early as 5 weeks. By 7 weeks, ZCCHC8-ROS1 induced a histologic spectrum of neoplasms ranging from hyperpigmented patches to melanoma. Given the swift onset of these tumors during development, we extended this approach into adult fish using a recently described electroporation technique. Tissue-specific expression of ZCCHC8-ROS1 in adults led to melanocyte expansion without overt progression to melanoma. Subsequent electroporation with tissue-specific CRISPR, targeting only tp53 was sufficient to induce transformation to melanoma. Our model exhibits the use of sequential mutagenesis in the adult zebrafish, and demonstrates that ZCCHC8-ROS1 induces a spectrum of melanocytic lesions that closely mimics human Spitz neoplasms. Summary: We describe the first animal model of Spitz neoplasms and demonstrate its use for modeling sequential mutagenesis and its potential for studying melanocyte development in vivo.
Collapse
Affiliation(s)
- Jeffrey K Mito
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Margaret C Weber
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Alexandra Corbin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - George F Murphy
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
18
|
Li Y, Pan M, Lu T, Yu D, Liu C, Wang Z, Hu G. RAF1 promotes lymphatic metastasis of hypopharyngeal carcinoma via regulating LAGE1: an experimental research. J Transl Med 2022; 20:255. [PMID: 35668458 PMCID: PMC9172115 DOI: 10.1186/s12967-022-03468-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Lymphatic metastasis was an independent prognostic risk factor for hypopharyngeal carcinoma and was the main cause of treatment failure. The purpose of this study was to screen the differential genes and investigate the mechanism of lymphatic metastasis in hypopharyngeal carcinoma. METHODS Transcriptome sequencing was performed on primary tumors of patients, and differential genes were screened by bioinformatics analysis. The expression of differential genes was verified by qRT-PCR, western-blotting and immunohistochemical, and prognostic value was analyzed by Kaplan-Meier and log-rank test and Cox's test. Next, FADU and SCC15 cell lines were used to demonstrate the function of differential genes both in vitro by EdU, Flow cytometry, Wound Healing and Transwell assays and in vivo by a foot-pad xenograft mice model. Proteomic sequencing was performed to screen relevant targets. In addition, in vitro and in vivo experiments were conducted to verify the mechanism of lymphatic metastasis. RESULTS Results of transcriptome sequencing showed that RAF1 was a significantly differential gene in lymphatic metastasis and was an independent prognostic risk factor. In vitro experiments suggested that decreased expression of RAF1 could inhibit proliferation, migration and invasion of tumor cells and promote apoptosis. In vivo experiments indicated that RAF1 could promote tumor growth and lymphatic metastasis. Proteomic sequencing and subsequent experiments suggested that LAGE1 could promote development of tumor and lymphatic metastasis, and was regulated by RAF1. CONCLUSIONS It suggests that RAF1 can promote lymphatic metastasis of hypopharyngeal carcinoma by regulating LAGE1, and provide a basis for the exploring of novel therapeutic target and ultimately provide new guidance for the establishment of intelligent diagnosis and precise treatment of hypopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yanshi Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Min Pan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tao Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dan Yu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chuan Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhihai Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guohua Hu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
19
|
Darabi S, Elliott A, Braxton DR, Zeng J, Hodges K, Poorman K, Swensen J, Shanthappa BU, Hinton JP, Gibney GT, Moser J, Phung T, Atkins MB, In GK, Korn WM, Eisenberg BL, Demeure MJ. Transcriptional Profiling of Malignant Melanoma Reveals Novel and Potentially Targetable Gene Fusions. Cancers (Basel) 2022; 14:cancers14061505. [PMID: 35326655 PMCID: PMC8946593 DOI: 10.3390/cancers14061505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Malignant melanoma is a complex disease that is estimated to claim over 7000 lives in the United States in 2021. Although recent advances in genomic technology have helped with the identification of driver variants, molecular studies and clinical trials have often focused on prevalent alterations, such as the BRAF-V600E mutation. With the inclusion of whole transcriptome sequencing, molecular profiling of melanomas has identified gene fusions and revealed gene expression profiles that are consistent with the activation of signaling pathways by common driver mutations. Patients harboring such fusions may benefit from currently approved targeted therapies and should be considered in the design of future clinical trials to further personalize treatments for patients with malignant melanoma. Abstract Invasive melanoma is the deadliest type of skin cancer, with 101,110 expected cases to be diagnosed in 2021. Recurrent BRAF and NRAS mutations are well documented in melanoma. Biologic implications of gene fusions and the efficacy of therapeutically targeting them remains unknown. Retrospective review of patient samples that underwent next-generation sequencing of the exons of 592 cancer-relevant genes and whole transcriptome sequencing for the detection of gene fusion events and gene expression profiling. Expression of PDL1 and ERK1/2 was assessed by immunohistochemistry (IHC). There were 33 (2.6%) cases with oncogenic fusions (14 novel), involving BRAF, RAF1, PRKCA, TERT, AXL, and FGFR3. MAPK pathway-associated genes were over-expressed in BRAF and RAF1 fusion-positive tumors in absence of other driver alterations. Increased expression in tumors with PRKCA and TERT fusions was concurrent with MAPK pathway alterations. For a subset of samples with available tissue, increased phosphorylation of ERK1/2 was observed in BRAF, RAF1, and PRKCA fusion-positive tumors. Oncogenic gene fusions are associated with transcriptional activation of the MAPK pathway, suggesting they could be therapeutic targets with available inhibitors. Additional analyses to fully characterize the oncogenic effects of these fusions may support biomarker driven clinical trials.
Collapse
Affiliation(s)
- Sourat Darabi
- Hoag Family Cancer Institute, Newport Beach, CA 92663, USA; (D.R.B.); (B.L.E.); (M.J.D.)
- Correspondence:
| | - Andrew Elliott
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - David R. Braxton
- Hoag Family Cancer Institute, Newport Beach, CA 92663, USA; (D.R.B.); (B.L.E.); (M.J.D.)
| | - Jia Zeng
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Kurt Hodges
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Kelsey Poorman
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Jeff Swensen
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Basavaraja U. Shanthappa
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - James P. Hinton
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Geoffrey T. Gibney
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, DC 20007, USA; (G.T.G.); (M.B.A.)
| | - Justin Moser
- Honor Health Research Institute, Scottsdale, AZ 85258, USA;
| | - Thuy Phung
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA;
| | - Michael B. Atkins
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, DC 20007, USA; (G.T.G.); (M.B.A.)
| | - Gino K. In
- Division of Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA;
| | - Wolfgang M. Korn
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Burton L. Eisenberg
- Hoag Family Cancer Institute, Newport Beach, CA 92663, USA; (D.R.B.); (B.L.E.); (M.J.D.)
- Division of Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA;
| | - Michael J. Demeure
- Hoag Family Cancer Institute, Newport Beach, CA 92663, USA; (D.R.B.); (B.L.E.); (M.J.D.)
- Translational Genomics Research Institution, Phoenix, AZ 85004, USA
| |
Collapse
|
20
|
Colebatch AJ, Paver EC, Vergara IA, Thompson JF, Long GV, Wilmott JS, Scolyer RA. Elevated non-coding promoter mutations are associated with malignant transformation of melanocytic naevi to melanoma. Pathology 2022; 54:533-540. [DOI: 10.1016/j.pathol.2021.12.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
|
21
|
Yeung MCF, Lam AYL, Shek TWH. Novel MAP4::RAF1 Fusion in a Primary Bone Sarcoma: Expanding the spectrum of RAF1 Fusion Sarcoma. Int J Surg Pathol 2022; 30:682-688. [PMID: 35156861 DOI: 10.1177/10668969221080059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soft tissue tumors with RAF1 fusion had been emerging as a group of tumors with peculiar histology and immunoprofile. While a case series and rare case reports of RAF1 translocated sarcoma had been reported, to our knowledge a primary bone tumor with RAF1 translocation and fusion partner with MAP4 had not been described in the literature. The patient was a 60-year-old lady, with strong family history of breast cancer, who presented with pathological fracture of right humerus. X-ray revealed a 9.7 cm juxta-articular lesion of the proximal humerus, which was expansile and lytic with a non-sclerotic well defined border distally, radiologically suggestive of a giant cell tumor of bone. Excision was performed after initial biopsy. Histology showed a monomorphic low grade spindle cell lesion with prominent hyalinized stroma. Immunohistochemistry demonstrated diffuse CD34 staining, with focal staining for S100. Gene sequencing for histone 3 H3 genes was negative for hotspot mutation. Targeted RNA-seq sequencing revealed the presence of MAP4::RAF1 fusion, which was confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) and fluorescence in-situ hybridization (FISH) break-apart probes involving both genes. The overall features were consistent with a primary bone sarcoma with RAF1 fusion. This report expanded the spectrum of RAF1 fusion sarcoma and was the first report documenting its primary occurrence in bone.
Collapse
Affiliation(s)
- Maximus C F Yeung
- 71020Department of Pathology, The University of Hong Kong, Queen Mary Hospital, HKSAR
| | - Albert Y L Lam
- 71020Department of Orthopaedics and Traumatology, The University of Hong Kong, Queen Mary Hospital, HKSAR
| | - Tony W H Shek
- 71020Department of Pathology, The University of Hong Kong, Queen Mary Hospital, HKSAR
| |
Collapse
|
22
|
Koehne de González A, Mansukhani MM, Fernandes H, Hsiao SJ. Pan-tumor screening for NTRK gene fusions using pan-TRK immunohistochemistry and RNA NGS fusion panel testing. Cancer Genet 2022; 262-263:47-52. [PMID: 35007853 DOI: 10.1016/j.cancergen.2021.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/08/2021] [Accepted: 12/30/2021] [Indexed: 12/21/2022]
Abstract
Targetable NTRK gene fusions can be detected across tumor types using methodologies such as pan-TRK IHC, DNA or RNA NGS testing, or FISH. Challenges for implementation of clinical testing for NTRK fusions may arise due to the range in NTRK fusion prevalence across tumors, endogenous levels of TRK expression in tissues, and the large number of potential fusion partners. In this study, we examined our experience evaluating driver mutation negative lung, urothelial or cholangiocarcinoma cases, in addition to cases with positive, equivocal, or weak staining by pan-TRK IHC for NTRK fusions. 63/127 (49.6%) of these cases were positive for pan-TRK IHC, of which 71.4% showed weak or focal staining, potentially due to physiologic or non-specific TRK expression. Of these 127 cases, 4 harbored a NTRK fusion (1 fusion was seen in two separate samples from the same patient) as confirmed by RNA fusion panel testing. Pan-TRK IHC was positive in 1 case with TPM3-NTRK1 fusion, equivocal in 1 case with GOLGA4-NTRK3 fusion, and negative in 2 samples with ADAM19-NTRK3 fusion. Our findings show that we were able to successfully identify NTRK fusions that resulted in targeted therapy. However, our results suggest limited sensitivity of pan-TRK IHC for NTRK3 fusions, and that the reduced specificity for pan-TRK IHC in tumors with physiologic or non-specific TRK expression, results in false positive samples that require confirmatory testing by RNA based NGS.
Collapse
Affiliation(s)
- Anne Koehne de González
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Mahesh M Mansukhani
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Helen Fernandes
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Susan J Hsiao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
23
|
Panet F, Jung S, Alcindor T. Sustained Response to the Mitogen-Activated Extracellular Kinase Inhibitor Trametinib in a Spindle Cell Sarcoma Harboring a QKI-RAF1 Gene Fusion. JCO Precis Oncol 2022; 6:e2100303. [PMID: 35050712 PMCID: PMC8789206 DOI: 10.1200/po.21.00303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/24/2021] [Accepted: 12/22/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Sungmi Jung
- McGill University Health Centre, Montreal, QC, Canada
| | | |
Collapse
|
24
|
Velmahos CS, Badgeley M, Lo Y. Using deep learning to identify bladder cancers with FGFR-activating mutations from histology images. Cancer Med 2021; 10:4805-4813. [PMID: 34114376 PMCID: PMC8290253 DOI: 10.1002/cam4.4044] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/12/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In recent years, the fibroblast growth factor receptor (FGFR) pathway has been proven to be an important therapeutic target in bladder cancer. FGFR-targeted therapies are effective for patients with FGFR mutation, which can be discovered through genetic sequencing. However, genetic sequencing is not commonly performed at diagnosis, whereas a histologic assessment of the tumor is. We aim to computationally extract imaging biomarkers from existing tumor diagnostic slides in order to predict FGFR alterations in bladder cancer. METHODS This study analyzed genomic profiles and H&E-stained tumor diagnostic slides of bladder cancer cases from The Cancer Genome Atlas (n = 418 cases). A convolutional neural network (CNN) identified tumor-infiltrating lymphocytes (TIL). The percentage of the tissue containing TIL ("TIL percentage") was then used to predict FGFR activation status with a logistic regression model. RESULTS This predictive model could proficiently identify patients with any type of FGFR gene aberration using the CNN-based TIL percentage (sensitivity = 0.89, specificity = 0.42, AUROC = 0.76). A similar model which focused on predicting patients with only FGFR2/FGFR3 mutation was also found to be highly sensitive, but also specific (sensitivity = 0.82, specificity = 0.85, AUROC = 0.86). CONCLUSION TIL percentage is a computationally derived image biomarker from routine tumor histology that can predict whether a tumor has FGFR mutations. CNNs and other digital pathology methods may complement genome sequencing and provide earlier screening options for candidates of targeted therapies.
Collapse
Affiliation(s)
| | | | - Ying‐Chun Lo
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
| |
Collapse
|
25
|
Nakama K, Ogata D, Nakano E, Tsutsui K, Jinnai S, Namikawa K, Takahashi A, Yamazaki N. Clinical response to a MEK inhibitor in a patient with metastatic melanoma harboring an RAF1 gene rearrangement detected by cancer gene panel testing. J Dermatol 2021; 48:e256-e257. [PMID: 33768587 DOI: 10.1111/1346-8138.15849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Kenta Nakama
- Department of Dermatological Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Dai Ogata
- Department of Dermatological Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Eiji Nakano
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keita Tsutsui
- Department of Dermatological Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shunichi Jinnai
- Department of Dermatological Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kenjiro Namikawa
- Department of Dermatological Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akira Takahashi
- Department of Dermatological Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Naoya Yamazaki
- Department of Dermatological Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
26
|
LeBlanc RE, Lefferts JA, Baker ML, Linos KD. Novel LRRFIP2-RAF1 fusion identified in an acral melanoma: A review of the literature on melanocytic proliferations with RAF1 fusions and the potential therapeutic implications. J Cutan Pathol 2020; 47:1181-1186. [PMID: 32700768 DOI: 10.1111/cup.13817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/29/2022]
Abstract
A small subset of cutaneous melanomas harbor oncogenic gene fusions, which could potentially serve as therapeutic targets for patients with advanced disease as novel therapies are developed. Fusions involving RAF1 are exceedingly rare in melanocytic neoplasms, occurring in less than 1% of melanomas, and usually arise in tumors that are wild type for BRAF, NRAS, and NF1. We describe herein a case of acral melanoma with two satellite metastases and sentinel lymph node involvement. The melanoma had a concomitant KIT variant and LRRFIP2-RAF1 fusion. This constellation of molecular findings has not been reported previously in melanoma. We review the existing literature on melanocytic neoplasms with RAF1 fusions and discuss the potential clinical implications of this genetic event.
Collapse
Affiliation(s)
- Robert E LeBlanc
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Joel A Lefferts
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Michael L Baker
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Konstantinos D Linos
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
27
|
Williams EA, Montesion M, Shah N, Sharaf R, Pavlick DC, Sokol ES, Alexander B, Venstrom J, Elvin JA, Ross JS, Williams KJ, Tse JY, Mochel MC. Melanoma with in-frame deletion of MAP2K1: a distinct molecular subtype of cutaneous melanoma mutually exclusive from BRAF, NRAS, and NF1 mutations. Mod Pathol 2020; 33:2397-2406. [PMID: 32483240 PMCID: PMC7685971 DOI: 10.1038/s41379-020-0581-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 11/12/2022]
Abstract
While the genomics of BRAF, NRAS, and other key genes influencing MAP kinase (MAPK) activity have been thoroughly characterized in melanoma, mutations in MAP2K1 (MEK1) have received significantly less attention and have consisted almost entirely of missense mutations considered secondary oncogenic drivers of melanoma. Here, we investigated melanomas with in-frame deletions of MAP2K1, alterations characterized as MAPK-activating in recent experimental models. Our case archive of clinical melanoma samples with comprehensive genomic profiling by a hybrid capture-based DNA sequencing platform was searched for MAP2K1 genetic alterations. Clinical data, pathology reports, and histopathology were reviewed for each case. From a cohort of 7119 advanced melanomas, 37 unique cases (0.5%) featured small in-frame deletions in MAP2K1. These included E102_I103del (n = 11 cases), P105_A106del (n = 8), Q58_E62del (n = 6), I103_K104del (n = 5), I99_K104del (n = 3), L98_I103del (n = 3), and E41_F53del (n = 1). All 37 were wild type for BRAF, NRAS, and NF1 genomic alterations ("triple wild-type"), representing 2.0% of triple wild-type melanomas overall (37/1882). Median age was 66 years and 49% were male. The majority arose from primary cutaneous sites (35/37; 95%) and demonstrated a UV signature when available (21/25; 84%). Tumor mutational burden was typical for cutaneous melanoma (median = 9.6 mut/Mb, range 0-35.7), and frequently mutated genes included TERTp (63%), CDKN2A (46%), TP53 (11%), PTEN (8%), APC (8%), and CTNNB1 (5%). Histopathology revealed a spectrum of appearances typical of melanoma. For comparison, we evaluated 221 cases with pathogenic missense single nucleotide variants in MAP2K1. The vast majority of melanomas with missense SNVs in MAP2K1 showed co-mutations in BRAF (58%), NF1 (23%), or NRAS (18%). In-frame deletions in MAP2K1, previously shown in experimental models to be strongly MAPK-activating, characterized a significant subset of triple wild-type melanoma (2.0%), suggesting a primary oncogenic role for these mutations. Comprehensive genomic profiling of melanomas enables detection of this alteration, which may have implications for potential therapeutic options.
Collapse
Affiliation(s)
- Erik A Williams
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA.
| | - Meagan Montesion
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Nikunj Shah
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Radwa Sharaf
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Dean C Pavlick
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Ethan S Sokol
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Brian Alexander
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Jeff Venstrom
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Julia A Elvin
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Jeffrey S Ross
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
- Department of Pathology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13210, USA
| | - Kevin Jon Williams
- Department of Physiology, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Julie Y Tse
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
- Department of Pathology & Laboratory Medicine, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA, 02111, USA
| | - Mark C Mochel
- Departments of Pathology and Dermatology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
28
|
Rivière T, Bader A, Pogoda K, Walzog B, Maier-Begandt D. Structure and Emerging Functions of LRCH Proteins in Leukocyte Biology. Front Cell Dev Biol 2020; 8:584134. [PMID: 33072765 PMCID: PMC7536344 DOI: 10.3389/fcell.2020.584134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/01/2020] [Indexed: 01/10/2023] Open
Abstract
Actin-dependent leukocyte trafficking and activation are critical for immune surveillance under steady state conditions and during disease states. Proper immune surveillance is of utmost importance in mammalian homeostasis and it ensures the defense against pathogen intruders, but it also guarantees tissue integrity through the continuous removal of dying cells or the elimination of tumor cells. On the cellular level, these processes depend on the precise reorganization of the actin cytoskeleton orchestrating, e.g., cell polarization, migration, and vesicular dynamics in leukocytes. The fine-tuning of the actin cytoskeleton is achieved by a multiplicity of actin-binding proteins inducing, e.g., the organization of the actin cytoskeleton or linking the cytoskeleton to membranes and their receptors. More than a decade ago, the family of leucine-rich repeat (LRR) and calponin homology (CH) domain-containing (LRCH) proteins has been identified as cytoskeletal regulators. The LRR domains are important for protein-protein interactions and the CH domains mediate actin binding. LRR and CH domains are frequently found in many proteins, but strikingly the simultaneous expression of both domains in one protein only occurs in the LRCH protein family. To date, one LRCH protein has been described in drosophila and four LRCH proteins have been identified in the murine and the human system. The function of LRCH proteins is still under investigation. Recently, LRCH proteins have emerged as novel players in leukocyte function. In this review, we summarize our current understanding of LRCH proteins with a special emphasis on their function in leukocyte biology.
Collapse
Affiliation(s)
- Thibaud Rivière
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Almke Bader
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kristin Pogoda
- Department of Physiology, Medical Faculty, Augsburg University, Augsburg, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
29
|
RAF1 Gene Fusions as a Possible Driver Mechanism in Rare BAP1-Inactivated Melanocytic Tumors: A Report of 2 Cases. Am J Dermatopathol 2020; 42:961-966. [PMID: 32769548 DOI: 10.1097/dad.0000000000001740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BRCA1-associated protein (BAP1)-inactivated melanocytic tumor (BIMT) is a group of epithelioid melanocytic neoplasms characterized by the loss of function of BAP1, a tumor suppressor gene located on chromosome 3p21. They occur sporadically or in the setting of an autosomal-dominant cancer susceptibility syndrome that predisposes to the development of different internal malignancies. Most of these cutaneous lesions are associated with a BRAF-mutated melanocytic nevus and therefore are included in the group of combined nevi in the last WHO classification of skin tumors. Apart from a BRAF mutation, an NRAS mutation has been reported in rare cases, whereas in some lesions no driver mutation has been detected. Here, we report 2 cases of BIMTs with a BAP1 mutation and a RAF1 fusion. Both lesions proved to be BRAF and NRAS wild type and were associated with a conventional melanocytic nevus with dysplastic junctional features. We suggest that RAF1 fusions can represent an underlying driver genetic event in these cases. Our study extends the morphological and molecular spectrum in BIMTs.
Collapse
|