1
|
Whaley RD, Agaimy A, Bridge JA, Stoehr R, Din NU, Gagan J, Rampisela D, Folpe AL, Bishop JA. Xanthogranulomatous epithelial tumors/keratin-positive giant cell-rich tumors involving the head and neck: report of seven cases and review of the literature. Virchows Arch 2024; 485:605-613. [PMID: 39162814 DOI: 10.1007/s00428-024-03892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Xanthogranulomatous epithelial tumor (XGET) and HMGA2::NCOR2 fusion keratin-positive giant cell-rich tumor (KPGCT) are recently described morphologically overlapping rare neoplastic entities characterized by HMGA2::NCOR2 fusions, low-grade biological behavior, and a strong predilection for young females. To date, 47 cases have been reported with only four occurring in head and neck anatomic locations. In this study, we describe the clinicopathologic, immunohistochemical, and molecular findings of seven XGET/KPGCTs occurring in the head and neck region. The patients were six females and one male, aged 3.5-59 years old (median, 25 years). The tumors involved the ear, vocal cord, skull, neck soft tissue, and sinonasal cavity. Tumor sizes ranged from 1.5 to 6.7 cm. Histologically, the tumors were characterized by xanthogranulomatous histiocytes, osteoclast-like giant cells, and keratin-positive epithelioid cells. The XGET/KPGCTs involving the ear was remarkable for more cytologic atypia than previously described. Four cases had the HMGA2::NCOR2 fusion identified by NGS and three had HMGA2 gene locus alterations by FISH. Follow-up information was available for 3 of 7 patients (range 6-46 months). The patient with a vocal cord XGET/KPGCTs developed a local recurrence treated with excision. This study illustrates that XGET/KPGCTs involves the head and neck region as well, where it may be unexpected and hence under-recognized, and expands the anatomic locations of involvement to include unreported sites (ear, vocal cord, and sinonasal tract).
Collapse
Affiliation(s)
- Rumeal D Whaley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Abbas Agaimy
- Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Julia A Bridge
- ProPath, Division of Cytogenetic and Molecular Pathology, Dallas, TX, USA
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert Stoehr
- Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Nasir Ud Din
- Section of Histopathology, Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | | | | | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Justin A Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
McAlpine SG, Carrasquillo OY, Miedema J, Googe PB. Two Cases of Cutaneous Sarcomatoid Squamous Cell Carcinoma Resembling Cutaneous Giant Cell Tumor of Soft Tissue. Am J Dermatopathol 2024; 46:623-625. [PMID: 38842396 DOI: 10.1097/dad.0000000000002739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
ABSTRACT Cutaneous sarcomatoid squamous cell carcinoma is well-described with histology resembling pleomorphic undifferentiated sarcoma featuring collagenous or myxoid stroma with or without elements of keratinizing squamous carcinoma. This report presents 2 cases of dedifferentiated squamous cell carcinoma (SCC) composed of sheets of malignant mononuclear cells with malignant osteoclast-like multinucleated giant cells, extravasated blood, and hemosiderin resembling cutaneous giant cell tumor (cGCT). In the first case, an exophytic facial mass of a 96-year-old woman removed by shave showing extensive cGCT-like tumor but with microscopic elements of SCC in situ and positivity for cytokeratin 5/6 in the malignant spindle cells and SCC. The second case involved a 32-year-old man with a pedunculated penile mass removed by shave biopsy, displaying malignant cytology resembling cGCT, focal staining for cytokeratin AE1/AE3 and p63, and CD68 highlighting the osteoclast-like giant cells. Molecular analysis revealed CDKN2A, TP53, and TERT. Upon reexcision, case 2 showed focally invasive keratinizing SCC associated with differentiated penile intraepithelial neoplasia and lichen sclerosus. Skin specimens with an exophytic mass histologically resembling cGCT but with malignant cytology should be meticulously evaluated for elements of SCC. Molecular analysis, detecting mutations like H3F3 or HMGA2-NCOR2 fusion, can aid in distinguishing cutaneous sarcomatoid squamous cell carcinoma from GCT bone or GCT soft tissue.
Collapse
Affiliation(s)
- Sarah G McAlpine
- School of Medicine, University of North Carolina, Chapel Hill, NC; and
| | | | - Jayson Miedema
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
| | - Paul B Googe
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
3
|
Wilsher MJ, Venus M, Fisher C. Giant cell-rich tumour with keratin expression and HMGA2::NCOR2 fusion presenting at a rare location, on the scalp of a 29-year-old male. Pathology 2024; 56:609-612. [PMID: 38341304 DOI: 10.1016/j.pathol.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 02/12/2024]
Affiliation(s)
- Mark James Wilsher
- North West London Pathology Imperial College Healthcare NHS Trust, London, United Kingdom; Unilabs IHS, London, United Kingdom.
| | - Matthew Venus
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Cyril Fisher
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
4
|
Rungsiprakarn P, Ryan AL, Wong DD, Luo M, Kazahaya K, Arkader A, Lau LMS, Ajuyah P, Rudzinski E, Kreiger PA, Roebuck DJ, Surrey LF, Foo TSY. Keratin-Positive Giant Cell Tumor of Bone and Soft Tissue With HMGA2::NCOR2 Fusion in Children Under 10 With Response to Imatinib Therapy: A Case Series. JCO Precis Oncol 2024; 8:e2300659. [PMID: 38935896 DOI: 10.1200/po.23.00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 06/29/2024] Open
Abstract
HMGA2::NCOR2 keratin-positive giant cell tumors in children with response to imatinib in an infant.
Collapse
Affiliation(s)
- Phassawan Rungsiprakarn
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Anne L Ryan
- Department of Hematology, Oncology and Bone Marrow Transplant, Perth Children's Hospital, Nedlands, Australia
- Telethon Kids Insitute, University of Western Australia, Nedlands, Australia
| | - Daniel D Wong
- PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Australia
| | - Minjie Luo
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ken Kazahaya
- Division of Pediatric Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA
| | - Alexandre Arkader
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Orthopedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Loretta M S Lau
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, Australia
| | | | - Erin Rudzinski
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA
| | - Portia A Kreiger
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek J Roebuck
- Department of Medical Imaging, Perth Children's Hospital, Nedlands, Australia
- Division of Pediatrics, Medical School, University of Western Australia, Crawley, Australia
| | - Lea F Surrey
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tiffany S Y Foo
- PathWest Laboratory Medicine, Perth Children's Hospital, Nedlands, WA, Australia
| |
Collapse
|
5
|
Nishio J, Nakayama S, Koga K, Aoki M. Keratin-Positive Giant Cell-Rich Tumor: A Review and Update. Cancers (Basel) 2024; 16:1940. [PMID: 38792018 PMCID: PMC11120402 DOI: 10.3390/cancers16101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Keratin-positive giant cell-rich tumor (KPGCT) is an extremely rare and recently described mesenchymal neoplasm that occurs in both soft tissue and bone, frequently found in young women. It has locally recurrent potential if incompletely excised but low risk for metastasis. KPGCT is histologically similar to conventional giant cell tumors of soft tissue but shows the presence of keratin-positive mononuclear cells. Interestingly, KPGCT also shares some morphological features with xanthogranulomatous epithelial tumors. These two tumors have recently been shown to harbor an HMGA2-NCOR2 fusion, arguing in favor of a single entity. Surgery is the treatment of choice for localized KPGCT. Therapeutic options for advanced or metastatic disease are unknown. This review provides an overview of the current knowledge on the clinical presentation, pathogenesis, histopathology, and treatment of KPGCT. In addition, we will discuss the differential diagnosis of this emerging entity.
Collapse
Affiliation(s)
- Jun Nishio
- Section of Orthopaedic Surgery, Department of Medicine, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Shizuhide Nakayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
| | - Kaori Koga
- Department of Pathology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (K.K.); (M.A.)
| | - Mikiko Aoki
- Department of Pathology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (K.K.); (M.A.)
| |
Collapse
|
6
|
Nishio J, Nakayama S, Koga K, Aoki M. Giant Cell Tumor of Soft Tissue: An Updated Review. J Clin Med 2024; 13:2870. [PMID: 38792412 PMCID: PMC11122090 DOI: 10.3390/jcm13102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Giant cell tumor of soft tissue (GCTST) is a locally aggressive mesenchymal neoplasm of intermediate malignancy that predominantly occurs in the superficial soft tissue of the extremities. It is histologically similar to a giant cell tumor of bone (GCTB) and shows a mixture of round to oval mononuclear cells and osteoclast-like multinucleated giant cells. Currently, immunohistochemistry plays a very limited role in the diagnosis of GCTST. Primary or secondary malignant GCTST has recently been described and tumors exhibiting high-grade histological features demonstrate higher rates of distant metastasis. GCTST lacks the H3-3A gene mutations that are identified in the vast majority of GCTBs, suggesting a different pathogenesis. Surgery is the standard treatment for localized GCTST. Incomplete surgical resection is usually followed by local recurrence. Radiation therapy may be considered when the close proximity of critical structures prevents microscopically negative surgical margins. The systemic treatment options for advanced or metastatic disease are very limited. This review provides an updated overview of the clinicoradiological features, pathogenesis, histopathology, and treatment for GCTST. In addition, we will discuss the differential diagnosis of this peculiar neoplasm.
Collapse
Affiliation(s)
- Jun Nishio
- Section of Orthopaedic Surgery, Department of Medicine, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Shizuhide Nakayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
| | - Kaori Koga
- Department of Pathology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (K.K.); (M.A.)
| | - Mikiko Aoki
- Department of Pathology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (K.K.); (M.A.)
| |
Collapse
|
7
|
Patton A, Ilaslan H, Armstrong SM, Bakhshwin A, Cheng YW, Minhas F, Fritchie KJ. Keratin-Positive Giant Cell-Rich Tumor of Bone Harboring an HMGA2::NCOR2 Fusion: Two Cases, Including a Patient With Metastatic Disease, and Review of the Literature. Int J Surg Pathol 2024; 32:556-564. [PMID: 37461232 DOI: 10.1177/10668969231185076] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Giant cell-rich lesions of bone represent a heterogeneous group of entities which classically include giant cell tumor of bone, aneurysmal bone cyst, nonossifying fibroma, and Brown tumor of hyperparathyroidism. A recently described subset of giant cell-rich tumors involving bone and soft tissue has been characterized by recurrent HMGA2::NCOR2 fusions and keratin expression. The overlapping clinical, radiographic, and morphological features of these giant cell-rich lesions provide a unique diagnostic challenge, particularly on biopsy. We present 2 additional cases of keratin-positive giant cell-rich tumor of bone with HMGA2::NCOR2 fusions, including 1 patient who developed metastatic disease.
Collapse
Affiliation(s)
- Ashley Patton
- Department of Pathology & Laboratory Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hakan Ilaslan
- Department of Musculoskeletal Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Susan M Armstrong
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmed Bakhshwin
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Yu-Wei Cheng
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Farooq Minhas
- Department of Pathology, Ascension Providence Hospital, Southfield, MI, USA
| | - Karen J Fritchie
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
8
|
Folpe AL. Xanthogranulomatous Epithelial Tumors and Keratin-Positive Giant Cell Rich Tumors of Soft Tissue and Bone: Two Sides of the Same Coin. Surg Pathol Clin 2024; 17:57-64. [PMID: 38278607 DOI: 10.1016/j.path.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Xanthogranulomatous epithelial tumor is a recently described soft tissue tumor characterized by subcutaneous location, partial encapsulation, a xanthogranulomatous inflammatory cell infiltrate, and keratin-positive mononuclear cells. It shares some morphologic features with keratin-positive, giant cell-rich soft tissue tumors. Both have recently been shown to harbor HMGA2::NCOR2 fusions. The relationship between these tumors and their differential diagnosis with other osteoclast-containing soft tissue tumors is discussed.
Collapse
Affiliation(s)
- Andrew L Folpe
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
9
|
Dehner CA, Lo YC, Chopra S, Demicco EG, He K, Hirbe AC, Folpe AL, Chrisinger JSA. CSF1 expression in xanthogranulomatous epithelial tumor/keratin-positive giant cell-rich tumor. Hum Pathol 2024; 143:1-4. [PMID: 37993023 DOI: 10.1016/j.humpath.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
"Xanthogranulomatous epithelial tumor" (XGET) and "keratin-positive giant cell-rich soft tissue tumor" (KPGCT), two recently described mesenchymal neoplasms, likely represent different aspects of a single entity. Both tumors are composed of only a small minority of tumor cells surrounded by large numbers of non-neoplastic inflammatory cells and histiocytes, suggesting production of a paracrine factor with resulting "landscape effect," as seen in tenosynovial giant cell tumor. Recent evidence suggests that the paracrine factor in XGET/KPGCT may be CSF1, as in tenosynovial giant cell tumor. We hypothesized that CSF1 is overexpressed in XGET/KPGCT. To test our hypothesis, we performed quantitative real time PCR (qPCR) for CSF1 expression and CSF1 RNAscope chromogenic in situ hybridization (CISH) on 6 cases of XGET/KPGCT. All cases were positive with CSF1 CISH and showed increased expression of CSF1 by qPCR. Our findings provide additional evidence that the CSF1/CSF1R pathway is involved in the pathogenesis of XGET/KPGCT. These findings suggest a possible role for CSF1R inhibition in the treatment of unresectable or metastatic XGET/KPGCT.
Collapse
Affiliation(s)
- Carina A Dehner
- Department of Anatomic Pathology and Laboratory Medicine, Indiana University, 635 Barnhill Drive, Indianapolis, IN, 46202, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA; Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.
| | - Ying-Chun Lo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Shefali Chopra
- Department of Pathology, University of Southern California, 1975 Zonal Ave, Los Angeles, CA, 90033, USA.
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital and Laboratory Medicine and Pathobiology, University of Toronto, 600 University Ave, Toronto, ON, M5G 1X5, Canada.
| | - Kevin He
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine and Siteman Cancer Center, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.
| | - Angela C Hirbe
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine and Siteman Cancer Center, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| | - John S A Chrisinger
- Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
10
|
Klienkoff P, Weingertner N, Geyer L, Gros CI, Kurtz JE, Bornert F. Management of a rare mandibular giant cell tumor of bone by neoadjuvant denosumab therapy and surgery: A 4-year follow-up case report. Int J Surg Case Rep 2023; 112:108980. [PMID: 37913666 PMCID: PMC10667875 DOI: 10.1016/j.ijscr.2023.108980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023] Open
Abstract
INTRODUCTION Giant cell tumor of bone (GCTB) is a very rare tumor encountered in the jaws and its histology is quite similar to the more common giant cell granuloma of the jaws (GCGJ). These two entities can be easily confused in maxillofacial region. They are classically managed surgically, but in some localizations and in specific medical-surgical contexts, neoadjuvant therapy with denosumab may be indicated. This report tends to reinforce existing evidence in favor of the use of a neoadjuvant approach, particularly for localization of GCTB in the orofacial region. PRESENTATION OF CASE This is a 57-year-old female patient, an alcoholic smoker, in whom a voluminous mandibular radiolucent lesion was discovered during a routine X-ray by her dentist. After medical imaging assessment and incisional biopsy, diagnosis of GCTB was established. A neoadjuvant denosumab therapy was proposed first followed by a secondary surgical curettage. After 4 years' follow-up, complete healing was observed with no recurrence of the lesion. DISCUSSION Surgical management of aggressive GCTB is risky particularly in localizations involving the sacrum, spine or craniofacial skeleton with a high residual recurrence rate. The use of denosumab to stop tumor progression and facilitate secondary excision surgery is a recent approach that is now well documented in the literature showing promising results with a low rate of side effects. CONCLUSION This case of mandibular GCTB is to our knowledge the unique case described in this localization and treated by denosumab neoadjuvant therapy followed by surgery with a 4-year follow-up showing a complete healing.
Collapse
Affiliation(s)
- Pierre Klienkoff
- University of Strasbourg, Faculty of Dental Surgery, 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France; University Hospital Strasbourg, Oral Surgery, Strasbourg, France.
| | - Noëlle Weingertner
- University Hospital Strasbourg, Department of Pathology, Strasbourg, France
| | - Lucas Geyer
- University Hospital Strasbourg, Department of Pathology, Strasbourg, France
| | - Catherine-Isabelle Gros
- University of Strasbourg, Faculty of Dental Surgery, 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France; University Hospital Strasbourg, Dento-maxillary Radiology, Strasbourg, France
| | - Jean-Emmanuel Kurtz
- Department of Medical Oncology, ICANS, 17 rue Calmette, 67200 Strasbourg, France
| | - Fabien Bornert
- University of Strasbourg, Faculty of Dental Surgery, 8 Rue de Sainte Elisabeth, 67000 Strasbourg, France; University Hospital Strasbourg, Oral Surgery, Strasbourg, France; INSERM (French National Institute of Health and Medical Research) UMR 1260, Regenerative Nanomedicine, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| |
Collapse
|
11
|
Svantesson T, van Oudenaarde K, Fuchs B, Bode B, Vogetseder A. Xanthogranulomatous epithelial tumor: a novel entity of uncertain biologic potential. Arch Clin Cases 2023; 10:142-145. [PMID: 37809034 PMCID: PMC10551808 DOI: 10.22551/2023.40.1003.10261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Xanthogranulomatous epithelial tumor (XGET) is an extremely rare and recently described mesenchymal neoplasm characterized by a distinctive histological appearance and clinical presentation. This case report describes a unique case of XGET in a 66-year-old female patient who presented with a 5 cm mass in the dorsal distal left thigh. The clinical, radiological, and pathological findings, as well as the management and follow-up, are discussed.
Collapse
Affiliation(s)
| | | | - Bruno Fuchs
- Division of Orthopedics, Cantonal Hospital Lucerne, Switzerland
| | - Beata Bode
- Pathology Institute Enge and University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
12
|
Perret R, Malaka Z, Velasco V, Llamas-Gutierrez F, Ropars M, Linck PA, Hostein I, Azmani R, Valo I, Galmiche L, Moreau A, de Pinieux G, Michot A, Bochaton D, Coindre JM, Le Loarer F. Giant Cell Tumors With HMGA2::NCOR2 Fusion : Clinicopathologic, Molecular, and Epigenetic Study of a Distinct Entity. Am J Surg Pathol 2023; 47:801-811. [PMID: 37170907 DOI: 10.1097/pas.0000000000002051] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Giant cell tumors (GCTs) with high mobility group AT-Hook 2 ( HMGA2 )::nuclear receptor corepressor 2 ( NCOR2 ) fusion are rare mesenchymal tumors of controversial nosology, which have been anecdotally reported to respond to CSFR1 inhibitors. Here, we performed a comprehensive study of 6 GCTs with HMGA2::NCOR2 fusion and explored their relationship with other giant cell-rich neoplasms. Tumors occurred in 4 females and 2 males ranging in age from 17 to 32 years old (median 24). Three lesions originated in subcutaneous soft tissue and 3 in bone. Tumor size ranged from 20 to 33 mm (median 27 mm). The lesions had a nodular/multinodular architecture and were composed of sheets of mononuclear "histiocytoid" cells with uniform nuclei intermingled with multinucleated giant cells. Mitotic activity was low and nuclear atypia and metaplastic bone were absent. Variable findings included necrosis, cystic degeneration, lymphocytic infiltrate (sometimes forming nodules), and xanthogranulomatous inflammation. On immunohistochemistry, all cases focally expressed pan-keratin and were negative with SATB2 and H3.3G34W. Whole RNA-sequencing was performed in all cases of GCT with HMGA2::NCOR2 fusion and a subset of giant cell-rich tumors (tenosynovial-GCT, n = 19 and "wild-type" GCT of soft tissue, n = 9). Hierarchical clustering of RNA-sequencing data showed that GCT with HMGA2::NCOR2 fusion formed a single cluster, independent of the other 2 entities. Methylome profiling showed similar results, but the distinction from "wild-type" GCT of soft tissue was less flagrant. Gene expression analysis showed similar levels of expression of the CSF1/CSFR1 axis between GCT with HMGA2::NCOR2 fusion and tenosynovial-GCT, supporting their potential sensitivity to CSFR1 inhibitors. Clinical follow-up was available for 5 patients (range: 10 to 64 mo; median 32 mo). Three patients (60%) experienced local recurrences, whereas none had distant metastases or died of disease. Overall, our study confirms and expands previous knowledge on GCT with HMGA2::NCOR2 fusion and supports its inclusion as an independent entity.
Collapse
Affiliation(s)
- Raul Perret
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
- Bordeaux Institute of Oncology, BRIC, INSERM, Bordeaux University, Bergonié Institute, Bordeaux, France
| | - Zaki Malaka
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
- University of Bordeaux, Talence, France
| | - Valérie Velasco
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | | | - Mickael Ropars
- Orthopedic surgery department, Rennes University Hospital, Rennes, France
| | - Pierre-Antoine Linck
- Department of Radiology, Bergonié Institute, Comprehensive Cancer Center, Bordeaux, France
| | - Isabelle Hostein
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Rihab Azmani
- Department of Bioinformatics, Bergonie Institute, Comprehensive Cancer Center, Bordeaux, France
| | - Isabelle Valo
- Department of Pathology, Institute of Cancerology of the West, Angers, France
| | - Louise Galmiche
- Department of Pathology, Nantes University Hospital, Nantes, France
| | - Anne Moreau
- Department of Pathology, Nantes University Hospital, Nantes, France
| | - Gonzague de Pinieux
- Department of Pathology, Trousseau Hospital-Tours University Hospital, Chambray-lés-Tours, France
| | - Audrey Michot
- Plastic and Reconstructive Surgery Department, Bergonié Institute, Bordeaux, France
| | | | - Jean-Michel Coindre
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - François Le Loarer
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
- Bordeaux Institute of Oncology, BRIC, INSERM, Bordeaux University, Bergonié Institute, Bordeaux, France
- University of Bordeaux, Talence, France
| |
Collapse
|
13
|
Andrei V, Haefliger S, Baumhoer D. Superficial mesenchymal tumours expressing epithelial markers on immunohistochemistry: Diagnostic clues and pitfalls. Semin Diagn Pathol 2023:S0740-2570(23)00044-8. [PMID: 37147159 DOI: 10.1053/j.semdp.2023.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
The diagnosis of mesenchymal neoplasms arising in the superficial soft tissue can be challenging as some entities are rare and show overlapping features. Moreover, the spectrum of mesenchymal tumours has expanded recently to include potential new entities, some of which have been described after the 5th edition of the World Health Organisation (WHO) classification of soft tissue and bone tumours published in 2020. In the skin and superficial soft tissue, tumours of epidermal, melanocytic and appendageal origin are more commonly encountered than mesenchymal neoplasms. However, specific entities from the latter category can occasionally express epithelial markers on immunohistochemistry, some of them in a strong and diffuse manner. It is therefore crucial to be aware of diagnostic pitfalls when encountering cytokeratin positivity in superficial soft tissue neoplasms. This article provides an overview on the differential diagnosis of these mesenchymal tumours that can sporadically occur also in the skin, including myoepithelial neoplasms, epithelioid sarcoma, keratin positive giant cell tumour of soft tissue / xanthogranulomatous epithelial tumour, superficial CD34-positive fibroblastic tumour / PRDM10-rearranged soft tissue tumour, and perineurioma.
Collapse
Affiliation(s)
- Vanghelita Andrei
- Bone Tumour Reference Centre, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schoenbeinstrasse 40, 4031 Basel, Switzerland
| | - Simon Haefliger
- Bone Tumour Reference Centre, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schoenbeinstrasse 40, 4031 Basel, Switzerland
| | - Daniel Baumhoer
- Bone Tumour Reference Centre, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schoenbeinstrasse 40, 4031 Basel, Switzerland.
| |
Collapse
|
14
|
Bone and soft tissue tumors: clinicoradiologic-pathologic molecular-genetic correlation of novel fusion spindled, targetable-ovoid, giant-cell-rich, and round cell sarcomas. Skeletal Radiol 2023; 52:517-540. [PMID: 36542130 DOI: 10.1007/s00256-022-04244-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND New entities in the classification of bone and soft tissue tumors have been identified by use of advanced molecular-genetic techniques, including next-generation sequencing. Clinicoradiologic and pathologic correlation supports diagnostic classification. METHODS Tumors from four morphologically grouped areas are selected to enhance diagnosis and awareness among the multidisciplinary team. These include select round cell tumors, spindle cell tumors, targetable tyrosine kinase/RAS::MAPK pathway-ovoid (epithelioid to spindled) tumors, and giant-cell-rich tumors of bone and soft tissue. RESULTS Round cell tumors of bone and soft tissue include prototypical Ewing sarcoma, newer sarcomas with BCOR genetic alteration and CIC-rearranged, as well as updates on FUS/EWSR1::NFATc2, an EWSR1 non-ETS tumor that is solid with additional amplified hybridization signal pattern of EWSR1. This FUS/EWSR1::NFATc2 fusion has now been observed in seemingly benign to low-grade intraosseous vascular-rich and simple (unicameral) bone cyst tumors. Select spindle cell tumors of bone and soft tissue include rhabdomyosarcoma with FUS/EWSR1::TFCP2, an intraosseous high-grade spindle cell tumor without matrix. Targetable tyrosine-kinase or RAS::MAPK pathway-tumors of bone and soft tissue include NTRK, ALK, BRAF, RAF1, RET, FGFR1, ABL1, EGFR, PDGFB, and MET with variable ovoid myopericytic to spindled pleomorphic features and reproducible clinicopathologic and radiologic clues to their diagnosis. Giant-cell-rich tumors of bone, joint, and soft tissue are now respectively characterized by H3F3A mutation, CSF1 rearrangement (targetable), and HMGA2::NCOR2 fusion. CONCLUSION This article is an update for radiologists, oncologists, surgeons, and pathologists to recognize these novel ovoid, spindled, giant-cell-rich, and round cell tumors, for optimal diagnostic classification and multidisciplinary team patient care.
Collapse
Key Words
- ALK, NTRK, BRAF, RAF1, RET, FGFR1, ABL1, EGFR, MET, PDGFB fusions, tyrosine-kinase inhibitor
- Bone, joint, soft tissue giant cell tumors with H3F3A-mutation, CSF1-rearrangement, HMGA2::NCOR2 fusion
- Clinical, pathology, radiology
- EWSR1, CIC, BCOR, FUS/EWSR1::NFATc2, bone cyst, vascular
- Intraosseous rhabdomyosarcoma EWSR1/FUS::TFCP2
- Novel fusion sarcoma
Collapse
|
15
|
Panagopoulos I, Andersen K, Brunetti M, Gorunova L, Lund-Iversen M, Micci F, Heim S. Fusion of the High-mobility Group AT-Hook 2 ( HMGA2) and the Gelsolin ( GSN) Genes in Lipomas With t(9;12)(q33;q14) Chromosomal Translocation. In Vivo 2023; 37:524-530. [PMID: 36881074 PMCID: PMC10026638 DOI: 10.21873/invivo.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND/AIM Lipomas are benign tumors composed of mature fat cells. They are common soft tissue tumors that often carry chromosome aberrations involving 12q14 resulting in rearrangements, deregulation, and generation of chimeras of the high-mobility group AT-hook 2 gene (HMGA2) which maps in 12q14.3. In the present study, we report the finding of t(9;12)(q33;q14) translocation in lipomas and describe its molecular consequences. MATERIALS AND METHODS Four lipomas from two male and two female adult patients were selected because their neoplastic cells carried a t(9;12)(q33;q14) as the sole karyotypic aberration. The tumors were investigated using RNA sequencing, reverse transcription polymerase chain reaction (RT-PCR), and Sanger sequencing techniques. RESULTS RNA sequencing of a t(9;12)(q33;q14)-lipoma detected an in-frame fusion of HMGA2 with the gelsolin gene (GSN) from 9q33. RT-PCR together with Sanger sequencing confirmed the presence of an HMGA2::GSN chimera in the tumor as well as in two other tumors from which RNA was available. The chimera was predicted to code for an HMGA2::GSN protein which would contain the three AT-hook domains of HMGA2 and the entire functional part of GSN. CONCLUSION t(9;12)(q33;q14) is a recurrent cytogenetic aberration in lipomas and generates an HMGA2::GSN chimera. Similar to what is seen in other rearrangements of HMGA2 in mesenchymal tumors, the translocation physically separates the part of HMGA2 encoding AT-hook domains from the gene's 3'-terminal part which contains elements that normally regulate HMGA2 expression.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Marta Brunetti
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Marius Lund-Iversen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
16
|
Gogolev AB, Urezkova MM, Kudaibergenova AG. [Changes in the WHO classification (2020) of soft tissue tumors]. Arkh Patol 2023; 85:43-50. [PMID: 36785961 DOI: 10.17116/patol20238501143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The article provides an overview of the main changes in the current (2020) WHO classification of soft tissue tumors, as well as selected updates that have occurred since the release of the classification.
Collapse
Affiliation(s)
- A B Gogolev
- Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - M M Urezkova
- Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - A G Kudaibergenova
- Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| |
Collapse
|
17
|
Rottmann D, Abdulfatah E, Pantanowitz L. Molecular testing of soft tissue tumors. Diagn Cytopathol 2023; 51:12-25. [PMID: 35808975 PMCID: PMC10084007 DOI: 10.1002/dc.25013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The diagnosis of soft tissue tumors is challenging, especially when the evaluable material procured is limited. As a result, diagnostic ancillary testing is frequently needed. Moreover, there is a trend in soft tissue pathology toward increasing use of molecular results for tumor classification and prognostication. Hence, diagnosing newer tumor entities such as CIC-rearranged sarcoma explicitly requires molecular testing. Molecular testing can be accomplished by in situ hybridization, polymerase chain reaction, as well as next generation sequencing, and more recently such testing can even be accomplished leveraging an immunohistochemical proxy. CONCLUSION This review evaluates the role of different molecular tests in characterizing soft tissue tumors belonging to various cytomorphologic categories that have been sampled by small biopsy and cytologic techniques.
Collapse
Affiliation(s)
- Douglas Rottmann
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Eman Abdulfatah
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Liron Pantanowitz
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Gauduchon T, Vanacker H, Pissaloux D, Cassier P, Dufresne A, Karanian M, Meurgey A, Bouhamama A, Gouin F, Ray-Coquard I, Blay JY, Tirode F, Brahmi M. Expanding the molecular spectrum of tenosynovial giant cell tumors. Front Oncol 2022; 12:1012527. [PMID: 36439507 PMCID: PMC9691341 DOI: 10.3389/fonc.2022.1012527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Background While great advances in clinical and pathological description of tenosynovial giant cell tumors (TGCT) have been made, TGCT molecular heterogeneity represents an ongoing challenge. The canonical oncogenic fusion CSF1::COL6A3 is not systematically observed, suggesting that other oncogenic mechanisms are involved in tumorigenesis. This study aims to explore by RNA sequencing a retrospective series of tumors diagnosed as TGCT, in order to provide a better description of their molecular landscape and to correlate molecular features with clinical data. Methods We analyzed clinicopathological data and performed whole-exome RNA sequencing on 41 TGCT samples. Results RNAseq analysis showed significant higher CSF1 and CSF1-R expression than a control panel of 2642 solid tumors. RNA sequencing revealed fusion transcripts in 14 patients including 6 not involving CSF1 and some previously unreported fusions. Unsupervised clustering on the expression profiles issued from this series suggested two distinct subgroups: one composed of various molecular subtypes including CSF1 and FN1 rearranged samples and one composed of four tumors harboring an HMGA2::NCOR2 fusion, suggesting distinct tumor entities. Overall, 15 patients received at least one systemic anti-CSF1R treatment and clinical improvement was observed in 11 patients, including patients from both clusters. Discussion This study reported molecular heterogeneity in TGCT, contrasting with the clinical and pathological homogeneity and the ubiquitous high CSF1 and CSF1R expression levels. Whether molecular diversity may impact the efficacy of systemic treatments needs to be further investigated.
Collapse
Affiliation(s)
- Thibault Gauduchon
- Département d’oncologie médicale, Centre de lutte contre le cancer Léon-Bérard, Lyon, France
- *Correspondence: Thibault Gauduchon,
| | - Helene Vanacker
- Département d’oncologie médicale, Centre de lutte contre le cancer Léon-Bérard, Lyon, France
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Lyon, France
| | - Daniel Pissaloux
- Département d’oncologie médicale, Centre de lutte contre le cancer Léon-Bérard, Lyon, France
| | - Philippe Cassier
- Département d’oncologie médicale, Centre de lutte contre le cancer Léon-Bérard, Lyon, France
| | - Armelle Dufresne
- Département d’oncologie médicale, Centre de lutte contre le cancer Léon-Bérard, Lyon, France
| | - Marie Karanian
- Département d’oncologie médicale, Centre de lutte contre le cancer Léon-Bérard, Lyon, France
| | - Alexandra Meurgey
- Département d’oncologie médicale, Centre de lutte contre le cancer Léon-Bérard, Lyon, France
| | - Amine Bouhamama
- Département d’oncologie médicale, Centre de lutte contre le cancer Léon-Bérard, Lyon, France
| | - François Gouin
- Département d’oncologie médicale, Centre de lutte contre le cancer Léon-Bérard, Lyon, France
| | - Isabelle Ray-Coquard
- Département d’oncologie médicale, Centre de lutte contre le cancer Léon-Bérard, Lyon, France
- Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, Lyon, France
| | - Jean-Yves Blay
- Département d’oncologie médicale, Centre de lutte contre le cancer Léon-Bérard, Lyon, France
- Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Est, Lyon, France
| | - Franck Tirode
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Lyon, France
| | - Mehdi Brahmi
- Département d’oncologie médicale, Centre de lutte contre le cancer Léon-Bérard, Lyon, France
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Lyon, France
| |
Collapse
|
19
|
PANAGOPOULOS IOANNIS, HEIM SVERRE. Neoplasia-associated Chromosome Translocations Resulting in Gene Truncation. Cancer Genomics Proteomics 2022; 19:647-672. [PMID: 36316036 PMCID: PMC9620447 DOI: 10.21873/cgp.20349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022] Open
Abstract
Chromosomal translocations in cancer as well as benign neoplasias typically lead to the formation of fusion genes. Such genes may encode chimeric proteins when two protein-coding regions fuse in-frame, or they may result in deregulation of genes via promoter swapping or translocation of the gene into the vicinity of a highly active regulatory element. A less studied consequence of chromosomal translocations is the fusion of two breakpoint genes resulting in an out-of-frame chimera. The breaks then occur in one or both protein-coding regions forming a stop codon in the chimeric transcript shortly after the fusion point. Though the latter genetic events and mechanisms at first awoke little research interest, careful investigations have established them as neither rare nor inconsequential. In the present work, we review and discuss the truncation of genes in neoplastic cells resulting from chromosomal rearrangements, especially from seemingly balanced translocations.
Collapse
Affiliation(s)
- IOANNIS PANAGOPOULOS
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - SVERRE HEIM
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Dehner CA, Baker JC, Bell R, Dickson BC, Schmidt RE, Demicco EG, Chrisinger JSA. Xanthogranulomatous epithelial tumors and keratin-positive giant cell-rich soft tissue tumors: two aspects of a single entity with frequent HMGA2-NCOR2 fusions. Mod Pathol 2022; 35:1656-1666. [PMID: 35690644 DOI: 10.1038/s41379-022-01115-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
Xanthogranulomatous epithelial tumor (XGET) and keratin-positive giant cell-rich soft tissue tumor with HMGA2-NCOR2 fusion (KPGCT) are two recently described neoplasms with both distinct and overlapping clinical and histopathologic features. We hypothesized that XGET and KPGCT may be related and represent a histologic spectrum of a single entity. To test this, we sought to characterize the clinical, radiographic, immunohistochemical, ultrastructural and molecular features of additional tumors with features of XGET and/or KPGCT, which we refer to descriptively as keratin-positive xanthogranulomatous/giant cell-rich tumors (KPXG/GCT). The archives were searched for potential cases of KPXG/GCT. Clinical and imaging features were noted. Slides were assessed for histologic and immunohistochemical findings. Ultrastructural and next generation RNA sequencing-based analysis were also performed. Nine cases were identified arising in seven women and two men [median age of 33 years (range: 12-87)]. Median tumor size was 4 cm (range: 2.4-14.0 cm) and tumors presented in the thigh (2), buttock (1), forearm (2), groin (1), cranial fossa (1), ilium (1), and tibia (1). Morphologically, tumors were most frequently characterized by a fibrous capsule, with associated lymphoid reaction, enclosing a polymorphous proliferation of histiocytes, giant cells (Touton and osteoclast-types), mixed inflammatory infiltrate, hemorrhage and hemosiderin deposition, which imparted a variably xanthogranulomatous to giant cell tumor-like appearance. One case clearly showed mononuclear cells with eosinophilic cytoplasm characteristic of XGET. All cases expressed keratin and 7 of 9 were found to harbor HMGA2-NCOR2 fusions including cases with xanthogranulomatous appearance. One patient developed local recurrence and multifocal pulmonary lesions, which were radiographically suspicious for metastases. Shared clinical, histologic and immunohistochemical features, and the shared presence of HMGA2-NCOR2 fusions supports interpretation of KPXG/GCT as a single entity which includes XGET and KPGCT. Given limited clinical follow-up to date and rare cases with apparently aggressive findings, we provisionally regard these tumors as having uncertain biologic potential.
Collapse
Affiliation(s)
- Carina A Dehner
- Department of Pathology and Immunology, Division of Anatomic Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan C Baker
- Mallinckrodt Institute of Radiology, Musculoskeletal Section, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert Bell
- Department of Pathology and Immunology, Division of Anatomic Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital & Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Robert E Schmidt
- Department of Pathology and Immunology, Division of Neuropathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital & Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - John S A Chrisinger
- Department of Pathology and Immunology, Division of Anatomic Pathology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
Sugita S, Takenami T, Kido T, Aoyama T, Hosaka M, Segawa K, Sugawara T, Fujita H, Shimizu J, Murahashi Y, Emori M, Hasegawa T. Diagnostic utility of CSF1 immunohistochemistry in tenosynovial giant cell tumor for differentiating from giant cell-rich tumors and tumor-like lesions of bone and soft tissue. Diagn Pathol 2022; 17:88. [PMID: 36320082 PMCID: PMC9623913 DOI: 10.1186/s13000-022-01266-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Tenosynovial giant cell tumor (TSGCT) is a benign fibrohistiocytic tumor that affects the synovium of joints, bursa, and tendon sheaths and is categorized into localized TSGCT (LTSGCT) and diffuse TSGCT (DTSGCT). LTSGCT and DTSGCT are characterized by recurrent fusions involving the colony-stimulating factor 1 (CSF1) gene and its translocation partner collagen type VI alpha 3 chain. The fusion gene induces intratumoral overexpression of CSF1 mRNA and CSF1 protein. CSF1 expression is a characteristic finding of TSGCT and detection of CSF1 mRNA and CSF1 protein may be useful for the pathological diagnosis. Although there have been no effective anti-CSF1 antibodies to date, in situ hybridization (ISH) for CSF1 mRNA has been performed to detect CSF1 expression in TSGCT. We performed CSF1 immunohistochemistry (IHC) using anti-CSF1 antibody (clone 2D10) in cases of TSGCT, giant cell-rich tumor (GCRT), and GCRT-like lesion and verified its utility for the pathological diagnosis of TSGCT. METHODS We performed CSF1 IHC in 110 cases including 44 LTSGCTs, 20 DTSGCTs, 1 malignant TSGCT (MTSGCT), 10 giant cell tumors of bone, 2 giant cell reparative granulomas, 3 aneurysmal bone cysts, 10 undifferentiated pleomorphic sarcomas, 10 leiomyosarcomas, and 10 myxofibrosarcomas. We performed fluorescence ISH (FISH) for CSF1 rearrangement to confirm CSF1 expression on IHC in TSGCTs. We considered the specimens to have CSF1 rearrangement if a split signal was observed in greater than 2% of the tumor cells. RESULTS Overall, 50 of 65 TSGCT cases, including 35 of the 44 LTSGCTs and 15 of the 20 DTSGCTs, showed distinct scattered expression of CSF1 in the majority of mononuclear tumor cells. MTSGCT showed no CSF1 expression. Non-TSGCT cases were negative for CSF1. FISH revealed CSF1 rearrangement in 6 of 7 CSF1-positive cases on IHC. On the other hand, FISH detected no CSF1 rearrangement in all CSF1-negative cases on IHC. Thus, the results of IHC corresponded to those of FISH. CONCLUSION We revealed characteristic CSF1 expression on IHC in cases of TSGCT, whereas the cases of non-TSGCT exhibited no CSF1 expression. CSF1 IHC may be useful for differentiating TSGCTs from histologically mimicking GCRTs and GCRT-like lesions.
Collapse
Affiliation(s)
- Shintaro Sugita
- grid.263171.00000 0001 0691 0855Department of Surgical Pathology, School of Medicine, Sapporo Medical University, 060-8543 Sapporo, Hokkaido Japan
| | - Tomoko Takenami
- grid.263171.00000 0001 0691 0855Department of Surgical Pathology, School of Medicine, Sapporo Medical University, 060-8543 Sapporo, Hokkaido Japan
| | - Tomomi Kido
- grid.263171.00000 0001 0691 0855Department of Surgical Pathology, School of Medicine, Sapporo Medical University, 060-8543 Sapporo, Hokkaido Japan
| | - Tomoyuki Aoyama
- grid.263171.00000 0001 0691 0855Department of Surgical Pathology, School of Medicine, Sapporo Medical University, 060-8543 Sapporo, Hokkaido Japan
| | - Michiko Hosaka
- grid.263171.00000 0001 0691 0855Department of Surgical Pathology, School of Medicine, Sapporo Medical University, 060-8543 Sapporo, Hokkaido Japan
| | - Keiko Segawa
- grid.263171.00000 0001 0691 0855Department of Surgical Pathology, School of Medicine, Sapporo Medical University, 060-8543 Sapporo, Hokkaido Japan
| | - Taro Sugawara
- grid.263171.00000 0001 0691 0855Department of Surgical Pathology, School of Medicine, Sapporo Medical University, 060-8543 Sapporo, Hokkaido Japan
| | - Hiromi Fujita
- grid.263171.00000 0001 0691 0855Department of Surgical Pathology, School of Medicine, Sapporo Medical University, 060-8543 Sapporo, Hokkaido Japan
| | - Junya Shimizu
- grid.263171.00000 0001 0691 0855Department of Orthopedic Surgery, School of Medicine, Sapporo Medical University, 060-8543 Sapporo, Hokkaido Japan
| | - Yasutaka Murahashi
- grid.263171.00000 0001 0691 0855Department of Orthopedic Surgery, School of Medicine, Sapporo Medical University, 060-8543 Sapporo, Hokkaido Japan
| | - Makoto Emori
- grid.263171.00000 0001 0691 0855Department of Orthopedic Surgery, School of Medicine, Sapporo Medical University, 060-8543 Sapporo, Hokkaido Japan
| | - Tadashi Hasegawa
- grid.263171.00000 0001 0691 0855Department of Surgical Pathology, School of Medicine, Sapporo Medical University, 060-8543 Sapporo, Hokkaido Japan
| |
Collapse
|
22
|
Chen P, Hu Q, Wu J. Giant Cell Tumor of Soft Tissue—A Rare Cause of Mass in the Liver: A Case Report. Front Surg 2022; 9:830852. [PMID: 35574549 PMCID: PMC9091500 DOI: 10.3389/fsurg.2022.830852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Primary giant cell tumors of soft tissues (GCT-STs) are extremely rare soft tissue tumors located both in superficial and in deep soft tissues. Clinically, GCT-ST manifests as a slow-growing, well-defined, painless mass. We report a case of an 88-year-old female patient with upper abdominal distension, fever, and anemia. Laparoscopic exploration revealed a tumor located in the left lobe of the liver with localized rupture and hemorrhage. Postoperative pathology revealed that the tumor was composed of monocytes and osteoclast-like multinucleated giant cells, accompanied by extensive hemorrhage, necrosis, and cytologic atypia. Because mitotic cells are difficult to be detected in pathological diagnosis, combined with immunohistochemistry, the tumor was diagnosed as a giant cell tumor of soft tissue. This case report highlights the primary choice of histology and immunohistochemistry for the correct diagnosis of GCT-ST because preoperative radiological diagnosis is nonspecific and prone to mistakes.
Collapse
|
23
|
Panagopoulos I, Andersen K, Gorunova L, Lund-Iversen M, Lobmaier I, Heim S. Recurrent Fusion of the Genes for High-mobility Group AT-hook 2 ( HMGA2) and Nuclear Receptor Co-repressor 2 ( NCOR2) in Osteoclastic Giant Cell-rich Tumors of Bone. Cancer Genomics Proteomics 2022; 19:163-177. [PMID: 35181586 DOI: 10.21873/cgp.20312] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIM Chimeras involving the high-mobility group AT-hook 2 gene (HMGA2 in 12q14.3) have been found in lipomas and other benign mesenchymal tumors. We report here a fusion of HMGA2 with the nuclear receptor co-repressor 2 gene (NCOR2 in 12q24.31) repeatedly found in tumors of bone and the first cytogenetic investigation of this fusion. MATERIALS AND METHODS Six osteoclastic giant cell-rich tumors were investigated using G-banding, RNA sequencing, reverse transcription polymerase chain reaction, Sanger sequencing, and fluorescence in situ hybridization. RESULTS Four tumors had structural chromosomal aberrations of 12q. The pathogenic variant c.103_104GG>AT (p.Gly35Met) in the H3.3 histone A gene was found in a tumor without 12q aberration. In-frame HMGA2-NCOR2 fusion transcripts were found in all tumors. In two cases, the presence of an HMGA2-NCOR2 fusion gene was confirmed by FISH on metaphase spreads. CONCLUSION Our results demonstrate that a subset of osteoclastic giant cell-rich tumors of bone are characterized by an HMGA2-NCOR2 fusion gene.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Marius Lund-Iversen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ingvild Lobmaier
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Agaimy A, Ihrler S, Baněčková M, Costés Martineau V, Mantsopoulos K, Hartmann A, Iro H, Stoehr R, Skálová A. HMGA2-WIF1 Rearrangements Characterize a Distinctive Subset of Salivary Pleomorphic Adenomas With Prominent Trabecular (Canalicular Adenoma-like) Morphology. Am J Surg Pathol 2022; 46:190-199. [PMID: 34324456 DOI: 10.1097/pas.0000000000001783] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Most of salivary gland neoplasms (benign and malignant) are characterized by recurrent gene fusions. Pleomorphic adenoma (PA), the most frequent salivary gland tumor, is driven by chromosomal rearrangements involving PLAG1 mapped to 8q12 and HMGA2 mapped to 12q13-15 in most cases. Multiple fusion partners have been identified including CTNNB1, FGFR1, LIFR, CHCHD7 and TCEA for PLAG1 fusions and NFIB, WIF1 and FHIT for HMGA2 fusions. To date, no data exist on the morphology of the few reported HMGA2-WIF1-rearranged PAs. We present 28 major salivary gland adenomas displaying distinctive trabecular and canalicular morphology associated with recurrent genotype. Patients were 15 females and 13 males aged 43 to 87 (median: 65). All tumors originated from the parotid. Their size range was 1 to 4 cm (mean: 2.3). Histologically, all tumors showed elongated or columnar cells arranged into bilayered to multilayered communicating and branching strands and trabeculae in a manner similar to canalicular adenoma of minor salivary glands or trabecular myoepithelioma with variable solid confluent intercalated duct-like areas. Fifteen tumors were exclusively canalicular/trabecular while 13 had intermingled or well-demarcated conventional (chondromyxoid) PA component comprising 5 to >50% of the tumor. The monomorphic areas expressed uniformly CK7 (28/28), vimentin (21/21), S100 (24/24), SOX10 (16/17) and variably p63 (8/21) and mammaglobin (6/16) but were negative with p40 (0/24), smooth muscle actin (0/24) and MUC4 (0/16). Targeted RNA sequencing revealed HMGA2 fusions in 14/16 (87%) assessable cases. Fusion partner was WIF1 (12), RPSAP52 (1) and HELB (1). Separate testing of the 2 components in 1 hybrid tumor showed same HMGA2/WIF1 fusion. HMGA2 immunohistochemistry was homogeneously positive in all cases including the 2 fusion-negative cases. A control cohort of 12 genuine canalicular adenomas revealed no HMGA2 fusions (0/4) and lacked HMGA2 immunoreactivity (0/12). This study highlights a distinctive variant in the spectrum of PA characterized by prominent trabecular and canalicular adenoma-like morphology. Our data confirm that canalicular adenomas in major salivary glands (either monomorphic or part of hybrid tumors) are distinct from canalicular adenoma of minor salivary glands. Their uniform genotype irrespective of presence or absence of a conventional PA component argues for classifying those tumors lacking a conventional PA component as "monomorphic variants of PA" rather than canalicular/basal cell adenomas, intercalated duct adenoma, trabecular myoepithelioma or true hybrid tumors.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Comprehensive Cancer Center (CCC) Erlangen-EMN
| | - Stephan Ihrler
- DERMPATH Muenchen
- Institute of Pathology, Ludwig Maximilians University, Munich, Germany
| | - Martina Baněčková
- Department of Pathology, Charles University, Faculty of Medicine in Plzen
- Bioptic Laboratory Ltd, Plzen, Czech Republic
| | | | - Konstantinos Mantsopoulos
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center (CCC) Erlangen-EMN
| | - Heinrich Iro
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen
| | - Robert Stoehr
- Institute of Pathology, Comprehensive Cancer Center (CCC) Erlangen-EMN
| | - Alena Skálová
- Department of Pathology, Charles University, Faculty of Medicine in Plzen
- Bioptic Laboratory Ltd, Plzen, Czech Republic
| |
Collapse
|
25
|
Folpe AL. ‘I Can’t Keep Up!’: an update on advances in soft tissue pathology occurring after the publication of the 2020 World Health Organization classification of soft tissue and bone tumours. Histopathology 2021; 80:54-75. [DOI: 10.1111/his.14460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Andrew L Folpe
- Department of Laboratory Medicine and Pathology Mayo Clinic Rochester MN USA
| |
Collapse
|
26
|
Liu J, Mao R, Lao IW, Yu L, Bai Q, Zhou X, Wang J. GLI1-altered mesenchymal tumor: a clinicopathological and molecular analysis of ten additional cases of an emerging entity. Virchows Arch 2021; 480:1087-1099. [PMID: 34779913 DOI: 10.1007/s00428-021-03224-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
We report 10 additional cases of GLI1-altered mesenchymal tumor to further delineate its clinicopathological and molecular spectrum. There were seven males and three females with a median age of 31 years (range 1.3 ~ 75 years). Five tumors arose in the oral cavity, one each in the stomach, uterine cervix, elbow, groin, and thigh. Histologically, all cases except one were composed of monomorphic round to epithelioid cells showing an infiltrative multinodular growth pattern. The neoplastic cells were surrounded by a rich network of capillary vessels. Vessel invasion or subendothelial protrusion into the vascular space was commonly present. One tumor developed regional lymph node metastasis. The remaining case showed a predominantly spindle cell tumor. By immunohistochemistry, most tumors showed diffuse staining of CD56 (8/8) with variable expression of S100 protein (7/8). In three tumors harboring amplified genes, strong and diffuse nuclear staining of MDM2 (2/3) and CDK4 (3/3) were noted. Next-generation sequencing (NGS) studies revealed GLI1 fusions in 7 cases and GLI1 amplification in 2 cases, which were validated by fluorescence in situ hybridization (FISH) analysis in the majority of cases. One case did not show fusion gene by RNA-seq, but FISH revealed both amplification and break-apart of GLI1 gene. Follow-up information showed local recurrences in two patients. All other patients remained disease-free at the last follow-up. Our study further demonstrates that mesenchymal tumors with GLI1 alterations represent a distinctive clinicopathological entity. Although the tumor has a propensity for the tongue, it can also arise in somatic soft tissues as well as in visceral organs. Based on the characteristic morphological features and genomic profiles, we propose the term "GLI1-altered mesenchymal tumor" to describe this emerging entity.
Collapse
Affiliation(s)
- Jiahan Liu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rongjun Mao
- Department of Pathology, Foshan Hospital of Chinese Traditional Medicine, Guangdong Province, Foshan, 528000, China
| | - I Weng Lao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lin Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qianming Bai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jian Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|