1
|
Wan C, Shi L, Lai Y, Wu Z, Zou M, Liu Z, Meng W, Wang S. Long-term voluntary running improves cognitive ability in developing mice by modulating the cholinergic system, antioxidant ability, and BDNF/PI3K/Akt/CREB pathway. Neurosci Lett 2024; 836:137872. [PMID: 38889879 DOI: 10.1016/j.neulet.2024.137872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Moderate physical exercise has positive effects on memory. The present study aimed to investigate the impact of long-term exercise on spatial memory in developing mice, as well as its association with the cholinergic system, antioxidant activities, apoptosis factor, and BDNF/PI3K/Akt/CREB pathway in the brain. In this study, Y maze and Novel object recognition (NOR) tests were employed to assess the impact of long-term voluntary exercise on memory. The cholinergic system, antioxidant activities, and apoptosis factors in the brain were quantified using Elisa. Additionally, western blot analysis was conducted to determine the expression of relevant proteins in the BDNF/PI3K/Akt/CREB pathway. The findings demonstrated that prolonged voluntary wheel running exercise enhanced memory in developing mice, concomitant with increased catalase (CAT) activity and decreased malondialdehyde (MDA) levels in the brain. Moreover, it could also increase the hippocampal acetylcholine (ACh) content and suppress the expression of neuronal apoptosis protein. Additionally, exercise also upregulated the expression of brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), phosphoinositide 3 kinases (PI3K), Akt, cAMP response element-binding protein (CREB), and phosphorylated cAMP response element-binding protein (p-CREB) in the hippocampus. These findings suggest that long-term voluntary wheel running exercise improves the spatial memory of developing mice by modulating the cholinergic system, antioxidant activities, apoptosis factors, and activating the BDNF/PI3K/Akt/CREB pathway.
Collapse
Affiliation(s)
- Changjian Wan
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, Nanchang, China; Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lulu Shi
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yuying Lai
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhuhong Wu
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Mingzhe Zou
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhibin Liu
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, Nanchang, China.
| | - Wei Meng
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, Nanchang, China; Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China.
| | - Songhua Wang
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, Nanchang, China; Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China.
| |
Collapse
|
2
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Sandouka D, Heeh M, Idais TI. AMPA receptor neurotransmission and therapeutic applications: A comprehensive review of their multifaceted modulation. Eur J Med Chem 2024; 266:116151. [PMID: 38237342 DOI: 10.1016/j.ejmech.2024.116151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
The neuropharmacological community has shown a strong interest in AMPA receptors as critical components of excitatory synaptic transmission during the last fifteen years. AMPA receptors, members of the ionotropic glutamate receptor family, allow rapid excitatory neurotransmission in the brain. AMPA receptors, which are permeable to sodium and potassium ions, manage the bulk of the brain's rapid synaptic communications. This study thoroughly examines the recent developments in AMPA receptor regulation, focusing on a shift from single chemical illustrations to a more extensive investigation of underlying processes. The complex interplay of these modulators in modifying the function and structure of AMPA receptors is the main focus, providing insight into their influence on the speed of excitatory neurotransmission. This research emphasizes the potential of AMPA receptor modulation as a therapy for various neurological disorders such as epilepsy and Alzheimer's disease. Analyzing these regulators' sophisticated molecular details enhances our comprehension of neuropharmacology, representing a significant advancement in using AMPA receptors for treating intricate neurological conditions.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Tala Iyad Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
3
|
Chen P, Liu XY, Lin MH, Li YX, Kang DZ, Ye ZC, Lin QS. NeuroD1 administration ameliorated neuroinflammation and boosted neurogenesis in a mouse model of subarachnoid hemorrhage. J Neuroinflammation 2023; 20:261. [PMID: 37953259 PMCID: PMC10641988 DOI: 10.1186/s12974-023-02949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) causes significant long-term neurocognitive dysfunction, which is associated with hippocampal neuroinflammation. Growing evidences have shown that astrocytes played a significant role in mediating neuroinflammation. Recently, in vivo reprogramming of astrocytes to neurons by NeuroD1 or PTBP1 administration has generated a lot of interests and controversies. While the debates centered on the source of neurogenesis, no attention has been paid to the changes of the astrocytes-mediated neuroinflammation and its impact on endogenous neurogenesis after NeuroD1 administration. METHODS 80 adult male C57BL/6 mice were used in this study. SAH was established by pre-chiasmatic injection of 100 μl blood. AAV-NeuroD1-GFP virus was injected to the hippocampus 3 day post-SAH. Neurocognitive function, brain water content, in vivo electrophysiology, Golgi staining, western blot and immunofluorescent staining were assessed at day 14 post-virus injection. RESULTS NeuroD1 administration markedly attenuated reactive astrocytes-mediated neuroinflammation by reversing neurotoxic A1 astrocytes transformation, decreasing the secretion of neuroinflammatory cytokines, and reducing the activation of harmful microglia. NeuroD1 treatment significantly reversed the brain-blood barrier impairment and promoted the release of neurotrophic factors pleiotrophin (PTN), all of which contributed to the improvement of cellular microenvironment and made it more suitable for neurogenesis. Interestingly, besides neurogenesis in the hippocampus from cells transfected with NeuroD1 at the early phase of SAH, NeuroD1 administration significantly boosted the endogenous neurogenesis at the late phase of SAH, which likely benefited from the improvement of the neuroinflammatory microenvironment. Functionally, NeuroD1 treatment significantly alleviated neurocognitive dysfunction impaired by SAH. CONCLUSIONS NeuroD1 significantly promoted neurofunctional recovery by attenuating reactive astrocytes-mediated neuroinflammation and boosting neurogenesis decimated by SAH. Specifically, NeuroD1 efficiently converted transfected cells, most likely astrocytes, to neurons at the early phase of SAH, suppressed astrocytes-mediated neuroinflammation and boosted endogenous neurogenesis at the late phase of SAH.
Collapse
Affiliation(s)
- Ping Chen
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Xue-Yan Liu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Mou-Hui Lin
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Yu-Xi Li
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - De-Zhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Rd, Taijiang District, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350209, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Fujian Provincial Clinical Research Center for Neurological Diseases, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Zu-Cheng Ye
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
| | - Qing-Song Lin
- Department of Neurosurgery, Neurosurgery Research Institute, First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Rd, Taijiang District, Fuzhou, 350005, Fujian, China.
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350209, Fujian, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Fujian Provincial Clinical Research Center for Neurological Diseases, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
4
|
Ittiyavirah SP, Ramalingam K, Sathyan A, Rajasree R, Kuruniyan MS, Quadri SA, Elayadeth-Meethal M, Naseef PP. Thymoquinone-rich black cumin oil attenuates ibotenic acid-induced excitotoxicity through glutamate receptors in Wistar rats. Saudi Pharm J 2022; 30:1781-1790. [PMID: 36601514 PMCID: PMC9805979 DOI: 10.1016/j.jsps.2022.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Inflammation-mediated alterations in glutamate neurotransmission constitute the most important pathway in the pathophysiology of various brain disorders. The excessive signalling of glutamate results in excitotoxicity, neuronal degeneration, and neuronal cell death. In the present study, we investigated the relative efficacy of black cumin (Nigella sativa) oil with high (5 % w/w) and low (2 % w/w) thymoquinone content (BCO-5 and BCO-2, respectively) in alleviating ibotenic acid-induced excitotoxicity and neuroinflammation in Wistar rats. It was found that BCO-5 reversed the abnormal behavioural patterns and the key inflammatory mediators (TNF-α and NF-κB) when treated at 5 mg/kg body weight. Immunohistochemical studies showed the potential of BCO-5 to attenuate the glutamate receptor subunits NMDA and GluR-2 along with increased glutamate decarboxylase levels in the brain tissues. Histopathological studies revealed the neuroprotection of BCO-5 against the inflammatory lesions, as evidenced by the normal cerebellum, astrocytes, and glial cells. BCO-2 on the other hand showed either a poor protective effect or no effect even at a 4-fold higher concentration of 20 mg/kg body weight indicating a very significant role of thymoquinone content on the neuroprotective effect of black cumin oil and its plausible clinical efficacy in counteracting the anxiety and stress-related neurological disorders under conditions such as depression and Alzheimer's disease.
Collapse
Affiliation(s)
- Sibi P Ittiyavirah
- Department of Pharmaceutical Sciences, Centre for Professional and Advanced Sciences, Cheruvandoor, Kottayam 686631, India
| | - Kannan Ramalingam
- Department of Pharmaceutical Sciences, Centre for Professional and Advanced Sciences, Cheruvandoor, Kottayam 686631, India
| | - Arathy Sathyan
- Department of Pharmaceutical Sciences, Centre for Professional and Advanced Sciences, Cheruvandoor, Kottayam 686631, India
| | - R.S. Rajasree
- College of Pharmaceutical Sciences, Government Thirumala Devaswom Medical College, Alappuzha 688005, India
| | - Mohamed Saheer Kuruniyan
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Syed Altafuddin Quadri
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammed Elayadeth-Meethal
- Department of Animal Breeding and Genetics, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad 675621, India
| | - Punnoth Poonkuzhi Naseef
- Department of Pharmaceutics, Moulana College of Pharmacy, Perinthalmanna 679321, India,Corresponding author.
| |
Collapse
|
5
|
Kankanamge D, Tennakoon M, Karunarathne A, Gautam N. G protein gamma subunit, a hidden master regulator of GPCR signaling. J Biol Chem 2022; 298:102618. [PMID: 36272647 PMCID: PMC9678972 DOI: 10.1016/j.jbc.2022.102618] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Heterotrimeric G proteins (αβγ subunits) that are activated by G protein-coupled receptors (GPCRs) mediate the biological responses of eukaryotic cells to extracellular signals. The α subunits and the tightly bound βγ subunit complex of G proteins have been extensively studied and shown to control the activity of effector molecules. In contrast, the potential roles of the large family of γ subunits have been less studied. In this review, we focus on present knowledge about these proteins. Induced loss of individual γ subunit types in animal and plant models result in strikingly distinct phenotypes indicating that γ subtypes play important and specific roles. Consistent with these findings, downregulation or upregulation of particular γ subunit types result in various types of cancers. Clues about the mechanistic basis of γ subunit function have emerged from imaging the dynamic behavior of G protein subunits in living cells. This shows that in the basal state, G proteins are not constrained to the plasma membrane but shuttle between membranes and on receptor activation βγ complexes translocate reversibly to internal membranes. The translocation kinetics of βγ complexes varies widely and is determined by the membrane affinity of the associated γ subtype. On translocating, some βγ complexes act on effectors in internal membranes. The variation in translocation kinetics determines differential sensitivity and adaptation of cells to external signals. Membrane affinity of γ subunits is thus a parsimonious and elegant mechanism that controls information flow to internal cell membranes while modulating signaling responses.
Collapse
Affiliation(s)
- Dinesh Kankanamge
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Mithila Tennakoon
- Department of Chemistry, St Louis University, St Louis, Missouri, USA
| | | | - N Gautam
- Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA; Department of Genetics, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
6
|
Lee HJ, Park JH, Hoe HS. Idebenone Regulates Aβ and LPS-Induced Neurogliosis and Cognitive Function Through Inhibition of NLRP3 Inflammasome/IL-1β Axis Activation. Front Immunol 2022; 13:749336. [PMID: 35222363 PMCID: PMC8866241 DOI: 10.3389/fimmu.2022.749336] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Idebenone is an analogue of coenzyme Q10, an electron donor in the mitochondrial electron transport chain, and thus may function as an antioxidant to facilitate mitochondrial function. However, whether idebenone modulates LPS- and Aβ-mediated neuroinflammatory responses and cognitive function in vivo is unknown. The present study explored the effects of idebenone on LPS- or Aβ-mediated neuroinflammation, learning and memory and the underlying molecular mechanisms in wild-type (WT) mice and 5xFAD mice, a mouse model of Alzheimer’s disease (AD). In male and female WT mice, idebenone upregulated neuroprotective NRF2 expression, rescued LPS-induced spatial and recognition memory impairments, and reduced NLRP3 priming and subsequent neuroinflammation. Moreover, idebenone downregulated LPS-mediated neurogliosis, reactive oxygen species (ROS) levels, and mitochondrial function in BV2 microglial cells and primary astrocytes by inhibiting NLRP3 inflammasome activation. In 5xFAD mice, idebenone increased neuroprotective NRF2 expression and improved amyloid beta (Aβ)-induced cognitive dysfunction. Idebenone downregulated Aβ-mediated gliosis and proinflammatory cytokine levels in 5xFAD mice by modulating the vicious NLRP3/caspase-1/IL-1β neuroinflammation cycle. Taken together, our results suggest that idebenone targets neuroglial NLRP3 inflammasome activation and therefore may have neuroprotective effects and inhibit the pathological progression of neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
7
|
Ju Z, Shen L, Zhou M, Luo J, Yu Z, Qu C, Lei R, Lei M, Huang R. Helicobacter pylori and Alzheimer's Disease-Related Metabolic Dysfunction: Activation of TLR4/Myd88 Inflammation Pathway from p53 Perspective and a Case Study of Low-Dose Radiation Intervention. ACS Chem Neurosci 2022; 13:1065-1081. [PMID: 35312296 DOI: 10.1021/acschemneuro.2c00082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gut dysbiosis is observed in Alzheimer's disease (AD) and is frequently associated with AD-induced metabolic dysfunction. However, the extent and specific underlying molecular mechanisms triggered by alterations of gut microbiota composition and function mediating AD-induced metabolic dysfunction in AD remain incompletely uncovered. Here, we indicate that Helicobacter pylori (H. pylori) is abundant in AD patients with relative metabolic dysfunction. Fecal microbiota transplantation from the AD patients promoted metabolic dysfunction in mice and increased gut permeability. H. pylori increased gut permeability through activation of the TLR4/Myd88 inflammation pathway in a p53-dependent manner, leading to metabolic dysfunction. Moreover, p53 deficiency reduced bile acid concentration, leading to an increased abundance of H. pylori colonization. Overall, these data identify H. pylori as a key promoter of AD-induced metabolic dysfunction.
Collapse
Affiliation(s)
- Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Meiling Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Zijian Yu
- The First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan 421001, People’s Republic of China
| | - Can Qu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Ridan Lei
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Mingjun Lei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
8
|
Zhang W, Fan R, Luo S, Jin Y, Li Y, Xiong M, Yuan X, Jia L, Chen Y. Antagonistic effects and mechanisms of carbendazim and chlorpyrifos on the neurobehavior of larval zebrafish. CHEMOSPHERE 2022; 293:133522. [PMID: 34995633 DOI: 10.1016/j.chemosphere.2022.133522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Residues from multiple pesticides are frequently detected on vegetables, which may produce combined toxicity not predicted by individual toxicity data. As these combined effects present additional dangers to food safety, we have compared individual to combined effects for a variety of pesticides. Carbendazim and chlorpyrifos are the two most commonly detected pesticides in vegetables, and previous studies reported that combined exposure results in synergistic developmental toxicity to zebrafish embryos. In this study, individual and combined effects on zebrafish motor activity were examined following individual and combined exposure to assess nervous system toxicity. Further, transcriptomics methods were used to identify potential molecular mechanisms for individual and combined toxicity. Carbendazim alone induced a disorganized swim pattern characterized by increased angular velocity, turn angle, meander, and acceleration during light-dark transition, while chlorpyrifos alone reduced average swim speed and light-dark acceleration. Combined treatment significantly reduced average swim velocity and total distance traveled. Combination indices indicated strong antagonism between compounds for average speed and light-dark acceleration. Transcriptomics (RNA-seq) showed that carbendazim significantly altered the expression of genes involved in antigen processing and presentation, apoptosis, autophagy, and metabolism, including ctslb, cyp7a1, hsp70l, and ugt1a1. Alternatively, chlorpyrifos significantly altered genes involved in various nervous system-related pathways, including glutamatergic, GABAergic, dopaminergic, and calcium signaling. Protein-protein interaction (PPI) network analysis suggested that chlorpyrifos significantly downregulated genes related to light transduction, resulting in decreased sensitivity to light-dark transitions, while antagonism mainly reflected divergent effects on phototransduction and retinol metabolism. Carbendazim had no significant effects on vision-related genes such as gnat1 and gngt1, while chlorpyrifos downregulated expression, an effect reversed by the combination. Comprehensive toxicity analyses must include joint effects of co-applied pesticides for enhanced food safety.
Collapse
Affiliation(s)
- Wanjun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China; Center of Disease Control and Prevention, PLA, Beijing, PR China
| | - Ruiqi Fan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China; Center of Disease Control and Prevention, PLA, Beijing, PR China
| | - Sunlin Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Yongpeng Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Yongchen Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Mengqin Xiong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Xiaoyan Yuan
- Center of Disease Control and Prevention, PLA, Beijing, PR China; School of Nursing and Health, Henan University, Kaifeng, PR China
| | - Li Jia
- Center of Disease Control and Prevention, PLA, Beijing, PR China.
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China.
| |
Collapse
|
9
|
Lawrence AJ. Letter to the editor: Comments on - Regulation of habenular G-protein gamma 8 on learning and memory via modulation of the central acetylcholine system. Mol Psychiatry 2022; 27:1871-1872. [PMID: 35115702 PMCID: PMC9126801 DOI: 10.1038/s41380-022-01451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Andrew J. Lawrence
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC 3052 Australia
| |
Collapse
|
10
|
Shen Y, Li L, Lu Y, Zhang M, Huang X, Tang X. Establishment and Validation of a Comprehensive Prognostic Model for Patients With HNSCC Metastasis. Front Genet 2021; 12:685104. [PMID: 34322156 PMCID: PMC8312248 DOI: 10.3389/fgene.2021.685104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Objective To identify biomarkers related to head and neck squamous cell carcinoma (HNSCC) metastasis and establish a prognostic model for patients with HNSCC. Methods HNSCC mRNA expression data of metastasis and non-metastatic samples were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. After screening the differentially expressed genes (DEGs) in the two datasets, a prognostic model, including clinical factors and biomarkers, was established, and verified in 36 samples of HNSCC by quantitative real-time transcription (qRT)-PCR. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene sets enrichment analysis (GSEA) were consulted to explore the functions of the DEGs. Results In total, 108 DEGs were identified. GSEA, GO, and KEGG analyses showed that these DEGs were mainly involved in the proliferation and metastasis of HNSCC. Six genes that were significantly related to metastasis, immune cell infiltration and prognosis were further identified to construct a prognostic gene signature. The reliability of the gene signature was verified in 36 samples of HNSCC. A prognostic model, including tumor stage, risk level, and a nomogram for prediction were further established. Receiver operating characteristic (ROC) analysis, decision curve analysis (DCA), C-index, and calibration plots showed that the model and nomogram perform well. Conclusion We constructed a six-gene signature and a nomogram with high performance in predicting the prognosis of patients with HNSCC metastasis.
Collapse
Affiliation(s)
- Yajun Shen
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lingyu Li
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yunping Lu
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Min Zhang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xin Huang
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xiaofei Tang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Subtype-dependent regulation of Gβγ signalling. Cell Signal 2021; 82:109947. [PMID: 33582184 PMCID: PMC8026654 DOI: 10.1016/j.cellsig.2021.109947] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) transmit information to the cell interior by transducing external signals to heterotrimeric G protein subunits, Gα and Gβγ subunits, localized on the inner leaflet of the plasma membrane. Though the initial focus was mainly on Gα-mediated events, Gβγ subunits were later identified as major contributors to GPCR-G protein signalling. A broad functional array of Gβγ signalling has recently been attributed to Gβ and Gγ subtype diversity, comprising 5 Gβ and 12 Gγ subtypes, respectively. In addition to displaying selectivity towards each other to form the Gβγ dimer, numerous studies have identified preferences of distinct Gβγ combinations for specific GPCRs, Gα subtypes and effector molecules. Importantly, Gβ and Gγ subtype-dependent regulation of downstream effectors, representing a diverse range of signalling pathways and physiological functions have been found. Here, we review the literature on the repercussions of Gβ and Gγ subtype diversity on direct and indirect regulation of GPCR/G protein signalling events and their physiological outcomes. Our discussion additionally provides perspective in understanding the intricacies underlying molecular regulation of subtype-specific roles of Gβγ signalling and associated diseases.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kanishka Senarath
- Genetics and Molecular Biology Unit, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dhanushan Wijayaratna
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | | | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
12
|
Fang S, Zhong L, Wang AQ, Zhang H, Yin ZS. Identification of Regeneration and Hub Genes and Pathways at Different Time Points after Spinal Cord Injury. Mol Neurobiol 2021; 58:2643-2662. [PMID: 33484404 DOI: 10.1007/s12035-021-02289-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a neurological injury that can cause neuronal loss around the lesion site and leads to locomotive and sensory deficits. However, the underlying molecular mechanisms remain unclear. This study aimed to verify differential gene time-course expression in SCI and provide new insights for gene-level studies. We downloaded two rat expression profiles (GSE464 and GSE45006) from the Gene Expression Omnibus database, including 1 day, 3 days, 7 days, and 14 days post-SCI, along with thoracic spinal cord data for analysis. At each time point, gene integration was performed using "batch normalization." The raw data were standardized, and differentially expressed genes at the different time points versus the control were analyzed by Gene Ontology enrichment analysis, the Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene set enrichment analysis. A protein-protein interaction network was then built and visualized. In addition, ten hub genes were identified at each time point. Among them, Gnb5, Gng8, Agt, Gnai1, and Psap lack correlation studies in SCI and deserve further investigation. Finally, we screened and analyzed genes for tissue repair, reconstruction, and regeneration and found that Anxa1, Snap25, and Spp1 were closely related to repair and regeneration after SCI. In conclusion, hub genes, signaling pathways, and regeneration genes involved in secondary SCI were identified in our study. These results may be useful for understanding SCI-related biological processes and the development of targeted intervention strategies.
Collapse
Affiliation(s)
- Sheng Fang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Lin Zhong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - An-Quan Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Zong-Sheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China.
| |
Collapse
|