1
|
Lajara S, Jo VY. Soft Tissue Fine-Needle Aspiration: Current and Future Impact on Patient Care. Surg Pathol Clin 2024; 17:483-507. [PMID: 39129144 DOI: 10.1016/j.path.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Soft tissue neoplasms pose many diagnostic challenges on fine-needle aspiration (FNA), owing largely to their rarity, large number of entities, and histologic diversity. Advances in ancillary testing now allow detection of the characteristic immunophenotypes and molecular alterations for many neoplasms and include reliable surrogate immunohistochemical markers for underlying molecular events that are highly efficient in small biopsies. A morphology-based framework is recommended to guide appropriate differentials and judicious selection of ancillary tests for small biopsies. The accurate diagnosis of soft tissue tumors is crucial for patient management and prognostication, with many potential implications in this era of precision medicine.
Collapse
Affiliation(s)
- Sigfred Lajara
- Department of Pathology, UPMC Shadyside Hospital, Cancer Pavilion, Suite 201, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Vickie Y Jo
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Le MK, Oishi N, Mochizuki K, Kondo T. Immunohistochemical detection of cancer genetic abnormalities. Pathol Res Pract 2024; 255:155109. [PMID: 38340581 DOI: 10.1016/j.prp.2024.155109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
New applications of immunohistochemistry (IHC) expand rapidly due to the development of molecular analyses and an increased understanding of molecular biology. IHC becomes much more important as a screening or even a confirmatory test for molecular changes in cancer. The past decades have witnessed the release of many immunohistochemical markers of the new generation. The novel markers have extensively high specificity and sensitivity for the detection of genetic abnormalities. In addition to diagnostic utility, IHC has been validated to be a practical tool in terms of treatments, especially molecular targeted therapy. In this review, we first describe the common alterations of protein IHC staining in human cancer: overexpression, underexpression, or loss of expression and altered staining pattern. Next, we examine the relationship between staining patterns and genetic aberrations regarding both conventional and novel IHC markers. We also mention current mutant-specific and fusion-specific antibodies and their concordance with molecular techniques. We then describe the basic molecular mechanisms from genetic events to corresponding protein expression patterns (membranous, cytoplasmic, or nuclear patterns). Finally, we shortly discuss the applications of immunohistochemistry in molecular targeted therapy. IHC markers can serve as a complementary or companion diagnostic test to provide valuable information for targeted therapy. Moreover, immunohistochemistry is also crucial as a companion diagnostic test in immunotherapy. The increased number of IHC novel antibodies is broadening its application in anti-cancer therapies.
Collapse
Affiliation(s)
- Minh-Khang Le
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Naoki Oishi
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kunio Mochizuki
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Tetsuo Kondo
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan.
| |
Collapse
|
3
|
Rerkpichaisuth V, Hung YP. Mesenchymal tumours of the pleura: review and update. Histopathology 2024; 84:163-182. [PMID: 37691389 DOI: 10.1111/his.15035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
Primary mesenchymal tumours of the pleura are uncommon and can be diagnostically challenging due to their overlapping histopathologic and immunophenotypic features. Herein we discuss selected mesenchymal tumours of the pleura, including solitary fibrous tumour, calcifying fibrous tumour, desmoid fibromatosis, synovial sarcoma, schwannoma, malignant peripheral nerve sheath tumour, inflammatory myofibroblastic tumour, follicular dendritic cell sarcoma, epithelioid hemangioendothelioma, and desmoplastic small round cell tumour. We review their clinicopathologic characteristics, along with an update on the relevant immunohistochemical and molecular features.
Collapse
Affiliation(s)
- Vilasinee Rerkpichaisuth
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yin P Hung
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Wang X, Liu LL, Li Q, Xia QY, Li R, Ye SB, Zhang RS, Fang R, Chen H, Wu N, Rao Q. Loss of YAP1 C-terminus expression as an ancillary marker for metaplastic thymoma: a potential pitfall in detecting YAP1::MAML2 gene rearrangement. Histopathology 2023; 83:798-809. [PMID: 37565303 DOI: 10.1111/his.15024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
AIMS Metaplastic thymoma is a rare thymic tumour characterized by Yes Associated Protein 1 (YAP1) and Mastermind Like Transcriptional Coactivator 2 (MAML2) gene fusions resulting from an intrachromosomal inversion of chromosome 11. Immunohistochemistry with an antibody directed against the C-terminus of YAP1 has shown loss of expression in YAP1-rearranged vascular neoplasms, poromas, and porocarcinomas. This study aimed to validate an anti-YAP1 C-terminal antibody as an ancillary immunohistochemical marker for the diagnosis of metaplastic thymoma. MATERIALS AND METHODS Ten metaplastic thymomas were selected for the current study. Fluorescence in situ hybridization (FISH), next-generation sequencing (NGS), and reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed to detect YAP1::MAML2 fusions. We then performed immunohistochemistry to detect YAP1 C-terminus expression in 10 metaplastic thymomas, 50 conventional thymomas (10 each of type A thymoma, type AB thymoma, type B1 thymoma, type B2 thymoma, and type B3 thymoma) and seven thymic carcinomas. RESULTS All 10 cases showed narrow split signals with a distance of nearly two signal diameters and sometimes had false-negative results in YAP1 and MAML2 break-apart FISH (BA-FISH). Abnormal colocalized signals of the YAP1::MAML2 fusion were observed in all 10 cases using fusion FISH (F-FISH) assays. Eight of 10 cases with adequate nucleic acids were successfully sequenced and all showed YAP1::MAML2 fusions; in two cases the fusions were detected by both DNA and RNA sequencing and in six cases by RNA sequencing only. YAP1::MAML2 fusion transcripts were identified in four cases by RT-PCR. Metaplastic thymoma showed loss of YAP1 C-terminus expression in all 10 (100%) cases. All other thymic neoplasms showed retained YAP1 C-terminus expression. CONCLUSION YAP1 C-terminus immunohistochemistry is a highly sensitive and specific ancillary marker that distinguishes metaplastic thymoma from its mimics. BA-FISH assays could not effectively detect YAP1::MAML2 fusions due to the proximity of the two genes. Loss of YAP1 C-terminus expression is a reliable surrogate for the detection of YAP1::MAML2 fusions in metaplastic thymoma.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lei-Lei Liu
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qing Li
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qiu-Yuan Xia
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rui Li
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Sheng-Bing Ye
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ru-Song Zhang
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ru Fang
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hui Chen
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Nan Wu
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qiu Rao
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Marak JR, Raj G, Verma S, Gandhi A. Primary hepatic epithelioid hemangioendothelioma masquerading as metastases: A rare case report. Radiol Case Rep 2023; 18:3739-3747. [PMID: 37609067 PMCID: PMC10440529 DOI: 10.1016/j.radcr.2023.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
Epithelioid hemangioendothelioma (EHE) of the liver is an extremely rare malignant tumor of vascular origin, representing less than 1 % of all vascular tumors. Nearly 260 cases have been reported in English literature. Radiologically it is seen as multifocal lesions. It can be seen at different sites like lungs, bones, lymph nodes, breasts, and soft tissue. Often it is misdiagnosed with metastases, cholangiocarcinoma, or angiosarcoma. No definite treatment protocol is available due to its rarity, however, these malignancies are treated by radical resection of the tumor or liver transplant and/or chemotherapy. Here we present a primary hepatic epithelioid hemangioendothelioma (HEHE) which was mimicking metastases in a 42-year-old male who was treated with chemotherapy and radiotherapy. Sadly the patient expired after 1 year of complete course of treatment. Imaging features can help to improve the diagnostic accuracy of this tumor.
Collapse
Affiliation(s)
- James R. Marak
- Department of Radiodiagnosis, Dr RMLIMS, Lucknow, Uttar Pradesh, 226010, India
| | - Gaurav Raj
- Department of Radiodiagnosis, Dr RMLIMS, Lucknow, Uttar Pradesh, 226010, India
| | - Shashwat Verma
- Department of Nuclear Medicine, Dr RMLIMS, Lucknow, Uttar Pradesh, 226010, India
| | - Ajeet Gandhi
- Department of Radiation Oncology, Dr RMLIMS, Lucknow, Uttar Pradesh, 226010, India
| |
Collapse
|
6
|
Abdelmogod A, Papadopoulos L, Riordan S, Wong M, Weltman M, Lim R, McEvoy C, Fellowes A, Fox S, Bedő J, Penington J, Pham K, Hofmann O, Vissers JHA, Grimmond S, Ratnayake G, Christie M, Mitchell C, Murray WK, McClymont K, Luk P, Papenfuss AT, Kee D, Scott CL, Goldstein D, Barker HE. A Matched Molecular and Clinical Analysis of the Epithelioid Haemangioendothelioma Cohort in the Stafford Fox Rare Cancer Program and Contextual Literature Review. Cancers (Basel) 2023; 15:4378. [PMID: 37686662 PMCID: PMC10487006 DOI: 10.3390/cancers15174378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Epithelioid haemangioendothelioma (EHE) is an ultra-rare malignant vascular tumour with a prevalence of 1 per 1,000,000. It is typically molecularly characterised by a WWTR1::CAMTA1 gene fusion in approximately 90% of cases, or a YAP1::TFE3 gene fusion in approximately 10% of cases. EHE cases are typically refractory to therapies, and no anticancer agents are reimbursed for EHE in Australia. METHODS We report a cohort of nine EHE cases with comprehensive histologic and molecular profiling from the Walter and Eliza Hall Institute of Medical Research Stafford Fox Rare Cancer Program (WEHI-SFRCP) collated via nation-wide referral to the Australian Rare Cancer (ARC) Portal. The diagnoses of EHE were confirmed by histopathological and immunohistochemical (IHC) examination. Molecular profiling was performed using the TruSight Oncology 500 assay, the TruSight RNA fusion panel, whole genome sequencing (WGS), or whole exome sequencing (WES). RESULTS Molecular analysis of RNA, DNA or both was possible in seven of nine cases. The WWTR1::CAMTA1 fusion was identified in five cases. The YAP1::TFE3 fusion was identified in one case, demonstrating unique morphology compared to cases with the more common WWTR1::CAMTA1 fusion. All tumours expressed typical endothelial markers CD31, ERG, and CD34 and were negative for pan-cytokeratin. Cases with a WWTR1::CAMTA1 fusion displayed high expression of CAMTA1 and the single case with a YAP1::TFE3 fusion displayed high expression of TFE3. Survival was highly variable and unrelated to molecular profile. CONCLUSIONS This cohort of EHE cases provides molecular and histopathological characterisation and matching clinical information that emphasises the molecular patterns and variable clinical outcomes and adds to our knowledge of this ultra-rare cancer. Such information from multiple studies will advance our understanding, potentially improving treatment options.
Collapse
Affiliation(s)
- Arwa Abdelmogod
- Limestone Coast Local Health Network, Flinders University, Bedford Park, SA 5042, Australia;
| | - Lia Papadopoulos
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (L.P.); (R.L.); (J.B.); (J.P.); (A.T.P.); (D.K.); (C.L.S.)
- The Australian Rare Cancer Portal, BioGrid, Parkville, VIC 3051, Australia;
- Eastern Health Clinical School, Monash University, Box Hill, VIC 3128, Australia
| | - Stephen Riordan
- Prince of Wales Clinical School, University of NSW, Randwick, NSW 2031, Australia;
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Melvin Wong
- Radiology Department, Prince of Wales Hospital, Randwick, NSW 2031, Australia;
| | - Martin Weltman
- Department of Gastroenterology, Nepean Hospital, Kingswood, NSW 2747, Australia;
| | - Ratana Lim
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (L.P.); (R.L.); (J.B.); (J.P.); (A.T.P.); (D.K.); (C.L.S.)
| | - Christopher McEvoy
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (C.M.); (A.F.)
| | - Andrew Fellowes
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (C.M.); (A.F.)
| | - Stephen Fox
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (C.M.); (A.F.)
| | - Justin Bedő
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (L.P.); (R.L.); (J.B.); (J.P.); (A.T.P.); (D.K.); (C.L.S.)
| | - Jocelyn Penington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (L.P.); (R.L.); (J.B.); (J.P.); (A.T.P.); (D.K.); (C.L.S.)
| | - Kym Pham
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3010, Australia; (K.P.); (O.H.); (J.H.A.V.); (S.G.)
| | - Oliver Hofmann
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3010, Australia; (K.P.); (O.H.); (J.H.A.V.); (S.G.)
| | - Joseph H. A. Vissers
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3010, Australia; (K.P.); (O.H.); (J.H.A.V.); (S.G.)
| | - Sean Grimmond
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3010, Australia; (K.P.); (O.H.); (J.H.A.V.); (S.G.)
| | | | | | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (C.M.); (W.K.M.)
| | - William K. Murray
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (C.M.); (W.K.M.)
| | - Kelly McClymont
- Sullivan Nicolaides Pathology, Brisbane, QLD 4000, Australia;
| | - Peter Luk
- Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia;
| | - Anthony T. Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (L.P.); (R.L.); (J.B.); (J.P.); (A.T.P.); (D.K.); (C.L.S.)
- Department of Gastroenterology, Nepean Hospital, Kingswood, NSW 2747, Australia;
- Sir Peter MacCallum Cancer Centre, Department of Oncology, University of Melbourne, Parkville, VIC 3000, Australia
| | - Damien Kee
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (L.P.); (R.L.); (J.B.); (J.P.); (A.T.P.); (D.K.); (C.L.S.)
- The Australian Rare Cancer Portal, BioGrid, Parkville, VIC 3051, Australia;
- Sir Peter MacCallum Cancer Centre, Department of Oncology, University of Melbourne, Parkville, VIC 3000, Australia
- Austin Health, Heidelberg, VIC 3084, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (L.P.); (R.L.); (J.B.); (J.P.); (A.T.P.); (D.K.); (C.L.S.)
- The Australian Rare Cancer Portal, BioGrid, Parkville, VIC 3051, Australia;
- The Royal Womens’ Hospital, Parkville, VIC 3052, Australia;
- Sir Peter MacCallum Cancer Centre, Department of Oncology, University of Melbourne, Parkville, VIC 3000, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3010, Australia
| | - David Goldstein
- The Australian Rare Cancer Portal, BioGrid, Parkville, VIC 3051, Australia;
- Eastern Health Clinical School, Monash University, Box Hill, VIC 3128, Australia
- Nelune Center, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Holly E. Barker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (L.P.); (R.L.); (J.B.); (J.P.); (A.T.P.); (D.K.); (C.L.S.)
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
7
|
Kong Y, Jiang C, Wei G, Sun K, Wang R, Qiu T. Small Molecule Inhibitors as Therapeutic Agents Targeting Oncogenic Fusion Proteins: Current Status and Clinical. Molecules 2023; 28:4672. [PMID: 37375228 DOI: 10.3390/molecules28124672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Oncogenic fusion proteins, arising from chromosomal rearrangements, have emerged as prominent drivers of tumorigenesis and crucial therapeutic targets in cancer research. In recent years, the potential of small molecular inhibitors in selectively targeting fusion proteins has exhibited significant prospects, offering a novel approach to combat malignancies harboring these aberrant molecular entities. This review provides a comprehensive overview of the current state of small molecular inhibitors as therapeutic agents for oncogenic fusion proteins. We discuss the rationale for targeting fusion proteins, elucidate the mechanism of action of inhibitors, assess the challenges associated with their utilization, and provide a summary of the clinical progress achieved thus far. The objective is to provide the medicinal community with current and pertinent information and to expedite the drug discovery programs in this area.
Collapse
Affiliation(s)
- Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruijie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
8
|
Diaz-Perez JA, Kerr DA. Benign and low-grade superficial endothelial cell neoplasms in the molecular era. Semin Diagn Pathol 2023:S0740-2570(23)00041-2. [PMID: 37149395 DOI: 10.1053/j.semdp.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
Vascular tumors are the most common mesenchymal neoplasms of the skin and subcutis, and they encompass a heterogeneous group with diverse clinical, histological, and molecular features, as well as biological behavior. Over the past two decades, molecular studies have enabled the identification of pathogenic recurrent genetic alterations that can be used as additional data points to support the correct classification of these lesions. The purpose of this review is to summarize the available data related to superficially located benign and low-grade vascular neoplasms and to highlight recent molecular advances with the role of surrogate immunohistochemistry to target pathogenic proteins as diagnostic biomarkers.
Collapse
Affiliation(s)
- Julio A Diaz-Perez
- Departments of Dermatology and Pathology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Darcy A Kerr
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
9
|
Dermawan JK, DiNapoli SE, Sukhadia P, Mullaney KA, Gladdy R, Healey JH, Agaimy A, Cleven AH, Suurmeijer AJ, Dickson BC, Antonescu CR. Malignant undifferentiated epithelioid neoplasms with MAML2 rearrangements: A clinicopathologic study of seven cases demonstrating a heterogenous entity. Genes Chromosomes Cancer 2023; 62:191-201. [PMID: 36344258 PMCID: PMC9908836 DOI: 10.1002/gcc.23102] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Among mesenchymal tumors, MAML2 gene rearrangements have been described in a subset of composite hemangioendothelioma and myxoinflammatory fibroblastic sarcoma (MIFS). However, we have recently encountered MAML2-related fusions in a group of seven undifferentiated malignant epithelioid neoplasms that do not fit well to any established pathologic entities. The patients included five males and two female, aged 41-71 years old (median 65 years). The tumors involved the deep soft tissue of extremities (hip, knee, arm, hand), abdominal wall, and the retroperitoneum. Microscopically, the tumors consisted of solid sheets of atypical epithelioid to histiocytoid cells with abundant cytoplasm. Prominent mitotic activity and necrosis were present in 4 cases. In 3 cases, the cells displayed hyperchromatic nuclei or conspicuous macronucleoli, and were admixed with background histiocytoid cells and a lymphoplasmacytic infiltrate. By immunohistochemistry (IHC), the neoplastic cells had a nonspecific phenotype. On targeted RNA sequencing, MAML2 was the 3' partner and fused to YAP1 (4 cases), ARHGAP42 (2 cases), and ENDOD1 (1 case). Two cases with YAP1::MAML2 harbored concurrent RAF kinase fusions (RBMS3::RAF1 and AGK::BRAF, respectively). In 2 cases with targeted DNA sequencing, mutations in TP53, RB1 and PTEN were detected in 1 case, and PDGFRB mutations, CCNE1 amplifications and CDKN2A/2B deletion were detected in another case, which showed strong and diffuse PDGFRB expression by IHC. Of the 4 cases with detailed clinical history (median follow-up period 8 months), three developed distant metastatic disease (one of which died of disease); one case remained free of disease 3 years following surgical excision. In conclusion, we describe a heterogeneous series of MAML2-rearranged undifferentiated malignant epithelioid neoplasms, a subset of which may overlap with a recently described MIFS variant with YAP1::MAML2 fusions, further expanding the clinicopathologic spectrum of mesenchymal neoplasms with recurrent MAML2 gene rearrangements.
Collapse
Affiliation(s)
- Josephine K. Dermawan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara E. DiNapoli
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Purvil Sukhadia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kerry A. Mullaney
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebecca Gladdy
- Department of Surgery, Sinai Health System, Toronto, Ontario, Canada
| | - John H. Healey
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abbas Agaimy
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Arjen H. Cleven
- Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert J.H. Suurmeijer
- Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands
| | - Brendan C. Dickson
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Cristina R. Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
10
|
Li H, Zhang R, Liu Y, Min Q, Zeng Q, Liu J. Hepatic epithelioid hemangioendothelioma a case report and literature review. Int J Surg Case Rep 2023; 104:107926. [PMID: 36796159 PMCID: PMC9958473 DOI: 10.1016/j.ijscr.2023.107926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
INTRODUCTION Hepatic epithelioid hemangioendothelioma (HEHE) is a rare disease with a high probability of being misdiagnosed. CASE PRESENTATION We present a case of a 38-year-old female patient found with HEHE by physical examination. The tumor was removed by surgery successfully, but then had recurrence after the operation. CLINICAL DISCUSSION We review the current literature on HEHE; its prevalence, diagnosis and treatment. And our opinion is that using fluorescent laparoscopy for HEHE may has an advantage in visualizing tumors, but there is still high possibility of false positives. It is recommended to use it correctly during operation. CONCLUSION The clinical presentation, laboratory and imaging index for HEHE were lacking in specificity. Therefore, diagnosis still depends mainly on pathology results, in which the most effective treatment is surgery. Besides, the fluorescent nodule which is not shown on images need to be analyzed carefully in order to avoid damage to normal tissue.
Collapse
Affiliation(s)
- Huizhen Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1, Fuhua Road, Futian District, Shenzhen, Guangdong 518033, China
| | - Renjie Zhang
- Department of Hepatobiliary Surgery, Shenzhen Traditional Chinese Medicine Hospital/The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1, Fuhua Road, Futian District, Shenzhen, Guangdong 518033, China
| | - Yang Liu
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital/The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1, Fuhua Road, Futian District, Shenzhen, Guangdong 518033, China
| | - Qinqin Min
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital/The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1, Fuhua Road, Futian District, Shenzhen, Guangdong 518033, China
| | - Qingteng Zeng
- Department of Hepatobiliary Surgery, Shenzhen Traditional Chinese Medicine Hospital/The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1, Fuhua Road, Futian District, Shenzhen, Guangdong 518033, China
| | - Jialin Liu
- Department of Hepatobiliary Surgery, Shenzhen Traditional Chinese Medicine Hospital/The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1, Fuhua Road, Futian District, Shenzhen, Guangdong 518033, China.
| |
Collapse
|
11
|
Rottmann D, Abdulfatah E, Pantanowitz L. Molecular testing of soft tissue tumors. Diagn Cytopathol 2023; 51:12-25. [PMID: 35808975 PMCID: PMC10084007 DOI: 10.1002/dc.25013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The diagnosis of soft tissue tumors is challenging, especially when the evaluable material procured is limited. As a result, diagnostic ancillary testing is frequently needed. Moreover, there is a trend in soft tissue pathology toward increasing use of molecular results for tumor classification and prognostication. Hence, diagnosing newer tumor entities such as CIC-rearranged sarcoma explicitly requires molecular testing. Molecular testing can be accomplished by in situ hybridization, polymerase chain reaction, as well as next generation sequencing, and more recently such testing can even be accomplished leveraging an immunohistochemical proxy. CONCLUSION This review evaluates the role of different molecular tests in characterizing soft tissue tumors belonging to various cytomorphologic categories that have been sampled by small biopsy and cytologic techniques.
Collapse
Affiliation(s)
- Douglas Rottmann
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Eman Abdulfatah
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Liron Pantanowitz
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Tabish N, Monaco SE. Epithelioid Vascular Lesions: The Differential Diagnosis and Approach in Cytology and Small Biopsies. Adv Anat Pathol 2022; 29:389-400. [PMID: 35993506 DOI: 10.1097/pap.0000000000000358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vascular neoplasms are rare tumors with a multitude of clinical presentations and behavior, which make accurate identification and subclassification challenging on limited small biopsies. Within the spectrum of these lesions, the ones with epithelioid morphology, such as epithelioid hemangioendothelioma and epithelioid angiosarcoma, are particularly challenging given the morphologic overlap with nonvascular lesions and the limited cells due to hemodilution on sampling. Herein, we review the differential diagnosis of epithelioid vascular neoplasms, with a focus on the cytomorphology, differential diagnoses, and ancillary studies that pathologists should be aware of when evaluating small biopsies and aspirates, including novel translocations, and associated monoclonal immunohistochemistry antibodies, that can help in the diagnosis of some of these tumors. Awareness of these morphologic and ancillary study findings in these rare tumors will hopefully allow pathologists to recognize and render-specific diagnoses on limited samples of these challenging lesions.
Collapse
Affiliation(s)
- Nabil Tabish
- Department of Laboratory Medicine, Geisinger Medical Center, Danville, PA
| | | |
Collapse
|
13
|
Phung TL. Histopathology of Vascular Tumors. Dermatol Clin 2022; 40:357-366. [DOI: 10.1016/j.det.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Jo VY, Demicco EG. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Soft Tissue Tumors. Head Neck Pathol 2022; 16:87-100. [PMID: 35312984 PMCID: PMC9018918 DOI: 10.1007/s12105-022-01425-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/03/2022] [Indexed: 01/27/2023]
Abstract
The fifth (5th) edition of the World Health Organization (WHO) Classification of Head and Neck Tumors introduces a new chapter dedicated to soft tissue neoplasms commonly affecting the head and neck. While the diversity, rarity, and wide anatomic range of soft tissue tumors precludes a discussion of all entities that may be found in the head and neck, the addition of this new chapter to the head and neck "blue book" aims to provide a more comprehensive and uniform reference text, including updated diagnostic criteria, of mesenchymal tumor types frequently (or exclusively) arising at head and neck sites. Since publication of the previous edition in 2017, there have been numerous advances in our understanding of the pathogenesis of many soft tissue tumors which have facilitated refinements in tumor classification, identification of novel entities, development of diagnostic markers, and improved prognostication. This review will provide a focused discussion of the soft tissue tumors included in the 5th edition WHO Head and Neck classification, with an emphasis on updates.
Collapse
Affiliation(s)
- Vickie Y Jo
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Vazzano JL, Patton A, Tinoco G, Iwenofu OH. Primary Intranodal Epithelioid Hemangioendothelioma with Molecular Confirmation. Int J Surg Pathol 2022; 30:557-563. [PMID: 35098778 DOI: 10.1177/10668969211070174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelioid hemangioendothelioma (EHE) is a rare low-grade malignant vascular tumor with indolent biology, characterized by reciprocal t(1;3)(p36.6;q25) with resultant WWTR1::CAMTA1 gene fusion in the vast majority of cases, regardless of anatomic location. Only a small subset, exhibiting well formed vasoformative features will contain YAP1::TFE3 gene fusion. Primary intranodal EHE is exquisitely rare. We report a case in a 54-year-old male with persistent left groin mass with discomfort for nine months. A CT of the abdomen and pelvis showed a minimally enlarged left inguinal lymph node measuring 2.8 cm with no other masses or lymphadenopathy. PET/CT and MRI imaging of the abdomen showed no evidence of disease elsewhere. Sections showed an epithelioid vasoformative neoplasm, centrally necrotic and involving a lymph node. The cells were arranged in anastomosing cords with intracytoplasmic lumens, resembling "signet ring cells". By immunohistochemistry, the tumor cells were positive for vimentin, CD31, CD34, ERG and CAMTA1; and negative for AE1/3, CAM 5.2, KRT7, KRT20, desmin, actin, HMB-45 and S-100. Ki-67 proliferation index was estimated at <1%. Molecular studies including next generation sequencing (NGS) revealed the presence of WWTR1::CAMTA1 gene fusion, and fluorescence in situ hybridization for CAMTA1 (1p36.23) and WWTR1 (3p25.1) showed fusion signals, diagnostic of EHE. We highlight a rare occurrence of EHE in a lymph node exhibiting morphologic mimicry with metastatic carcinoma.
Collapse
Affiliation(s)
- Jennifer L Vazzano
- 12306The Ohio State University Wexner Medical Center, James Cancer Hospital and Richard Solove Research Institute, Columbus, OH
| | - Ashley Patton
- 12306The Ohio State University Wexner Medical Center, James Cancer Hospital and Richard Solove Research Institute, Columbus, OH
| | - Gabriel Tinoco
- The Ohio State Wexner Medical Center and James Cancer Hospital, Columbus, OH
| | - O Hans Iwenofu
- 12306The Ohio State University Wexner Medical Center, James Cancer Hospital and Richard Solove Research Institute, Columbus, OH
| |
Collapse
|
16
|
Black MA, Charville GW. Diagnosis of soft tissue tumors using immunohistochemistry as a surrogate for recurrent fusion oncoproteins. Semin Diagn Pathol 2022; 39:38-47. [PMID: 34750023 PMCID: PMC8688262 DOI: 10.1053/j.semdp.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
Soft tissue neoplasms encompass a broad spectrum of clinicopathologic manifestations. In a subset of soft tissue tumors, spanning a wide range of clinical behavior from indolent to highly aggressive, recurrent genetic translocations yield oncogenic fusion proteins that drive neoplastic growth. Beyond functioning as primary mechanisms of tumorigenesis, recurrent translocations represent key diagnostic features insofar as the presence of a particular oncogenic gene fusion generally points to specific tumor entities. In addition to more direct methods for identifying recurrent translocations, such as conventional cytogenetics or fluorescence in situ hybridization, immunohistochemistry for a component of the fusion oncoprotein increasingly is being used as a surrogate marker, exploiting the tendency of these fusion components to be distinctively overexpressed by translocation-bearing tumor cells. Diagnostic immunohistochemistry can also be used to identify the characteristic gene expression changes that occur downstream of oncogenic fusions. Here, we review the use of immunohistochemistry to detect surrogate markers of recurrent translocations in soft tissue tumors, focusing on the practical applications and limitations of this diagnostic approach.
Collapse
Affiliation(s)
- Margaret A. Black
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory W. Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,Correspondence to: Gregory W. Charville, MD, PhD, Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Lane 235, Stanford, CA 94305-5324 (, tel: 650-723-8310)
| |
Collapse
|
17
|
Torrence D, Antonescu CR. The genetics of vascular tumours: an update. Histopathology 2022; 80:19-32. [PMID: 34958509 PMCID: PMC8950088 DOI: 10.1111/his.14458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023]
Abstract
Recent molecular advances have shed significant light on the classification of vascular tumours. Except for haemangiomas, vascular lesions remain difficult to diagnose, owing to their rarity and overlapping clinical, radiographic and histological features across malignancies. In particular, challenges still remain in the differential diagnosis of epithelioid vascular tumours, including epithelioid haemangioma and epithelioid haemangioendothelioma at the benign/low-grade end of the spectrum, and epithelioid angiosarcoma at the high-grade end. Historically, the classification of vascular tumours has been heavily dependent on the clinical setting and histological features, as traditional immunohistochemical markers across the group have often been non-discriminatory. The increased application of next-generation sequencing in clinical practice, in particular targeted RNA sequencing (such as Archer, Illumina), has led to numerous novel discoveries, mainly recurrent gene fusions (e.g. those involving FOS, FOSB, YAP1, and WWTR1), which have resulted in refined tumour classification and improved diagnostic reproducibility for vascular tumours. However, other molecular alterations besides fusions have been discovered in vascular tumours, including somatic mutations (e.g. involving GNA family and IDH genes) in a variety of haemangiomas, as well as copy number alterations in high-grade angiosarcomas (e.g. MYC amplifications). Moreover, the translation of these novel molecular abnormalities into diagnostic ancillary markers, either fluorescence in-situ hybridisation probes or surrogate immunohistochemical markers (FOSB, CAMTA1, YAP1, and MYC), has been remarkable. This review will focus on the latest molecular discoveries covering both benign and malignant vascular tumours, and will provide practical diagnostic algorithms, highlighting frequently encountered pitfalls and challenges in the diagnosis of vascular lesions.
Collapse
Affiliation(s)
- Dianne Torrence
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY,Corresponding author: Cristina R Antonescu, MD, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065,
| |
Collapse
|
18
|
Papke DJ, Hornick JL. Recent advances in the diagnosis, classification and molecular pathogenesis of cutaneous mesenchymal neoplasms. Histopathology 2021; 80:216-232. [DOI: 10.1111/his.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022]
Affiliation(s)
- D J Papke
- Department of Pathology Brigham and Women’s Hospital and Harvard Medical School Boston MA USA
| | - J L Hornick
- Department of Pathology Brigham and Women’s Hospital and Harvard Medical School Boston MA USA
| |
Collapse
|
19
|
Patton A, Bridge JA, Liebner D, Chung C, Iwenofu OH. A YAP1::TFE3 cutaneous low-grade fibromyxoid neoplasm: A novel entity! Genes Chromosomes Cancer 2021; 61:194-199. [PMID: 34874592 DOI: 10.1002/gcc.23018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
Cutaneous fibromyxoid neoplasms (CFMN) comprise a vast category of benign and malignant tumors that include, but are not limited to, low-grade fibromyxoid sarcoma, myxofibrosarcoma, myxoid dermatofibrosarcoma protuberans, myxoid solitary fibrous tumor, and myxoid neurofibroma with differing implications for treatment and prognosis. Herein, a case of CFMN arising as a painless, slow-growing, flesh-colored forearm mass in a 53-year-old female is presented. The neoplasm comprised of copious myxoid material with banal spindle cells, exhibiting mild hyperchromasia, dissecting the dermal collagen table. Focal perivascular accentuation of spindle cells was identified in the absence of vasoformative features. Immunohistochemically, lesional cells were strongly and diffusely positive for CD34 and multifocally for Factor XIIIa and epithelial membrane antigen while negative for CD31, ERG, FLI-1, D2-40, smooth muscle actin, Desmin, S100, HMB-45, STAT6, MUC4, and keratins. RNA- and DNA-sequencing identified a YAP1::TFE3 fusion transcript that were subsequently corroborated by fluorescence in situ hybridization and immunohistochemistry for TFE3 (Xp11.23) locus rearrangement and strong, diffuse TFE3 immunoreactivity, respectively. To date, the YAP1::TFE3 fusion has only been identified in a subset of epithelioid hemangioendotheliomas and clear cell stromal tumors of the lung. This is the first report of a CFMN featuring a YAP1::TFE3 fusion (YAP1 Exon 1 and TFE3 Exon 4). The morphologic findings are unlike those previously described for epithelioid hemangioendothelioma and suggest that this neoplasm may represent a yet unclassified or novel CFMN entity. Although the patient is 1-year status postsurgical excision with no evidence of clinical recurrence, the clinical behavior of this novel entity remains to be fully characterized.
Collapse
Affiliation(s)
- Ashley Patton
- Department of Pathology and Laboratory Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Julia A Bridge
- Division of Molecular Pathology, Propath Laboratories, Dallas, Texas, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - David Liebner
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio, USA.,Division of Computational Biology and Bioinformatics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA.,The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Catherine Chung
- Department of Pathology and Laboratory Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.,Division of Dermatology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - O Hans Iwenofu
- Department of Pathology and Laboratory Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
20
|
Dermawan JK, Azzato EM, Billings SD, Fritchie KJ, Aubert S, Bahrami A, Barisella M, Baumhoer D, Blum V, Bode B, Aesif SW, Bovée JVMG, Dickson BC, van den Hout M, Lucas DR, Moch H, Oaxaca G, Righi A, Sciot R, Sumathi V, Yoshida A, Rubin BP. YAP1-TFE3-fused hemangioendothelioma: a multi-institutional clinicopathologic study of 24 genetically-confirmed cases. Mod Pathol 2021; 34:2211-2221. [PMID: 34381186 DOI: 10.1038/s41379-021-00879-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/09/2022]
Abstract
YAP1-TFE3-fused hemangioendothelioma is an extremely rare malignant vascular tumor. We present the largest multi-institutional clinicopathologic study of YAP1-TFE3-fused hemangioendothelioma to date. The 24 cases of YAP1-TFE3-fused hemangioendothelioma showed a female predominance (17 female, 7 male) across a wide age range (20-78 years old, median 44). Tumors were most commonly located in soft tissue (50%), followed by bone (29%), lung (13%), and liver (8%), ranging from 3 to 115 mm in size (median 40 mm). About two-thirds presented with multifocal disease, including 7 cases with distant organ metastasis. Histopathologically, we describe three dominant architectural patterns: solid sheets of coalescing nests, pseudoalveolar and (pseudo)vasoformative pattern, and discohesive strands and clusters of cells set in a myxoid to myxohyaline stroma. These patterns were present in variable proportions across different tumors and often coexisted within the same tumor. The dominant cytomorphology (88%) was large epithelioid cells with abundant, glassy eosinophilic to vacuolated cytoplasm, prominent nucleoli and well-demarcated cell borders. Multinucleated or binucleated cells, prominent admixed erythrocytic and lymphocytic infiltrates, and intratumoral fat were frequently present. Immunohistochemically, ERG, CD31, and TFE3 were consistently expressed, while expression of CD34 (83%) and cytokeratin AE1/AE3 (20%) was variable. CAMTA1 was negative in all but one case. All cases were confirmed by molecular testing to harbor YAP1-TFE3 gene fusions: majority with YAP1 exon 1 fused to TFE3 exon 4 (88%), or less commonly, TFE3 exon 6 (12%). Most patients (88%) were treated with primary surgical resection. Over a follow-up period of 4-360 months (median 36 months) in 17 cases, 35% of patients remained alive without disease, and 47% survived many years with stable, albeit multifocal and/or metastatic disease. Five-year progression-free survival probability was 88%. We propose categorizing YAP1-TFE3-fused hemangioendothelioma as a distinct disease entity given its unique clinical and histopathologic characteristics in comparison to conventional epithelioid hemangioendothelioma.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Elizabeth M Azzato
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Steven D Billings
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Karen J Fritchie
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sebastien Aubert
- Department of Pathology, Institut de Pathologie, University of Lille, Lille, France
| | - Armita Bahrami
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Marta Barisella
- Struttura Complessa Anatomia Patologica, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Daniel Baumhoer
- Bone Tumor Reference Center at the Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Basel, Switzerland
| | - Veronika Blum
- FMH Medical Oncology, Luzerner Kantonsspital, Luzern, Switzerland
| | - Beata Bode
- Pathology Institute Enge and University of Zurich, Zurich, Switzerland
| | - Scott W Aesif
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, ON, Canada
| | - Mari van den Hout
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - David R Lucas
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Gabriel Oaxaca
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Raf Sciot
- Department of Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Vaiyapuri Sumathi
- Department of Musculoskeletal Pathology, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, UK
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|