1
|
Hou X, Shi W, Luo W, Luo Y, Huang X, Li J, Ji N, Chen Q. FUS::DDIT3 Fusion Protein in the Development of Myxoid Liposarcoma and Possible Implications for Therapy. Biomolecules 2024; 14:1297. [PMID: 39456230 PMCID: PMC11506083 DOI: 10.3390/biom14101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The FUS::DDIT3 fusion protein, formed by the chromosomal translocation t (12;16) (q13;p11), is found in over 90% of myxoid liposarcoma (MLS) cases and is a crucial protein in its development. Many studies have explored the role of FUS::DDIT3 in MLS, and the prevailing view is that FUS::DDIT3 inhibits adipocyte differentiation and promotes MLS growth and invasive migration by functioning as an aberrant transcription factor that affects gene expression and regulates its downstream molecules. As fusion proteins are gradually showing their potential as targets for precision cancer therapy, FUS::DDIT3 has also been investigated as a therapeutic target. Drugs that target FUS::DDIT3 and its downstream molecules for treating MLS are widely utilized in both clinical practice and experimental studies, and some of them have demonstrated promising results. This article reviews the findings of relevant research, providing an overview of the oncogenic mechanisms of the FUS::DDIT3 fusion protein in MLS, as well as recent advancements in its therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.H.); (W.S.); (W.L.); (Y.L.); (X.H.); (J.L.); (Q.C.)
| | | |
Collapse
|
2
|
Lajara S, Jo VY. Soft Tissue Fine-Needle Aspiration: Current and Future Impact on Patient Care. Surg Pathol Clin 2024; 17:483-507. [PMID: 39129144 DOI: 10.1016/j.path.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Soft tissue neoplasms pose many diagnostic challenges on fine-needle aspiration (FNA), owing largely to their rarity, large number of entities, and histologic diversity. Advances in ancillary testing now allow detection of the characteristic immunophenotypes and molecular alterations for many neoplasms and include reliable surrogate immunohistochemical markers for underlying molecular events that are highly efficient in small biopsies. A morphology-based framework is recommended to guide appropriate differentials and judicious selection of ancillary tests for small biopsies. The accurate diagnosis of soft tissue tumors is crucial for patient management and prognostication, with many potential implications in this era of precision medicine.
Collapse
Affiliation(s)
- Sigfred Lajara
- Department of Pathology, UPMC Shadyside Hospital, Cancer Pavilion, Suite 201, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Vickie Y Jo
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Michal M, Agaimy A, Croce S, Mechtersheimer G, Gross JM, Xing D, Bell DA, Gupta S, Mosaieby E, Martínek P, Klubíčková N, Michalová K, Bouda J, Fínek J, Hernandez T, Michal M, Schoolmeester JK, Ondič O. PLAG1-Rearranged Uterine Sarcomas: A Study of 11 Cases Showing a Wide Phenotypical Spectrum Not Limited to Myxoid Leiomyosarcoma-Like Morphology. Mod Pathol 2024; 37:100552. [PMID: 38942115 DOI: 10.1016/j.modpat.2024.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
PLAG1 gene fusions were recently identified in a subset of uterine myxoid leiomyosarcomas (M-LMS). However, we have encountered cases of PLAG1-rearranged uterine sarcomas lacking M-LMS-like morphology and/or any expression of smooth muscle markers. To better characterize their clinicopathologic features, we performed a multiinstitutional search that yielded 11 cases. The patients ranged in age from 34 to 72 years (mean, 57 years). All tumors arose in the uterine corpus, ranging in size from 6.5 to 32 cm (mean, 15 cm). The most common stage at presentation was pT1b (n = 6), and 3 cases had stage pT1 (unspecified), and 1 case each presented in stages pT2a and pT3b. Most were treated only with hysterectomy and adnexectomy. The follow-up (range, 7-71 months; median, 39 months) was available for 7 patients. Three cases (7-21 months of follow-up) had no evidence of disease. Three of the 4 remaining patients died of disease within 55 to 71 months, while peritoneal spread developed in the last patient, and the patient was transferred for palliative care at 39 months. Morphologically, the tumors showed a high intertumoral and intratumoral heterogeneity. M-LMS-like and epithelioid leiomyosarcoma-like morphology were present in 3 and 5 primary tumors, respectively, the remaining mostly presented as nondescript ovoid or spindle cell sarcomas. Unusual morphologic findings included prominently hyalinized stroma (n = 3), adipocytic differentiation with areas mimicking myxoid liposarcoma (n = 2), osteosarcomatous differentiation (n = 1), and undifferentiated pleomorphic sarcoma-like areas (n = 1). The mitotic activity ranged from 3 to 24 mitoses per 10 high-power fields (mean, 9); 3 of 10 cases showed necrosis. In 3 of 11 cases, no expression of smooth muscle actin, h-caldesmon, or desmin was noted, whereas 5 of 5 cases expressed PLAG1. By RNA sequencing, the following fusion partners were identified: PUM1, CHCHD7 (each n = 2), C15orf29, CD44, MYOCD, FRMD6, PTK2, and TRPS1 (each n = 1). One case only showed PLAG1 gene break by fluorescence in situ hybridization. Our study documents a much broader morphologic spectrum of PLAG1-rearranged uterine sarcomas than previously reported, encompassing but not limited to M-LMS-like morphology with occasional heterologous (particularly adipocytic) differentiation. As it is currently difficult to precisely define their line of differentiation, for the time being, we suggest using a descriptive name "PLAG1-rearranged uterine sarcoma."
Collapse
Affiliation(s)
- Michael Michal
- Bioptical Laboratory, Ltd, Pilsen, Czech Republic; Department of Pathology, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic.
| | - Abbas Agaimy
- Institute of Pathology, Friedrich Alexander University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Sabrina Croce
- Department of BioPathology, Anticancer Center, Institut Bergonié, Bordeaux, France
| | | | - John M Gross
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Deyin Xing
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Debra A Bell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Elaheh Mosaieby
- Bioptical Laboratory, Ltd, Pilsen, Czech Republic; Department of Pathology, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
| | | | - Natálie Klubíčková
- Bioptical Laboratory, Ltd, Pilsen, Czech Republic; Department of Pathology, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
| | - Květoslava Michalová
- Bioptical Laboratory, Ltd, Pilsen, Czech Republic; Department of Pathology, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
| | - Jiří Bouda
- Department of Gynecology and Obstetrics, Charles University, Faculty of Medicine in Pilsen and Charles University Hospital Pilsen, Pilsen, Czech Republic
| | - Jindřich Fínek
- Department of Oncology and Radiotherapeutics, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
| | - Tahyna Hernandez
- Department of Pathology and Laboratory Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Michal Michal
- Bioptical Laboratory, Ltd, Pilsen, Czech Republic; Department of Pathology, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
| | | | - Ondrej Ondič
- Bioptical Laboratory, Ltd, Pilsen, Czech Republic; Department of Pathology, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
| |
Collapse
|
4
|
Fadaei S, Cordier F, Ferdinande L, Van Dorpe J, Creytens D. Myxoid pleomorphic liposarcoma. Histol Histopathol 2024; 39:1101-1108. [PMID: 38450446 DOI: 10.14670/hh-18-724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Myxoid pleomorphic liposarcoma (MPL) is an extremely rare adipocytic tumor, recently recognized as a distinct entity in the 5th edition of the World Health Organization (WHO) Classification of Soft Tissue and Bone Tumors. Predominantly found in the mediastinum of young women, MPLs exhibit a combination of histological features characteristic of myxoid liposarcoma and pleomorphic (lipo)sarcoma. Their unique molecular features distinguish MPLs from other liposarcomas. Unlike myxoid liposarcomas and well-differentiated/dedifferentiated liposarcomas, MPLs lack specific FUS/EWSR1::DDIT3 gene fusions and MDM2/CDK4 gene amplifications, respectively. MPLs are associated with complex karyotypes, further highlighting their distinct genetic profile. They demonstrate aggressive growth patterns, high recurrence rates, and a high tendency to metastasize. These factors contribute to a poor prognosis, with a median survival of approximately 22.6 months. The aim of this review article is to provide a comprehensive summary of previously documented case reports and studies related to MPLs. By shedding light on the intricate details of MPLs, researchers and clinicians can gain valuable insights that may pave the way for improvements in diagnosis, treatment, and patient outcomes in the future.
Collapse
Affiliation(s)
- Sharareh Fadaei
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Fleur Cordier
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Liesbeth Ferdinande
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - David Creytens
- CRIG, Cancer Research Institute Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Sharma AE, Dickson M, Singer S, Hameed MR, Agaram NP. GLI1 Coamplification in Well-Differentiated/Dedifferentiated Liposarcomas: Clinicopathologic and Molecular Analysis of 92 Cases. Mod Pathol 2024; 37:100494. [PMID: 38621503 PMCID: PMC11193651 DOI: 10.1016/j.modpat.2024.100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
GLI1(12q13.3) amplification is identified in a subset of mesenchymal neoplasms with a distinct nested round cell/epithelioid phenotype. MDM2 and CDK4 genes are situated along the oncogenic 12q13-15 segment, amplification of which defines well-differentiated liposarcoma (WDLPS)/dedifferentiated liposarcoma (DDLPS). The 12q amplicon can occasionally include GLI1, a gene in close proximity to CDK4. We hereby describe the first cohort of GLI1/MDM2/CDK4 coamplified WD/DDLPS. The departmental database was queried retrospectively for all cases of WD/DDLPS having undergone next-generation (MSK-IMPACT) sequencing with confirmed MDM2, CDK4, and GLI1 coamplification. Clinicopathologic data was obtained from a review of the medical chart and available histologic material. Four hundred eighty-six WD/DDLPS cases underwent DNA sequencing, 92 (19%) of which harbored amplification of the GLI1 locus in addition to that of MDM2 and CDK4. These included primary tumors (n = 60), local recurrences (n = 29), and metastases (n = 3). Primary tumors were most frequently retroperitoneal (47/60, 78%), mediastinal (4/60, 7%), and paratesticular (3/60, 5%). Average age was 63 years, with a male:female ratio of 3:2. The cohort was comprised of DDLPS (86/92 [93%], 6 of which were WDLPS with early dedifferentiation) and WDLPS without any longitudinal evidence of dedifferentiation (6/92, 7%). One-fifth (13/86, 17%) of DDLPS cases showed no evidence of a well-differentiated component in any of the primary, recurrent, or metastatic specimens. Dedifferentiated areas mostly showed high-grade undifferentiated pleomorphic sarcoma-like (26/86,30%) and high-grade myxofibrosarcoma-like (13/86,16%) morphologies. A disproportionately increased incidence of meningothelial whorls with/without osseous metaplasia was observed as the predominant pattern in 16/86 (19%) cases, and GLI1-altered morphology as described was identified in a total of 10/86 (12%) tumors. JUN (1p32.1), also implicated in the pathogenesis of WD/DDLPS, was coamplified with all 3 of MDM2, CDK4, and GLI1 in 7/91 (8%) cases. Additional loci along chromosomal arms 1p and 6q, including TNFAIP3, LATS1, and ESR1, were also amplified in a subset of cases. In this large-scale cohort of GLI1 coamplified WD/DDLPS, we elucidate uniquely recurrent features including meningothelial whorl-like and GLI-altered morphology in dedifferentiated areas. Assessment of tumor location (retroperitoneal or mediastinal), identification of a well-differentiated liposarcoma component, and coamplification of other spatially discrete genomic segments (1p and 6q) might aid in distinction from tumors with true driver GLI1 alterations.
Collapse
Affiliation(s)
- Aarti E Sharma
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Hospital for Special Surgery, New York, New York
| | - Mark Dickson
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Department of Surgical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meera R Hameed
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Narasimhan P Agaram
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
6
|
Wakefield C, Hornick JL. Update on immunohistochemistry in bone and soft tissue tumors: Cost-effectively replacing molecular testing with immunohistochemistry. Hum Pathol 2024; 147:58-71. [PMID: 38135060 DOI: 10.1016/j.humpath.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Soft tissue tumors form part of a challenging domain in diagnostic pathology owing to their comparative rarity, astonishing histologic diversity, and overlap between entities. Many of these tumors are now known to be defined by highly recurrent, or, in some instances, unique molecular alterations. Insights from gene profiling continue to elucidate the wider molecular landscape of soft tissue tumors; many of these advances have been co-opted by immunohistochemistry (IHC) for diagnostic applications. There now exists a multitude of antibodies serving as surrogate markers of recurrent gene fusions, amplifications, and point mutations, which, in certain settings, can replace the need for more resource and time-intensive cytogenetic and molecular genetic analyses. IHC presents many advantages including rapid turnaround time, cost-effectiveness, and interpretative reproducibility. A sensible application of these immunohistochemical markers complemented by a working knowledge of the molecular pathogenesis of bone and soft tissue tumors permits accurate diagnosis in the majority of cases. In this review, we will outline some of these biomarkers while emphasizing molecular correlates and highlighting interpretative challenges and pitfalls.
Collapse
Affiliation(s)
- Craig Wakefield
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
7
|
Wachtel M, Surdez D, Grünewald TGP, Schäfer BW. Functional Classification of Fusion Proteins in Sarcoma. Cancers (Basel) 2024; 16:1355. [PMID: 38611033 PMCID: PMC11010897 DOI: 10.3390/cancers16071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Sarcomas comprise a heterogeneous group of malignant tumors of mesenchymal origin. More than 80 entities are associated with different mesenchymal lineages. Sarcomas with fibroblastic, muscle, bone, vascular, adipocytic, and other characteristics are distinguished. Nearly half of all entities contain specific chromosomal translocations that give rise to fusion proteins. These are mostly pathognomonic, and their detection by various molecular techniques supports histopathologic classification. Moreover, the fusion proteins act as oncogenic drivers, and their blockade represents a promising therapeutic approach. This review summarizes the current knowledge on fusion proteins in sarcoma. We categorize the different fusion proteins into functional classes, including kinases, epigenetic regulators, and transcription factors, and describe their mechanisms of action. Interestingly, while fusion proteins acting as transcription factors are found in all mesenchymal lineages, the others have a more restricted pattern. Most kinase-driven sarcomas belong to the fibroblastic/myofibroblastic lineage. Fusion proteins with an epigenetic function are mainly associated with sarcomas of unclear differentiation, suggesting that epigenetic dysregulation leads to a major change in cell identity. Comparison of mechanisms of action reveals recurrent functional modes, including antagonism of Polycomb activity by fusion proteins with epigenetic activity and recruitment of histone acetyltransferases by fusion transcription factors of the myogenic lineage. Finally, based on their biology, we describe potential approaches to block the activity of fusion proteins for therapeutic intervention. Overall, our work highlights differences as well as similarities in the biology of fusion proteins from different sarcomas and provides the basis for a functional classification.
Collapse
Affiliation(s)
- Marco Wachtel
- Department of Oncology and Children’s Research Center, University Children’s Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), CH-8008 Zurich, Switzerland
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Hopp-Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership between DKFZ and Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Beat W. Schäfer
- Department of Oncology and Children’s Research Center, University Children’s Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| |
Collapse
|
8
|
Diaz-Perez JA, Kerr DA. Gene of the month: DDIT3. J Clin Pathol 2024; 77:211-216. [PMID: 38053287 DOI: 10.1136/jcp-2023-208963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
DNA damage-inducible transcript 3 (DDIT3) gene, mapped to the human chromosome 12q13.3, encodes a protein that belongs to the CCAAT/enhancer-binding protein family of transcription factors. DDIT3 is involved in the proliferative control that responds to endoplasmic reticulum stress in normal conditions, dimerising other transcription factors with basic leucine zipper (bZIP) structural motifs. DDIT3 plays a significant role during cell differentiation, especially adipogenesis, arresting the maturation of adipoblasts. In disease, FUS/EWSR1::DDIT3 fusion is the pathogenic event that drives the development of myxoid liposarcoma. The amplification of DDIT3 in other adipocytic neoplasms mediates the presence of adipoblast-like elements. Another fusion, GLI1::DDIT3, has rarely been documented in other tumours. This paper reviews the structure and function of DDIT3, its role in disease-particularly cancer-and its use and pitfalls in diagnostic testing, including immunohistochemistry as a tissue-based marker.
Collapse
Affiliation(s)
- Julio A Diaz-Perez
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Darcy A Kerr
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
9
|
Bourgeau M, Gardner JM. Immunohistochemistry Update in Dermatopathology and Bone and Soft Tissue Pathology. Arch Pathol Lab Med 2024; 148:284-291. [PMID: 37535665 DOI: 10.5858/arpa.2023-0033-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 08/05/2023]
Abstract
CONTEXT.— Immunohistochemistry plays an important role in dermatopathology, particularly for melanocytic lesions and poorly differentiated malignancies. In the field of bone and soft tissue pathology, molecular methods remain the gold standard for diagnosis; however, immunohistochemistry targeting underlying molecular alterations represents a valuable screening tool, especially in areas with limited access to molecular testing. OBJECTIVE.— To describe the utility and limitations of new and emerging immunohistochemical stains in the diagnosis of skin, soft tissue, and bone tumors. DATA SOURCES.— A literature review of recently described immunohistochemical stains in the fields of dermatopathology and bone and soft tissue pathology was performed. CONCLUSIONS.— Immunohistochemistry is an important adjunctive tool for select entities in dermatopathology and bone and soft tissue pathology, and it provides pathologists with valuable evidence of their behavior, underlying molecular alterations, and line of differentiation. Furthermore, immunostains targeting molecular abnormalities have the potential to replace current molecular methods. Many of these recently described stains demonstrate higher sensitivity and specificity; however, limitations and pitfalls still exist, and correlation with morphologic and clinical findings remains essential for diagnosis.
Collapse
Affiliation(s)
- Melanie Bourgeau
- the Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia (Bourgeau)
| | - Jerad M Gardner
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania (Gardner)
| |
Collapse
|
10
|
Mori T, Iwasaki T, Sonoda H, Kawaguchi K, Tomonaga T, Furukawa H, Sato C, Shiraishi S, Taguchi K, Tamiya S, Yoneda R, Oshiro Y, Matsunobu T, Abe C, Kuboyama Y, Ueki N, Kohashi K, Yamamoto H, Nakashima Y, Oda Y. DDIT3-amplified or low-polysomic pleomorphic sarcomas without MDM2 amplification: Clinicopathological review and immunohistochemical profile of nine cases. Hum Pathol 2024; 145:56-62. [PMID: 38401716 DOI: 10.1016/j.humpath.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Several high-grade pleomorphic sarcoma cases that cannot be classified into any existing established categories have been reported. These cases were provisionally classified into undifferentiated pleomorphic sarcoma (UPS). Some dedifferentiated liposarcoma (DDLS) cases may also have been classified into the UPS category due to the absence of MDM2 amplification or an atypical lipomatous tumor/well-differentiated liposarcoma component. We retrieved and reviewed 77 high-grade pleomorphic sarcoma cases, initially diagnosed as UPS in 66 cases and DDLS in 11 cases. Fluorescence in situ hybridization (FISH) analyses of DDIT3 and MDM2 were performed for available cases. Of the cases successfully subjected to DDIT3 FISH (n = 56), nine (7 UPS and 2 DDLS) showed DDIT3 amplification but no MDM2 amplification. Two UPS cases showed both telomeric (5') and centromeric (3') amplification of DDIT3 or low polysomy of chromosome 12, whereas 5 UPS and 2 DDLS cases showed 5'-predominant DDIT3 amplification. Histopathologically, all cases showed UPS-like proliferation of atypical pleomorphic tumor cells. Immunohistochemically, only one case showed focal nuclear positivity for DDIT3, supporting the previous finding that DDIT3 expression was not correlated with DDIT3 amplification. All three cases with focal MDM2 expression involved 5'-predominant amplification, two of which showed DDLS-like histological features. The majority of cases (7/9) showed decreased expression in p53 staining, suggesting that DDIT3 amplification regulates the expression of TP53 like MDM2. From a clinicopathological perspective, we hypothesize that DDIT3-amplified sarcoma, especially with 5'-predominant amplification, can be reclassified out of the UPS category.
Collapse
Affiliation(s)
- Taro Mori
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Iwasaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Sonoda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kengo Kawaguchi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takumi Tomonaga
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Furukawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chiaki Sato
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sakura Shiraishi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Taguchi
- Department of Pathology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Sadafumi Tamiya
- Department of Pathology, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Reiko Yoneda
- Department of Pathology, Hamanomachi Hospital, Fukuoka, Japan
| | - Yumi Oshiro
- Department of Pathology, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Tomoya Matsunobu
- Department of Orthopaedic Surgery, Kyushu Rosai Hospital, Fukuoka, Japan
| | - Chie Abe
- Department of Diagnostic Pathology, Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Yusuke Kuboyama
- Department of Pathology, Oita Red Cross Hospital, Oita, Japan
| | - Nozomi Ueki
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kenichi Kohashi
- Department of Humanpathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hidetaka Yamamoto
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
11
|
Patton A, Dermawan JK. Current updates in sarcoma biomarker discovery: emphasis on next-generation sequencing-based methods. Pathology 2024; 56:274-282. [PMID: 38185613 DOI: 10.1016/j.pathol.2023.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 01/09/2024]
Abstract
Soft tissue sarcomas comprise a heterogeneous group of neoplasms. Although soft tissue malignancies make up only 2% of adult cancers, classification based on histomorphology presents a diagnostic challenge. Characterisation of soft tissue sarcomas by molecular analysis is rapidly evolving to improve diagnostic accuracy and develop targeted therapies. This review highlights the advances in molecular techniques, including current next-generation sequencing-based assays (fusion detection by RNA sequencing, targeted/whole exome sequencing, microRNA profiling), as well as emerging methods (liquid biopsies, DNA methylation profiling, single-cell molecular profiling and next-generation immunohistochemistry) for future clinical applications.
Collapse
Affiliation(s)
- Ashley Patton
- Department of Pathology & Laboratory Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
12
|
Lavernia J, Claramunt R, Romero I, López-Guerrero JA, Llombart-Bosch A, Machado I. Soft Tissue Sarcomas with Chromosomal Alterations in the 12q13-15 Region: Differential Diagnosis and Therapeutic Implications. Cancers (Basel) 2024; 16:432. [PMID: 38275873 PMCID: PMC10814159 DOI: 10.3390/cancers16020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The chromosomal region 12q13-15 is rich in oncogenes and contains several genes involved in the pathogenesis of various mesenchymal neoplasms. Notable genes in this region include MDM2, CDK4, STAT6, DDIT3, and GLI1. Amplification of MDM2 and CDK4 genes can be detected in various mesenchymal and nonmesenchymal neoplasms. Therefore, gene amplification alone is not entirely specific for making a definitive diagnosis and requires the integration of clinical, radiological, morphological, and immunohistochemical findings. Neoplasms with GLI1 alterations may exhibit either GLI1 rearrangements or amplifications of this gene. Despite the diagnostic implications that the overlap of genetic alterations in neoplasms with changes in genes within the 12q13-15 region could create, the discovery of coamplifications of MDM2 with CDK4 and GLI1 offers new therapeutic targets in neoplasms with MDM2/CDK4 amplification. Lastly, it is worth noting that MDM2 or CDK4 amplification is not exclusive to mesenchymal neoplasms; this genetic alteration has also been observed in other epithelial neoplasms or melanomas. This suggests the potential use of MDM2 or CDK4 inhibitors in neoplasms where alterations in these genes do not aid the pathological diagnosis but may help identify potential therapeutic targets. In this review, we delve into the diagnosis and therapeutic implications of tumors with genetic alterations involving the chromosomal region 12q13-15, mainly MDM2, CDK4, and GLI1.
Collapse
Affiliation(s)
- Javier Lavernia
- Oncology Unit, Instituto Valenciano de Oncología, 46009 Valencia, Spain;
| | - Reyes Claramunt
- Laboratory of Molecular Biology, Instituto Valenciano de Oncología, 46009 Valencia, Spain; (R.C.); (J.A.L.-G.)
| | - Ignacio Romero
- Oncology Unit, Instituto Valenciano de Oncología, 46009 Valencia, Spain;
| | - José Antonio López-Guerrero
- Laboratory of Molecular Biology, Instituto Valenciano de Oncología, 46009 Valencia, Spain; (R.C.); (J.A.L.-G.)
| | | | - Isidro Machado
- Pathology Department, University of Valencia, 46010 Valencia, Spain;
- Pathology Department, Instituto Valenciano de Oncología, 46010 Valencia, Spain
- CIBERONC Cancer, 28029 Madrid, Spain
- Patologika Laboratory, Hospital Quiron-Salud, 46010 Valencia, Spain
| |
Collapse
|
13
|
Anderson WJ, Mariño-Enríquez A, Trpkov K, Hornick JL, Nucci MR, Dickson BC, Fletcher CDM. Expanding the Clinicopathologic and Molecular Spectrum of Lipoblastoma-Like Tumor in a Series of 28 Cases. Mod Pathol 2023; 36:100252. [PMID: 37355153 DOI: 10.1016/j.modpat.2023.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Lipoblastoma-like tumor (LLT) is a rare adipocytic neoplasm with a predilection for the vulva. Since 2002, <30 cases have been reported, characterizing it as an indolent tumor that may sometimes recur locally. Diagnosis can be challenging due to its rarity and morphologic overlap with other adipocytic tumors. Thus far, there are no specific molecular or immunohistochemical features to aid in the diagnosis of LLT. Recent case reports have described LLT arising at other sites, including the spermatic cord and gluteal region, suggesting wider anatomical distribution. We present a large series of LLT to further characterize its clinicopathologic and molecular features. Twenty-eight cases of LLT were retrieved from departmental and consult archives (including 8 from a prior series). The cohort comprised 28 patients (8 males, 20 females) with a median age of 28 years (range: 1-80 years). There were 17 primary LLT of the vulva. Other anatomical sites included the scrotum (n = 3), spermatic cord (n = 2), inguinal region (n = 2), limbs (n = 2), pelvis (n = 1), and retroperitoneum (n = 1). Median tumor size was 6.0 cm (range: 1.8-30.0 cm). The tumors had a lobulated architecture and were typically composed of adipocytes, lipoblasts, and spindle cells in a myxoid stroma with prominent thin-walled vessels. Using immunohistochemistry, a subset showed loss of Rb expression (12/23 of samples). Follow-up in 15 patients (median: 56 months) revealed 8 patients with local recurrence and 1 patient with metastases to the lung/pleura and breasts. Targeted DNA sequencing revealed a simple genomic profile with limited copy number alterations and low mutational burden. No alterations in RB1 were identified. The metastatic LLT showed concurrent pathogenic PIK3CA and MTOR activating mutations, both in the primary and in the lung/pleural metastasis; the latter also harbored TERT promoter mutation. One tumor had a pathogenic TSC1 mutation, and one tumor showed 2-copy deletion of CDKN2A, CDKN2B, and MTAP. No biologically significant variants were identified in 8 tumors. No gene fusions were identified by RNA sequencing in 4 tumors successfully sequenced. This study expands the clinicopathologic spectrum of LLT, highlighting its wider anatomical distribution and potential for occasional metastasis. Molecularly, we identified activating mutations in the PI3K-MTOR signaling pathway in 2 tumors, which may contribute to exceptional aggressive behavior.
Collapse
Affiliation(s)
- William J Anderson
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Adrian Mariño-Enríquez
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marisa R Nucci
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D M Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
14
|
Song L, Zhang Y, Wang Y, Xia Q, Guo D, Cao J, Xin X, Cheng H, Liu C, Jia X, Li F. Detection of various fusion genes by one-step RT-PCR and the association with clinicopathological features in 242 cases of soft tissue tumor. Front Cell Dev Biol 2023; 11:1214262. [PMID: 37621777 PMCID: PMC10446835 DOI: 10.3389/fcell.2023.1214262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/26/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction: Over the past decades, an increasing number of chromosomal translocations have been found in different STSs, which not only has value for clinical diagnosis but also suggests the pathogenesis of STS. Fusion genes can be detected by FISH, RT-PCR, and next-generation sequencing. One-step RT-PCR is a convenient method to detect fusion genes with higher sensitivity and lower cost. Method: In this study, 242 cases of soft tissue tumors were included, which were detected by one-step RT-PCR in multicenter with seven types of tumors: rhabdomyosarcoma (RMS), peripheral primitive neuroectodermal tumor (pPNET), synovial sarcoma (SS), myxoid liposarcomas (MLPS), alveolar soft part sarcoma (ASPS), dermatofibrosarcoma protuberans (DFSP), and soft tissue angiofibroma (AFST). 18 cases detected by one-step RT-PCR were further tested by FISH. One case with novel fusion gene detected by RNA-sequencing was further validated by one-step RT-PCR. Results: The total positive rate of fusion genes was 60% (133/213) in the 242 samples detected by one-step RT-PCR, in which 29 samples could not be evaluated because of poor RNA quality. The positive rate of PAX3-FOXO1 was 88.6% (31/35) in alveolar rhabdomyosarcoma, EWSR1-FLI1 was 63% (17/27) in pPNET, SYT-SSX was 95.4% in SS (62/65), ASPSCR1-TFE3 was 100% in ASPS (10/10), FUS-DDIT3 was 80% in MLPS (4/5), and COL1A1-PDGFB was 66.7% in DFSP (8/12). For clinicopathological parameters, fusion gene status was correlated with age and location in 213 cases. The PAX3-FOXO1 fusion gene status was correlated with lymph node metastasis and distant metastasis in RMS. Furthermore, RMS patients with positive PAX3-FOXO1 fusion gene had a significantly shorter overall survival time than those patients with the negative fusion gene. Among them, the FISH result of 18 cases was concordant with one-step RT-PCR. As detected as the most common fusion types of AHRR-NCOA2 in one case of AFST were detected as negative by one-step RT-PCR. RNA-sequencing was used to determine the fusion genes, and a novel fusion gene PTCH1-PLAG1 was found. Moreover, the fusion gene was confirmed by one-step RT-PCR. Conclusion: Our study indicates that one-step RT-PCR displays a reliable tool to detect fusion genes with the advantage of high accuracy and low cost. Moreover, it is a great tool to identify novel fusion genes. Overall, it provides useful information for molecular pathological diagnosis and improves the diagnosis rate of STSs.
Collapse
Affiliation(s)
- Lingxie Song
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Yuanyuan Wang
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Qingxin Xia
- Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Dandan Guo
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiachen Cao
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xin Xin
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haoyue Cheng
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingyuan Jia
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feng Li
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
15
|
Choi JH, Ro JY. The Recent Advances in Molecular Diagnosis of Soft Tissue Tumors. Int J Mol Sci 2023; 24:ijms24065934. [PMID: 36983010 PMCID: PMC10051446 DOI: 10.3390/ijms24065934] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Soft tissue tumors are rare mesenchymal tumors with divergent differentiation. The diagnosis of soft tissue tumors is challenging for pathologists owing to the diversity of tumor types and histological overlap among the tumor entities. Present-day understanding of the molecular pathogenesis of soft tissue tumors has rapidly increased with the development of molecular genetic techniques (e.g., next-generation sequencing). Additionally, immunohistochemical markers that serve as surrogate markers for recurrent translocations in soft tissue tumors have been developed. This review aims to provide an update on recently described molecular findings and relevant novel immunohistochemical markers in selected soft tissue tumors.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Namgu, Daegu 42415, Republic of Korea
| | - Jae Y Ro
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Medical College, Cornell University, Houston, TX 77030, USA
| |
Collapse
|
16
|
Rutland CD, Gedallovich J, Wang A, Zdravkovic S, Varma S, Hornick JL, Charville GW. Diagnostic utility of FOXO1 immunohistochemistry for rhabdomyosarcoma classification. Histopathology 2023. [PMID: 36860202 DOI: 10.1111/his.14898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/27/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
AIMS Rhabdomyosarcomas currently are classified into one of four subtypes (alveolar, embryonal, spindle cell/sclerosing, or pleomorphic) according to their morphological, immunohistochemical, and molecular genetic features. The alveolar subtype is characterised by a recurrent translocation involving PAX3 or PAX7 and FOXO1; identification of this translocation is important for appropriate classification and prognostication. In this study, we aimed to explore the diagnostic utility of FOXO1 immunohistochemistry for rhabdomyosarcoma classification. METHODS/RESULTS A monoclonal antibody targeting a FOXO1 epitope retained in the fusion oncoprotein was used to study 105 rhabdomyosarcomas. FOXO1 was positive for expression by immunohistochemistry in all 25 alveolar rhabdomyosarcomas, with 84% showing diffuse expression in greater than 90% of neoplastic cells; the remainder of alveolar rhabdomyosarcomas displayed at least moderate staining in a minimum of 60% of lesional cells. Apart from three spindle cell rhabdomyosarcomas showing heterogeneous nuclear immunoreactivity in 40-80% of tumour cells, the 80 cases of embryonal, pleomorphic, and spindle cell/sclerosing rhabdomyosarcoma were negative for FOXO1 expression (96.3% specific) when using a threshold of nuclear staining in 20% of neoplastic cells to determine positivity. Variable cytoplasmic staining was present in a fraction of all rhabdomyosarcoma subtypes. Nonneoplastic lymphocytes, endothelial cells, and Schwann cells also showed variably intense nuclear anti-FOXO1 immunoreactivity. CONCLUSION Taken together, our findings suggest that FOXO1 immunohistochemistry is a highly sensitive and relatively specific surrogate marker of the PAX3/7::FOXO1 fusion oncoprotein in rhabdomyosarcoma. Cytoplasmic immunoreactivity, expression in nonneoplastic tissues, and limited nuclear staining of nonalveolar rhabdomyosarcomas represent potential pitfalls in interpretation.
Collapse
Affiliation(s)
- Cooper D Rutland
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jodi Gedallovich
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aihui Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sabrina Zdravkovic
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory W Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
17
|
Yasir M, Park J, Han ET, Park WS, Han JH, Kwon YS, Lee HJ, Hassan M, Kloczkowski A, Chun W. Exploration of Flavonoids as Lead Compounds against Ewing Sarcoma through Molecular Docking, Pharmacogenomics Analysis, and Molecular Dynamics Simulations. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010414. [PMID: 36615603 PMCID: PMC9823950 DOI: 10.3390/molecules28010414] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Ewing sarcoma (ES) is a highly malignant carcinoma prevalent in children and most frequent in the second decade of life. It mostly occurs due to t(11;22) (q24;q12) translocation. This translocation encodes the oncogenic fusion protein EWS/FLI (Friend leukemia integration 1 transcription factor), which acts as an aberrant transcription factor to deregulate target genes essential for cancer. Traditionally, flavonoids from plants have been investigated against viral and cancerous diseases and have shown some promising results to combat these disorders. In the current study, representative flavonoid compounds from various subclasses are selected and used to disrupt the RNA-binding motif of EWS, which is required for EWS/FLI fusion. By blocking the RNA-binding motif of EWS, it might be possible to combat ES. Therefore, molecular docking experiments validated the binding interaction patterns and structural behaviors of screened flavonoid compounds within the active region of the Ewing sarcoma protein (EWS). Furthermore, pharmacogenomics analysis was used to investigate potential drug interactions with Ewing sarcoma-associated genes. Finally, molecular dynamics simulations were used to investigate the stability of the best selected docked complexes. Taken together, daidzein, kaempferol, and genistein exhibited a result comparable to ifosfamide in the proposed in silico study and can be further analyzed as possible candidate compounds in biological in vitro studies against ES.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Yong-Soo Kwon
- College of Pharmacy, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Hee-Jae Lee
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
- Correspondence: ; Tel.: +82-33-250-8853
| |
Collapse
|
18
|
Rottmann D, Abdulfatah E, Pantanowitz L. Molecular testing of soft tissue tumors. Diagn Cytopathol 2023; 51:12-25. [PMID: 35808975 PMCID: PMC10084007 DOI: 10.1002/dc.25013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The diagnosis of soft tissue tumors is challenging, especially when the evaluable material procured is limited. As a result, diagnostic ancillary testing is frequently needed. Moreover, there is a trend in soft tissue pathology toward increasing use of molecular results for tumor classification and prognostication. Hence, diagnosing newer tumor entities such as CIC-rearranged sarcoma explicitly requires molecular testing. Molecular testing can be accomplished by in situ hybridization, polymerase chain reaction, as well as next generation sequencing, and more recently such testing can even be accomplished leveraging an immunohistochemical proxy. CONCLUSION This review evaluates the role of different molecular tests in characterizing soft tissue tumors belonging to various cytomorphologic categories that have been sampled by small biopsy and cytologic techniques.
Collapse
Affiliation(s)
- Douglas Rottmann
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Eman Abdulfatah
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Liron Pantanowitz
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Theis B, Alhussami I, Kämmerer E, Kentouche K, Vokuhl C, Gassler N, Katenkamp K. New PLAG1-fusion transcripts in the spectrum of pediatric fibrotic, lipofibrotic, and mature lipomatous tumors. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2022; 15:425-430. [PMID: 36381419 PMCID: PMC9638836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/23/2022] [Indexed: 06/16/2023]
Abstract
The histomorphology of liboblastoma is highly variable and comprises different patterns that are found admixed or in pure form within a tumor. The most important features - mature lipomatous, fibrotic, lipofibrous, and myxoid - overlap with the histomorphology of several other pediatric tumor entities. Regarding the morphologic overlaps, molecular diagnostics with identification of fusion transcripts involving PLAG1 or HMGA2 is essential to identify lipoblastomas. This paper describes the diagnostic procedure in general and two new fusion transcripts of lipoblastoma, MEG3-PLAG1 and COL1A1-PLAG1. In conclusion, the algorithm to diagnose lipoblastomas among this group of pediatric fibrotic, lipofibrous and mature lipomatous tumors essentially includes histomorphology, immunohistochemistry, and molecular diagnostics.
Collapse
Affiliation(s)
- Bernhard Theis
- Section Pathology, Institute of Forensic Medicine, Jena University HospitalJena 07747, Germany
| | - Ilmi Alhussami
- Department of Pediatric Surgery, Jena University HospitalJena 07747, Germany
| | - Elke Kämmerer
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, Jena University HospitalJena 07747, Germany
| | - Karim Kentouche
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, Jena University HospitalJena 07747, Germany
| | - Christian Vokuhl
- Institute of Pathology, Section Paidopathology, University Hospital BonnBonn 53127, Germany
| | - Nikolaus Gassler
- Section Pathology, Institute of Forensic Medicine, Jena University HospitalJena 07747, Germany
| | - Kathrin Katenkamp
- Section Pathology, Institute of Forensic Medicine, Jena University HospitalJena 07747, Germany
| |
Collapse
|
20
|
Thirasastr P, Brahmi M, Dufresne A, Somaiah N, Blay JY. New Drug Approvals for Sarcoma in the Last 5 Years. Surg Oncol Clin N Am 2022; 31:361-380. [PMID: 35715139 DOI: 10.1016/j.soc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sarcoma and locally aggressive connective tissue tumors are a complex group of diseases with a growing number of histotypes in the most recent WHO classification. Most of these tumors are rare (incidence <6/105/y) or ultrarare (<1/106/y). Despite their rarity, sarcomas are often good models for the development of personalized medicine, and a large number of new clinical trials in select histotypes and molecular subsets were reported during the past 5 years, leading to a faster rate of new drug approvals. We analyzed the published literature and the abstracts reported in major congresses dedicated to sarcoma and connective tissue tumor management in the last 5 years. Several targeted therapies, cytotoxic treatments, and immunotherapies have demonstrated activity in dedicated histologic and molecular subtypes of sarcomas. The majority of the studies for ultrarare entities are uncontrolled studies, as a consequence of the rarity of histotypes, but randomized controlled trials were available in the less rare histotypes. Most successful trials were based on biomarker selection, which were often driver molecular alterations, while a large number of ongoing research programs aim to identify biomarkers in parallel to new drug development. Availability of the new agents varies across countries. This article describes the new drugs that made it through to the finish line and new agents with promising activity that are in later stages of investigation in the large family of malignant connective tissue tumors.
Collapse
Affiliation(s)
- Prapassorn Thirasastr
- University of Texas M D Anderson Cancer Center, 1400 Holcombe Blvd., Unit 450, Houston, TX-77030, USA
| | - Mehdi Brahmi
- CLCC Léon Bérard, 28 Rue Laënnec, 69373 LYON CEDEX 8, FRANCE
| | | | - Neeta Somaiah
- University of Texas M D Anderson Cancer Center, 1400 Holcombe Blvd., Unit 450, Houston, TX-77030, USA.
| | - Jean-Yves Blay
- CLCC Léon Bérard, 28 Rue Laënnec, 69373 LYON CEDEX 8, FRANCE.
| |
Collapse
|
21
|
Siew CCH, Apte SS, Baia M, Gyorki DE, Ford S, van Houdt WJ. Retroperitoneal and Mesenteric Liposarcomas. Surg Oncol Clin N Am 2022; 31:399-417. [PMID: 35715141 DOI: 10.1016/j.soc.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Retroperitoneal liposarcomas are a rare entity and are comprised mostly of the well-differentiated and dedifferentiated subtypes. Eight-year survival ranges from 30% to 80% depending on histologic subtype and grade. Surgery is the cornerstone of treatment and compartment resection is the current standard. Mesenteric liposarcomas are extremely rare and comprise more high-grade lesions, with poorer prognosis of 50% 5-year overall survival. They are managed with a similar aggressive surgical approach. This review presents the current management of retroperitoneal and mesenteric liposarcomas.
Collapse
Affiliation(s)
- Caroline C H Siew
- Department of Surgical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands; Department of General Surgery, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433 Singapore
| | - Sameer S Apte
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, 3000 Australia
| | - Marco Baia
- The Sarcoma Unit, Queen Elizabeth Hospital Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham B15 2GW, UK
| | - David E Gyorki
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, 3000 Australia
| | - Samuel Ford
- The Sarcoma Unit, Queen Elizabeth Hospital Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham B15 2GW, UK
| | - Winan J van Houdt
- Department of Surgical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands.
| |
Collapse
|
22
|
Chung RT, Cheung YY, Henderson ER, Linos K, Kerr DA. Extraneuraxial Hemangioblastoma: An Unusual Soft Tissue Neoplasm that Mimics More Common Entities but Carries Distinct Clinical Implications. Int J Surg Pathol 2022; 31:419-426. [PMID: 35651303 DOI: 10.1177/10668969221102560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hemangioblastoma, one of the characteristic tumors associated with Von Hippel-Lindau (VHL) disease, most often presents in the central nervous system (CNS) but can uncommonly arise in extraneuraxial, or previously referred to as peripheral, locations. Without the clinical context of known VHL disease, hemangioblastoma may not enter the differential for a soft tissue mass outside the CNS. Here, we present two patients with diagnostically challenging extraneuraxial hemangioblastoma to highlight the importance of considering this entity within the differential diagnosis of soft tissue neoplasms containing clear cells and delicate vasculature. We review the relevant diagnostic features, including a suggested immunohistochemical panel, along with the potential associated clinical implications of making this diagnosis. It is recommended that affected patients be offered genetic counseling to assess for underlying VHL disease.
Collapse
Affiliation(s)
- Robert T Chung
- 12285Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Yvonne Y Cheung
- 12285Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Radiology, 22916Dartmouth-Hitchcock Medical Center, NH, Lebanon
| | - Eric R Henderson
- 12285Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Orthopaedics, 22916Dartmouth-Hitchcock Medical Center, NH, Lebanon
| | - Konstantinos Linos
- 12285Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Pathology and Laboratory Medicine, 22916Dartmouth-Hitchcock Medical Center, NH, Lebanon
| | - Darcy A Kerr
- 12285Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Pathology and Laboratory Medicine, 22916Dartmouth-Hitchcock Medical Center, NH, Lebanon
| |
Collapse
|
23
|
|
24
|
Jo VY, Demicco EG. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Soft Tissue Tumors. Head Neck Pathol 2022; 16:87-100. [PMID: 35312984 PMCID: PMC9018918 DOI: 10.1007/s12105-022-01425-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/03/2022] [Indexed: 01/27/2023]
Abstract
The fifth (5th) edition of the World Health Organization (WHO) Classification of Head and Neck Tumors introduces a new chapter dedicated to soft tissue neoplasms commonly affecting the head and neck. While the diversity, rarity, and wide anatomic range of soft tissue tumors precludes a discussion of all entities that may be found in the head and neck, the addition of this new chapter to the head and neck "blue book" aims to provide a more comprehensive and uniform reference text, including updated diagnostic criteria, of mesenchymal tumor types frequently (or exclusively) arising at head and neck sites. Since publication of the previous edition in 2017, there have been numerous advances in our understanding of the pathogenesis of many soft tissue tumors which have facilitated refinements in tumor classification, identification of novel entities, development of diagnostic markers, and improved prognostication. This review will provide a focused discussion of the soft tissue tumors included in the 5th edition WHO Head and Neck classification, with an emphasis on updates.
Collapse
Affiliation(s)
- Vickie Y Jo
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Folpe AL. ‘I Can’t Keep Up!’: an update on advances in soft tissue pathology occurring after the publication of the 2020 World Health Organization classification of soft tissue and bone tumours. Histopathology 2021; 80:54-75. [DOI: 10.1111/his.14460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Andrew L Folpe
- Department of Laboratory Medicine and Pathology Mayo Clinic Rochester MN USA
| |
Collapse
|
26
|
Thway K. What’s new in adipocytic neoplasia? Histopathology 2021; 80:76-97. [DOI: 10.1111/his.14548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Khin Thway
- Sarcoma Unit Royal Marsden Hospital London UK
| |
Collapse
|
27
|
Kallen ME, Hornick JL. From the ashes of "Ewing-like" sarcoma: A contemporary update of the classification, immunohistochemistry, and molecular genetics of round cell sarcomas. Semin Diagn Pathol 2021; 39:29-37. [PMID: 34763921 DOI: 10.1053/j.semdp.2021.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Round cell sarcomas include a diverse group of bone and soft tissue tumors, which comprise well-defined entities as well as several nascent categories presented in the 2020 World Health Organization classification. The morphologic overlap yet disparate nosology, prognostic implications, and management strategies places a high value on ancillary testing, including a strategic immunohistochemical approach and directed confirmation by cytogenetic and molecular genetic methods. We review the diagnostic categories that have emerged from the former wastebasket "undifferentiated round cell sarcoma" ("Ewing-like" sarcomas), with an emphasis on algorithmic exclusion of nonsarcomatous entities, diagnostic stratification of well-defined entities (Ewing sarcoma, rhabdomyosarcomas, poorly differentiated synovial sarcoma), and a discussion of the new categories with novel genetic alterations (CIC-rearranged sarcomas, sarcomas with BCOR genetic alterations, and round cell sarcomas with EWSR1-non-ETS fusions).
Collapse
Affiliation(s)
- Michael E Kallen
- Department of Pathology, University of Maryland School of Medicine, Baltimore MD, United States
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston MA, United States.
| |
Collapse
|
28
|
Marx A, Chan JKC, Chalabreysse L, Dacic S, Detterbeck F, French CA, Hornick JL, Inagaki H, Jain D, Lazar AJ, Marino M, Marom EM, Moreira AL, Nicholson AG, Noguchi M, Nonaka D, Papotti MG, Porubsky S, Sholl LM, Tateyama H, Thomas de Montpréville V, Travis WD, Rajan A, Roden AC, Ströbel P. The 2021 WHO Classification of Tumors of the Thymus and Mediastinum: What Is New in Thymic Epithelial, Germ Cell, and Mesenchymal Tumors? J Thorac Oncol 2021; 17:200-213. [PMID: 34695605 DOI: 10.1016/j.jtho.2021.10.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
This overview of the fifth edition of the WHO classification of thymic epithelial tumors (including thymomas, thymic carcinomas, and thymic neuroendocrine tumors [NETs]), mediastinal germ cell tumors, and mesenchymal neoplasms aims to (1) list established and new tumor entities and subtypes and (2) focus on diagnostic, molecular, and conceptual advances since publication of the fourth edition in 2015. Diagnostic advances are best exemplified by the immunohistochemical characterization of adenocarcinomas and the recognition of genetic translocations in metaplastic thymomas, rare B2 and B3 thymomas, and hyalinizing clear cell carcinomas. Advancements at the molecular and tumor biological levels of utmost oncological relevance are the findings that thymomas and most thymic carcinomas lack currently targetable mutations, have an extraordinarily low tumor mutational burden, but typically have a programmed death-ligand 1high phenotype. Finally, data underpinning a conceptual advance are illustrated for the future classification of thymic NETs that may fit into the classification scheme of extrathoracic NETs. Endowed with updated clinical information and state-of-the-art positron emission tomography and computed tomography images, the fifth edition of the WHO classification of thymic epithelial tumors, germ cell tumors, and mesenchymal neoplasms with its wealth of new diagnostic and molecular insights will be a valuable source for pathologists, radiologists, surgeons, and oncologists alike. Therapeutic perspectives and research challenges will be addressed as well.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany.
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, People's Republic of China
| | - Lara Chalabreysse
- Department of Pathology, Groupement Hospitalier Est, Bron Cedex Lyon, France
| | - Sanja Dacic
- Department of Pathology, University Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Frank Detterbeck
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hiroshi Inagaki
- Department of Pathology and Molecular Diagnostics, Nagoya City University, Nagoya, Japan
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Alexander J Lazar
- Department of Pathology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mirella Marino
- Department of Pathology, Istituto di Ricovero e Cura a Carattere Scientifico Regina Elena National Cancer Institute, Rome, Italy
| | - Edith M Marom
- Department of Diagnostic Imaging, Chaim Sheba Medical Center, affiliated with Tel Aviv University, Ramat Gan, Israel
| | - Andre L Moreira
- Department of Pathology, New York University Langone Health, New York, New York
| | - Andrew G Nicholson
- Department of Histopathology, Royal Brompton and Harefield Hospitals and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Masayuki Noguchi
- Department of Diagnostic Pathology, University of Tsukuba, Tsukuba-shi, Japan
| | - Daisuke Nonaka
- Department of Cellular Pathology, Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London, United Kingdom
| | | | - Stefan Porubsky
- Department of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hisashi Tateyama
- Department of Pathology, Kasugai Municipal Hospital, Kasugai, Japan
| | | | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Arun Rajan
- Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, Minnesota
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
29
|
Jiang W, Wu T, Shi X, Xu J. Overexpression of EWSR1 (Ewing sarcoma breakpoint region 1/EWS RNA binding protein 1) predicts poor survival in patients with hepatocellular carcinoma. Bioengineered 2021; 12:7941-7949. [PMID: 34612781 PMCID: PMC8806985 DOI: 10.1080/21655979.2021.1982844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant neoplasms with high relapse and mortality rate. It is of great importance to identify novel and effective molecular markers to predict prognosis for the treatment of HCC. The Ewing sarcoma breakpoint region 1 (EWSR1) gene is well known to fuse with various partner genes and involved in promoting the development of multiple sarcomas, especially the Ewing sarcoma family of tumors. Nevertheless, seldom studies have focused on the role of EWSR1 in cancers of epithelial origin, let alone in HCC. In the current study, the transcriptional and clinical data of EWSR1 in HCC patients were obtained from TCGA and GEO databases, as well as 124 cases from the department of Pathology of Sichuan Jianyang People's Hospital. Kaplan-Meier and Cox regression analysis were used to assess patient prognosis. EWSR1 mRNA levels were significantly upregulated in HCC tissues than in normal liver tissues (P < 0.001). The TCGA database analysis showed upregulation of EWSR1 was associated with histological grade, pathologic T stage and death, in addition to that, the T staging, N staging, TNM staging, Ki67, AFP expression were extremely higher in the EWSR1 over-expression group in our cohort. Univariate and multivariate Cox hazard regression analysis results revealed that EWSR1 was an independent prognostic factor for OS in HCC, and bioinformatics analysis showed RNA splicing process represented the major function and pathway. In conclusion, our data showed EWSR1 could serve as a novel promising prognostic biomarker for HCC patients.Abbreviations: AFP, Alpha-fetoprotein; CCL14, C-C motif chemokine ligand 14; CK19, Cytokeratin 19; CI, coefficient interval; COL1A1, Collagen 1A1; DFS, Disease-free Survival; EWSR1, Ewing Sarcoma breakpoint region 1/EWS RNA binding protein 1; FLI1, Friend leukemia virus integration 1; GEO, Gene Expression Omnibus; GO, Gene Ontology; HCC, Hepatocellular carcinoma; HR, Hazard ratio; KEGG, Kyoto Encyclopedia of Genes and Genomes; mRNA, messenger Ribonucleic Acid; N, nodule; OS, Overall survival; PPI, Protein-Protein Interaction analysis; RNA, Ribonucleic Acid; SD, Standard Deviation; TCGA, The Cancer Genome Atlas; T, tumor; TNM, tumor-nodule-metastasis.
Collapse
Affiliation(s)
- Weijie Jiang
- Department of Pathology, The People's Hospital of Jianyang City, Jianyang, Sichuan, 641499, China
| | - Tao Wu
- Department of Pathology, The People's Hospital of Jianyang City, Jianyang, Sichuan, 641499, China
| | - Xuan Shi
- Department of Pathology, The People's Hospital of Jianyang City, Jianyang, Sichuan, 641499, China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.,Department of Pathology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250021, China
| |
Collapse
|
30
|
Thway K, Fisher C. Undifferentiated and dedifferentiated soft tissue neoplasms: Immunohistochemical surrogates for differential diagnosis. Semin Diagn Pathol 2021; 38:170-186. [PMID: 34602314 DOI: 10.1053/j.semdp.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022]
Abstract
Undifferentiated soft tissue sarcomas (USTS) are described in the current World Health Organization Classification of Soft Tissue and Bone Tumours as those showing no identifiable line of differentiation when analyzed by presently available technologies. This is a markedly heterogeneous group, and the diagnosis of USTS remains one of exclusion. USTS can be divided into four morphologic subgroups: pleomorphic, spindle cell, round cell and epithelioid undifferentiated sarcomas, with this combined group accounting for up to 20% of all soft tissue sarcomas. As molecular advances enable the stratification of emerging genetic subsets within USTS, particularly within undifferentiated round cell sarcomas, other groups, particularly the category of undifferentiated pleomorphic sarcomas (UPS), still remain difficult to substratify and represent heterogeneous collections of neoplasms often representing the common morphologic endpoints of a variety of malignant tumors of various (mesenchymal and non-mesenchymal) lineages. However, recent molecular developments have also enabled the identification and correct classification of many tumors from various lines of differentiation that would previously have been bracketed under 'UPS'. This includes pleomorphic neoplasms and dedifferentiated neoplasms (the latter typically manifesting with an undifferentiated pleomorphic morphology) of mesenchymal (e.g. solitary fibrous tumor and gastrointestinal stromal tumor) and non-mesenchymal (e.g. melanoma and carcinoma) origin. The precise categorization of 'pleomorphic' or 'undifferentiated' neoplasms is critical for prognostication, as, for example, dedifferentiated liposarcoma typically behaves less aggressively than other pleomorphic sarcomas, and for management, including the potential for targeted therapies based on underlying recurrent molecular features. In this review we focus on undifferentiated and dedifferentiated pleomorphic and spindle cell neoplasms, summarizing their key genetic, morphologic and immunophenotypic features in the routine diagnostic setting, and the use of immunohistochemistry in their principal differential diagnosis, and highlight new developments and entities in the group of undifferentiated and dedifferentiated soft tissue sarcomas.
Collapse
Affiliation(s)
- Khin Thway
- Sarcoma Unit, Royal Marsden Hospital, London, SW3 6JJ, United Kingdom; Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Rd, London, SW3 6JB, United Kingdom.
| | - Cyril Fisher
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Rd, London, SW3 6JB, United Kingdom; Department of Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, United Kingdom
| |
Collapse
|
31
|
Flucke U, van Noesel MM, Siozopoulou V, Creytens D, Tops BBJ, van Gorp JM, Hiemcke-Jiwa LS. EWSR1-The Most Common Rearranged Gene in Soft Tissue Lesions, Which Also Occurs in Different Bone Lesions: An Updated Review. Diagnostics (Basel) 2021; 11:diagnostics11061093. [PMID: 34203801 PMCID: PMC8232650 DOI: 10.3390/diagnostics11061093] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023] Open
Abstract
EWSR1 belongs to the FET family of RNA-binding proteins including also Fused in Sarcoma (FUS), and TATA-box binding protein Associated Factor 15 (TAF15). As consequence of the multifunctional role of EWSR1 leading to a high frequency of transcription of the chromosomal region where the gene is located, EWSR1 is exposed to aberrations such as rearrangements. Consecutive binding to other genes leads to chimeric proteins inducing oncogenesis. The other TET family members are homologous. With the advent of widely used modern molecular techniques during the last decades, it has become obvious that EWSR1 is involved in the development of diverse benign and malignant tumors with mesenchymal, neuroectodermal, and epithelial/myoepithelial features. As oncogenic transformation mediated by EWSR1-fusion proteins leads to such diverse tumor types, there must be a selection on the multipotent stem cell level. In this review, we will focus on the wide variety of soft tissue and bone entities, including benign and malignant lesions, harboring EWSR1 rearrangement. Fusion gene analysis is the diagnostic gold standard in most of these tumors. We present clinicopathologic, immunohistochemical, and molecular features and discuss differential diagnoses.
Collapse
Affiliation(s)
- Uta Flucke
- Department of Pathology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.M.v.N.); (B.B.J.T.); (L.S.H.-J.)
- Correspondence: ; Tel.: +31-24-36-14387; Fax: +31-24-36-68750
| | - Max M. van Noesel
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.M.v.N.); (B.B.J.T.); (L.S.H.-J.)
- Division Cancer & Imaging, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - David Creytens
- Department of Pathology, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium;
| | - Bastiaan B. J. Tops
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.M.v.N.); (B.B.J.T.); (L.S.H.-J.)
| | - Joost M. van Gorp
- Department of Pathology, St Antonius Hospital, 3435 CM Nieuwegein, The Netherlands;
| | - Laura S. Hiemcke-Jiwa
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.M.v.N.); (B.B.J.T.); (L.S.H.-J.)
| |
Collapse
|