1
|
Zhao C, Jin H, Lei Y, Li Q, Zhang Y, Lu Q. The dual effects of Benzo(a)pyrene/Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide on DNA Methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175042. [PMID: 39084379 DOI: 10.1016/j.scitotenv.2024.175042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Benzo(a)pyrene (BaP) is one of the most thoroughly studied polycyclic aromatic hydrocarbons(PAHs) and a widespread organic pollutant in various areas of human life. Its teratogenic, immunotoxic and carcinogenic effects on organisms are well documented and widely recognized by researchers. In the body, BaP is enzymatically converted to form a more active benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE). BaP/BPDE has the potential to trigger gene mutations, influence epigenetic modifications and cause damage to cellular structures, ultimately contributing to disease onset and progression. However, there are different points of view when studying epigenetics using BaP/BPDE. On the one hand, it is claimed in cancer research that BaP/BPDE contributes to gene hypermethylation and, in particular, induces the hypermethylation of tumor's suppressor gene promoters, leading to gene silencing and subsequent cancer development. Conversely, studies in human and animal populations suggest that exposure to BaP results in genome-wide DNA hypomethylation, potentially leading to adverse outcomes in inflammatory diseases. This apparent contradiction has not been summarized in research for almost four decades. This article presents a comprehensive review of the current literature on the influence of BaP/BPDE on DNA methylation regulation. It demonstrates that BaP/BPDE exerts a dual-phase regulatory effect on methylation, which is influenced by factors such as the concentration and duration of BaP/BPDE exposure, experimental models and detection methods used in various studies. Acute/high concentration exposure to BaP/BPDE often results in global demethylation of DNA, which is associated with inhibition of DNA methyltransferase 1 (DNMT1) after exposure. At certain specific gene loci (e.g., RAR-β), BPDE can form DNA adducts, recruiting DNMT3 and leading to hypermethylation at specific sites. By integrating these different mechanisms, our goal is to unravel the patterns and regulations of BaP/BPDE-induced DNA methylation changes and provide insights into future precision therapies targeting epigenetics.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Jin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| | - Yu Lei
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| |
Collapse
|
2
|
Moura HF, Schuch JB, Ornell F, Bandeira CE, Massuda R, Bau CHD, Grevet EH, Kessler FHP, von Diemen L. Association between telomere length with alcohol use disorder and internalizing/externalizing comorbidities in a Brazilian male sample. Alcohol 2024; 119:1-5. [PMID: 38621495 DOI: 10.1016/j.alcohol.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Shortening telomere length (TL) is an important ageing marker associated with substance use disorder (SUD). However, the influence of psychiatric and clinical comorbidities and alcohol-related outcomes has not been much explored in the context of TL in individuals with alcohol use disorder (AUD) and may be a source of heterogeneity in AUD studies. Therefore, our aim was to investigate the influence of AUD, alcohol-related outcomes, and common psychiatric comorbidities on TL in men with AUD and healthy controls (HC). METHODS Men with AUD (n = 108, mean age = 52.4, SD = 8.6) were recruited in a detoxification unit, and HC (n = 80, mean age = 50.04, SD = 9.1) from the blood bank, both located in Brazil. HC had no current or lifetime diagnosis of any substance use disorder. Psychiatric comorbidities were assessed using SCID-I. TL ratio was measured in triplicates using quantitative multiplex PCR. RESULTS Telomere length did not differ between individuals with AUD and HC (p = 0.073) or was associated with AUD-related outcomes, trauma, or clinical comorbidities. Individuals with externalizing disorders had longer TL when comparing with those with internalizing disorders (p = 0.018) or without comorbidity (p = 0.018). CONCLUSION Our findings indicate that TL was influenced by the presence of psychiatric comorbidity rather than case or control status. These results were adjusted for potential confounders, such as age.
Collapse
Affiliation(s)
- Helena Ferreira Moura
- Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2400, 90035-003, Porto Alegre - RS, Brazil; Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcellos, 2350, 90035-903, Porto Alegre - RS, Brazil; University of Brasília, Faculty of Medicine, Campus Universitário Darcy Ribeiro, UnB Área 1, 70910-900, Brasília - DF, Brazil
| | - Jaqueline Bohrer Schuch
- Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2400, 90035-003, Porto Alegre - RS, Brazil; Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcellos, 2350, 90035-903, Porto Alegre - RS, Brazil.
| | - Felipe Ornell
- Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2400, 90035-003, Porto Alegre - RS, Brazil; Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcellos, 2350, 90035-903, Porto Alegre - RS, Brazil
| | - Cibele Edom Bandeira
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501- 970, Porto Alegre - RS, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Ramiro Barcellos, 2350, 90035-903, Porto Alegre - RS, Brazil
| | - Raffael Massuda
- Department of Psychiatry, Federal University of Paraná (UFPR), Padre Camargo, 280, 4. andar- Alto da Glória, Curitiba - PR, Brazil
| | - Claiton Henrique Dotto Bau
- Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2400, 90035-003, Porto Alegre - RS, Brazil; Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501- 970, Porto Alegre - RS, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Ramiro Barcellos, 2350, 90035-903, Porto Alegre - RS, Brazil
| | - Eugenio Horácio Grevet
- Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2400, 90035-003, Porto Alegre - RS, Brazil; ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Ramiro Barcellos, 2350, 90035-903, Porto Alegre - RS, Brazil
| | - Felix H P Kessler
- Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2400, 90035-003, Porto Alegre - RS, Brazil; Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcellos, 2350, 90035-903, Porto Alegre - RS, Brazil
| | - Lisia von Diemen
- Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2400, 90035-003, Porto Alegre - RS, Brazil; Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcellos, 2350, 90035-903, Porto Alegre - RS, Brazil
| |
Collapse
|
3
|
Xiong HY, Wyns A, Campenhout JV, Hendrix J, De Bruyne E, Godderis L, Schabrun S, Nijs J, Polli A. Epigenetic Landscapes of Pain: DNA Methylation Dynamics in Chronic Pain. Int J Mol Sci 2024; 25:8324. [PMID: 39125894 PMCID: PMC11312850 DOI: 10.3390/ijms25158324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic pain is a prevalent condition with a multifaceted pathogenesis, where epigenetic modifications, particularly DNA methylation, might play an important role. This review delves into the intricate mechanisms by which DNA methylation and demethylation regulate genes associated with nociception and pain perception in nociceptive pathways. We explore the dynamic nature of these epigenetic processes, mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) enzymes, which modulate the expression of pro- and anti-nociceptive genes. Aberrant DNA methylation profiles have been observed in patients with various chronic pain syndromes, correlating with hypersensitivity to painful stimuli, neuronal hyperexcitability, and inflammatory responses. Genome-wide analyses shed light on differentially methylated regions and genes that could serve as potential biomarkers for chronic pain in the epigenetic landscape. The transition from acute to chronic pain is marked by rapid DNA methylation reprogramming, suggesting its potential role in pain chronicity. This review highlights the importance of understanding the temporal dynamics of DNA methylation during this transition to develop targeted therapeutic interventions. Reversing pathological DNA methylation patterns through epigenetic therapies emerges as a promising strategy for pain management.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Arne Wyns
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jente Van Campenhout
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
| | - Siobhan Schabrun
- The School of Physical Therapy, University of Western Ontario, London, ON N6A 3K7, Canada;
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph’s Healthcare, London, ON N6A 4V2, Canada
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Göterbog, Sweden
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
4
|
Gericke GS. A Unifying Hypothesis for the Genome Dynamics Proposed to Underlie Neuropsychiatric Phenotypes. Genes (Basel) 2024; 15:471. [PMID: 38674405 PMCID: PMC11049865 DOI: 10.3390/genes15040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The sheer number of gene variants and the extent of the observed clinical and molecular heterogeneity recorded in neuropsychiatric disorders (NPDs) could be due to the magnified downstream effects initiated by a smaller group of genomic higher-order alterations in response to endogenous or environmental stress. Chromosomal common fragile sites (CFS) are functionally linked with microRNAs, gene copy number variants (CNVs), sub-microscopic deletions and duplications of DNA, rare single-nucleotide variants (SNVs/SNPs), and small insertions/deletions (indels), as well as chromosomal translocations, gene duplications, altered methylation, microRNA and L1 transposon activity, and 3-D chromosomal topology characteristics. These genomic structural features have been linked with various NPDs in mostly isolated reports and have usually only been viewed as areas harboring potential candidate genes of interest. The suggestion to use a higher level entry point (the 'fragilome' and associated features) activated by a central mechanism ('stress') for studying NPD genetics has the potential to unify the existing vast number of different observations in this field. This approach may explain the continuum of gene findings distributed between affected and unaffected individuals, the clustering of NPD phenotypes and overlapping comorbidities, the extensive clinical and molecular heterogeneity, and the association with certain other medical disorders.
Collapse
|
5
|
Schuch JB, Bandeira CE, Junior JLS, Müller D, Charão MF, da Silva BS, Grevet EH, Kessler FHP, von Diemen L, Rovaris DL, Bau CHD. Global DNA methylation patterns in Alcohol Use Disorder. Genet Mol Biol 2024; 46:e20230139. [PMID: 38197733 PMCID: PMC10778554 DOI: 10.1590/1678-4685-gmb-2023-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Alcohol Use Disorder (AUD) is a highly prevalent condition worldwide that produces a wide range of pathophysiological consequences, with a critical impact on health and social issues. Alcohol influences gene expression through epigenetic changes mainly through DNA methylation. In this sense, levels of 5-methylcytosine (5-mC), namely Global DNA methylation (GMe), which can be influenced by environmental and hormonal effects, represent a putative biological mechanism underlying alcohol effects. Our aim was to investigate the influence of AUD diagnosis and alcohol patterns (i.e., years of addiction, use in the last 30 days, and alcohol severity) on GMe levels. The sample consisted of 256 men diagnosed with AUD and 361 men without AUD. DNA samples from peripheral blood were used to assess GMe levels, measured through the levels of 5-mC using high-performance liquid chromatography. Results from multiple linear regression analysis indicated that the presence of AUD was associated with lower GMe levels (beta=-0.155, p=0.011). Other alcohol-related outcomes were not associated with DNA methylation. Our findings are consistent with the hypothesis that the impact of chronic and heavy alcohol use in GMe could be a potential mechanism mediating the multiple organ damages related to AUD.
Collapse
Affiliation(s)
- Jaqueline B. Schuch
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa em Álcool e Drogas, Porto Alegre, RS, Brazil
| | - Cibele E. Bandeira
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Programa de Psiquiatria do Desenvolvimento, Porto Alegre, RS, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brazil
| | - Jorge L. S. Junior
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Diana Müller
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Programa de Psiquiatria do Desenvolvimento, Porto Alegre, RS, Brazil
| | - Mariele F. Charão
- Universidade Feevale, Programa de Pós-Graduação em Toxicologia e Análises Toxicológicas, Novo Hamburgo, RS, Brazil
| | - Bruna S. da Silva
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Programa de Psiquiatria do Desenvolvimento, Porto Alegre, RS, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brazil
| | - Eugenio H. Grevet
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Programa de Psiquiatria do Desenvolvimento, Porto Alegre, RS, Brazil
| | - Felix H. P. Kessler
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa em Álcool e Drogas, Porto Alegre, RS, Brazil
| | - Lisia von Diemen
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa em Álcool e Drogas, Porto Alegre, RS, Brazil
| | - Diego L. Rovaris
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Programa de Psiquiatria do Desenvolvimento, Porto Alegre, RS, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brazil
| | - Claiton H. D. Bau
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Psiquiatria, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Programa de Psiquiatria do Desenvolvimento, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Kong CH, Park K, Kim DY, Kim JY, Kang WC, Jeon M, Min JW, Lee WH, Jung SY, Ryu JH. Effects of oleanolic acid and ursolic acid on depression-like behaviors induced by maternal separation in mice. Eur J Pharmacol 2023; 956:175954. [PMID: 37541369 DOI: 10.1016/j.ejphar.2023.175954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Oleanolic acid (OA) and ursolic acid (UA) are structural isomeric triterpenoids. Both triterpenoids have been reported to be able to improve depression. However, no studies have compared their effects in the same system. Whether OA or UA could ameliorate depression-like behaviors in maternal separation (MS)-induced depression-like model was investigated. MS model is a well-accepted mouse model that can reflect the phenotype and pathogenesis of depression. Depression is a mental illness caused by neuroinflammation or changes in neuroplasticity in certain brain regions, such as the prefrontal cortex and hippocampus. Depression-like behaviors were measured using splash test or forced swimming test. In addition, anxiety-like behaviors were also measured using the open field test or elevated plus-maze test. MS-treated female mice showed greater depression-like behaviors than male mice, and that OA improved several depression-like behaviors, whereas UA only relieved anxiety-like behavior of MS-treated mice. Microglial activation, expression levels of TNF-α, and mRNA levels of IDO1 were increased in the hippocampi of MS-treated female mice. However, OA and UA treatments attenuated such increases. In addition, expression levels of synaptophysin and PSD-95 were decreased in the hippocampi of MS-treated female mice. These decreased expression levels of synaptophysin were reversed by both OA and UA treatments, although decreased PSD-95 expression levels were only reversed by OA treatment. Our findings suggest that MS cause depression-like behaviors through female-specific neuroinflammation, changes of tryptophan metabolism, and alterations of synaptic plasticity. Our findings also suggest that OA could reverse MS-induced depression-like behaviors more effectively than UA.
Collapse
Affiliation(s)
- Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Do Yeon Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae Youn Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ji Won Min
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Won Hyung Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
7
|
Tuo LJ, Song XY, Zhu YY, He HN, Song YP, Chen DZ, Zheng XM, Zhang H, Xu DX. Gestational folic acid supplement prevents vitamin D deficiency-induced depression-like behavior by reversing cortical DNA hypomethylation in adult offspring. J Steroid Biochem Mol Biol 2023; 231:106313. [PMID: 37075986 DOI: 10.1016/j.jsbmb.2023.106313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023]
Abstract
Depression is a common mental disorder with an increasing incidence. Several studies have demonstrated that cortical DNA hypomethylation is associated with depression-like behaviors. This study aims to investigate whether maternal vitamin D deficiency (VDD) induces depression-like behaviors and to explore the effects of folic acid supplement on VDD-induced cortical DNA hypomethylation in adult offspring. Female mice were fed with a VDD diet, beginning at 5 weeks of age and throughout pregnancy. Depression-like behaviors were evaluated, and cortical 5-methylcytosine (5mC) content was detected in adult offspring. Results showed that depression-like behaviors were observed in adult offspring of the VDD group. Cortical Ache and Oxtr mRNAs were upregulated in female offspring of the VDD group. Cortical Cpt1a and Htr1b mRNAs were increased in male offspring of the VDD group. Moreover, cortical 5mC content was reduced in offspring of VDD-fed dams. The additional experiment showed that serum folate and cortical S-adenosylmethionine (SAM) contents were decreased in the offspring of the VDD group. Folic acid supplement attenuated VDD-induced SAM depletion and reversed cortical DNA methylation. Moreover, folic acid supplement attenuated VDD-induced upregulation of depression-related genes. In addition, folic acid supplement alleviated maternal VDD-induced depression-like behaviors in adult offspring. These results suggest that maternal VDD induces depression-like behavior in adult offspring by reducing cortical DNA methylation. The gestational folic acid supplement prevents VDD-induced depression-like behavior by reversing cortical DNA hypomethylation in adult offspring.
Collapse
Affiliation(s)
- Ling-Jin Tuo
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yue Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yan-Yan Zhu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Hong-Ning He
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Dao-Zhen Chen
- Department of Clinical Laboratory, Wuxi Maternity and Child Health Care Hospital, Wuxi 214002, China; Laboratory Department of Haidong Second People's Hospital, Haidong, Qinghai 810699, China
| | - Xiao-Min Zheng
- Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Hospital, Wuxi, 214002, China
| | - Heng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi 214002, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
8
|
Jung DH, Lee HJ, Choi YW, Shin HK, Choi BT. Sex-specific responses to juvenile stress on the dopaminergic system in an animal model of attention-deficit hyperactivity disorder. Biomed Pharmacother 2023; 160:114352. [PMID: 36738506 DOI: 10.1016/j.biopha.2023.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The etiology of attention-deficit hyperactivity disorder (ADHD) strongly suggests a genetic component as the main cause; however, environmental factors such as early adverse experiences in childhood may play an interactive role with the genetic susceptibility. Spontaneously hypertensive rats (SHRs), a genetic ADHD model, and control Wistar Kyoto rats (WKYs) were subjected to chronic unpredictable mild stress during the juvenile period. The behavioral characteristics were monitored, and dopamine-related factors in the core regions of dopaminergic pathways were measured. Higher ADHD symptom-related behaviors were observed in response to juvenile stress in male SHRs than control WKYs. For the SHRs subjected to juvenile stress, hyperactivity in males, recognition in females, and depressant potential in both sexes were markedly observed. In the expression of 17 dopamine-related genes and proteins, greater changes were detected in male SHRs subjected to juvenile stress, especially in dopamine metabolic factors. Dopamine clearance factors involved in dopamine degradation and transport, especially catechol-O-methyltransferase (COMT) and dopamine transporter (DAT), showed sex-specific differences induced by juvenile stress in dopamine metabolite assays. Moreover, stressed male SHRs treated with methylphenidate showed better improvement in behavior than the females, resulting in different levels of COMT and DAT amelioration. These results suggest that juvenile stress potentially increased the incidence of ADHD in a genetic rat model, which showed sex-specific differences based on the expression of COMT and DAT. Therefore, our results could help develop gender-specific diagnostics and healthcare options for juvenile stress in patients with ADHD.
Collapse
Affiliation(s)
- Da Hee Jung
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hong Ju Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience, College of Natural Resource and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
9
|
da Silva BS, Grevet EH, Silva LCF, Ramos JKN, Rovaris DL, Bau CHD. An overview on neurobiology and therapeutics of attention-deficit/hyperactivity disorder. DISCOVER MENTAL HEALTH 2023; 3:2. [PMID: 37861876 PMCID: PMC10501041 DOI: 10.1007/s44192-022-00030-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/29/2022] [Indexed: 10/21/2023]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a prevalent psychiatric condition characterized by developmentally inappropriate symptoms of inattention and/or hyperactivity/impulsivity, which leads to impairments in the social, academic, and professional contexts. ADHD diagnosis relies solely on clinical assessment based on symptom evaluation and is sometimes challenging due to the substantial heterogeneity of the disorder in terms of clinical and pathophysiological aspects. Despite the difficulties imposed by the high complexity of ADHD etiology, the growing body of research and technological advances provide good perspectives for understanding the neurobiology of the disorder. Such knowledge is essential to refining diagnosis and identifying new therapeutic options to optimize treatment outcomes and associated impairments, leading to improvements in all domains of patient care. This review is intended to be an updated outline that addresses the etiological and neurobiological aspects of ADHD and its treatment, considering the impact of the "omics" era on disentangling the multifactorial architecture of ADHD.
Collapse
Affiliation(s)
- Bruna Santos da Silva
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Genetics and Graduate Program in Genetics and Molecular Biology, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Eugenio Horacio Grevet
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Luiza Carolina Fagundes Silva
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - João Kleber Neves Ramos
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Diego Luiz Rovaris
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Claiton Henrique Dotto Bau
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
- Department of Genetics and Graduate Program in Genetics and Molecular Biology, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
- Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
10
|
Lewis CR, Tafur J, Spencer S, Green JM, Harrison C, Kelmendi B, Rabin DM, Yehuda R, Yazar-Klosinski B, Cahn BR. Pilot study suggests DNA methylation of the glucocorticoid receptor gene (NR3C1) is associated with MDMA-assisted therapy treatment response for severe PTSD. Front Psychiatry 2023; 14:959590. [PMID: 36815187 PMCID: PMC9939628 DOI: 10.3389/fpsyt.2023.959590] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Background Previous research has demonstrated that epigenetic changes in specific hypothalamic-pituitary-adrenal (HPA) genes may predict successful psychotherapy in post-traumatic stress disorder (PTSD). A recent Phase 3 clinical trial reported high efficacy of 3,4-methylenedioxymethamphetamine (MDMA)-assisted therapy for treating patients with severe PTSD compared to a therapy with placebo group (NCT03537014). This raises important questions regarding potential mechanisms of MDMA-assisted therapy. In the present study, we examined epigenetic changes in three key HPA axis genes before and after MDMA and placebo with therapy. As a pilot sub-study to the parent clinical trial, we assessed potential HPA epigenetic predictors for treatment response with genomic DNA derived from saliva (MDMA, n = 16; placebo, n = 7). Methylation levels at all 259 CpG sites annotated to three HPA genes (CRHR1, FKBP5, and NR3C1) were assessed in relation to treatment response as measured by the Clinician-Administered PTSD Scale (CAPS-5; Total Severity Score). Second, group (MDMA vs. placebo) differences in methylation change were assessed for sites that predicted treatment response. Results Methylation change across groups significantly predicted symptom reduction on 37 of 259 CpG sites tested, with two sites surviving false discovery rate (FDR) correction. Further, the MDMA-treatment group showed more methylation change compared to placebo on one site of the NR3C1 gene. Conclusion The findings of this study suggest that therapy-related PTSD symptom improvements may be related to DNA methylation changes in HPA genes and such changes may be greater in those receiving MDMA-assisted therapy. These findings can be used to generate hypothesis driven analyses for future studies with larger cohorts.
Collapse
Affiliation(s)
- Candace R. Lewis
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
- *Correspondence: Candace R. Lewis,
| | | | - Sophie Spencer
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Joseph M. Green
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Benjamin Kelmendi
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
| | | | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY, United States
| | | | - Baruch Rael Cahn
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, United States
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
- Baruch Rael Cahn,
| |
Collapse
|
11
|
Paul EN, Grey JA, Carpenter TJ, Madaj ZB, Lau KH, Givan SA, Burns GW, Chandler RL, Wegienka GR, Shen H, Teixeira JM. Transcriptome and DNA methylome analyses reveal underlying mechanisms for the racial disparity in uterine fibroids. JCI Insight 2022; 7:160274. [PMID: 36066972 PMCID: PMC9714787 DOI: 10.1172/jci.insight.160274] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
Uterine fibroids (leiomyomas) affect Black women disproportionately compared with women of other races and ethnicities in terms of prevalence, incidence, and severity of symptoms. The causes of this racial disparity are essentially unknown. We hypothesized that myometria of Black women are more susceptible to developing fibroids, and we examined the transcriptomic and DNA methylation profiles of myometria and fibroids from Black and White women for comparison. Myometrial samples cluster by race in both their transcriptome and DNA methylation profiles, whereas fibroid samples only cluster by race in the latter. More differentially expressed genes (DEGs) were detected in the Black and White myometrial sample comparison than in the fibroid comparison. Leiomyoma gene set expression analysis identified 4 clusters of DEGs, including a cluster of 24 genes with higher expression in myometrial samples from Black women. One of the DEGs in this group, von Willibrands factor (VWF), was significantly hypomethylated in both myometrial samples from Black women and in all fibroids at 2 CpG probes that are near a putative enhancer site and that are correlated with VWF expression levels. These results suggest that the molecular basis for the disparity in fibroid disease between Black and White women could be found in the myometria before fibroid development and not in the fibroids themselves.
Collapse
Affiliation(s)
- Emmanuel N. Paul
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Joshua A. Grey
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Tyler J. Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Zachary B. Madaj
- Bioinformatics and Biostatistics, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Kin H. Lau
- Bioinformatics and Biostatistics, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Scott A. Givan
- Bioinformatics and Biostatistics, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Gregory W. Burns
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Ronald L. Chandler
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Ganesa R. Wegienka
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan, USA
| | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Jose M. Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| |
Collapse
|
12
|
Global DNA methylation changes in adults with attention deficit-hyperactivity disorder and its comorbidity with bipolar disorder: links with polygenic scores. Mol Psychiatry 2022; 27:2485-2491. [PMID: 35256746 DOI: 10.1038/s41380-022-01493-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
Genetic and environmental factors contribute to the etiology of Attention Deficit-Hyperactivity Disorder (ADHD). In this sense, the study of epigenetic mechanisms could contribute to the understanding of the disorder's neurobiology. Global DNA methylation (GMe) evaluated through 5-methylcytosine levels could be a promising epigenetic biomarker to capture long-lasting biological effects in response to environmental and hormonal changes. We conducted the first assessment of GMe levels in subjects with ADHD (n = 394) and its main comorbidities in comparison to populational controls (n = 390). Furthermore, given the high genetic contribution to ADHD (heritability of 80%), polygenic risk scores (PRS) were calculated to verify the genetic contribution to GMe levels in ADHD and the comorbidities associated with GMe levels. The GMe levels observed in patients were lower than controls (P = 1.1e-8), with women being significantly less globally methylated than men (P = 0.002). Regarding comorbidities, the presence of bipolar disorder (BD) among patients with ADHD was associated with higher methylation levels compared to patients with ADHD without BD (P = 0.031). The results did not change when pharmacological treatment was accounted for in the analyses. The ADHD and BD most predictive PRSs were negatively (P = 0.0064) and positively (P = 0.0042) correlated with GMe, respectively. This study is the first to report an association between GMe, ADHD, and its comorbidity with BD and associations between PRSs for specific psychiatric disorders and GMe. Our findings add to previous evidence that GMe may be a relevant piece in the psychiatric disorders' etiological landscape.
Collapse
|
13
|
Bauer AZ, Swan SH, Kriebel D, Liew Z, Taylor HS, Bornehag CG, Andrade AM, Olsen J, Jensen RH, Mitchell RT, Skakkebaek NE, Jégou B, Kristensen DM. Paracetamol use during pregnancy - a call for precautionary action. Nat Rev Endocrinol 2021; 17:757-766. [PMID: 34556849 PMCID: PMC8580820 DOI: 10.1038/s41574-021-00553-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Paracetamol (N-acetyl-p-aminophenol (APAP), otherwise known as acetaminophen) is the active ingredient in more than 600 medications used to relieve mild to moderate pain and reduce fever. APAP is widely used by pregnant women as governmental agencies, including the FDA and EMA, have long considered APAP appropriate for use during pregnancy when used as directed. However, increasing experimental and epidemiological research suggests that prenatal exposure to APAP might alter fetal development, which could increase the risks of some neurodevelopmental, reproductive and urogenital disorders. Here we summarize this evidence and call for precautionary action through a focused research effort and by increasing awareness among health professionals and pregnant women. APAP is an important medication and alternatives for treatment of high fever and severe pain are limited. We recommend that pregnant women should be cautioned at the beginning of pregnancy to: forego APAP unless its use is medically indicated; consult with a physician or pharmacist if they are uncertain whether use is indicated and before using on a long-term basis; and minimize exposure by using the lowest effective dose for the shortest possible time. We suggest specific actions to implement these recommendations. This Consensus Statement reflects our concerns and is currently supported by 91 scientists, clinicians and public health professionals from across the globe.
Collapse
Affiliation(s)
- Ann Z Bauer
- Department of Public Health, University of Massachusetts School of Health Sciences, Lowell, MA, USA
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - David Kriebel
- Department of Public Health, University of Massachusetts School of Health Sciences, Lowell, MA, USA
| | - Zeyan Liew
- Yale Center for Perinatal, Paediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale-New Haven Hospital, New Haven, CT, USA
| | - Carl-Gustaf Bornehag
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Anderson M Andrade
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Jørn Olsen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Rigmor H Jensen
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Queens Medical Research Institute, Edinburgh, Scotland
| | - Niels E Skakkebaek
- Department of Growth & Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S, 1085, Rennes, France
| | - David M Kristensen
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark.
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S, 1085, Rennes, France.
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Hime GR, Stonehouse SLA, Pang TY. Alternative models for transgenerational epigenetic inheritance: Molecular psychiatry beyond mice and man. World J Psychiatry 2021; 11:711-735. [PMID: 34733638 PMCID: PMC8546770 DOI: 10.5498/wjp.v11.i10.711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mental illness remains the greatest chronic health burden globally with few in-roads having been made despite significant advances in genomic knowledge in recent decades. The field of psychiatry is constantly challenged to bring new approaches and tools to address and treat the needs of vulnerable individuals and subpopulations, and that has to be supported by a continuous growth in knowledge. The majority of neuropsychiatric symptoms reflect complex gene-environment interactions, with epigenetics bridging the gap between genetic susceptibility and environmental stressors that trigger disease onset and drive the advancement of symptoms. It has more recently been demonstrated in preclinical models that epigenetics underpins the transgenerational inheritance of stress-related behavioural phenotypes in both paternal and maternal lineages, providing further supporting evidence for heritability in humans. However, unbiased prospective studies of this nature are practically impossible to conduct in humans so preclinical models remain our best option for researching the molecular pathophysiologies underlying many neuropsychiatric conditions. While rodents will remain the dominant model system for preclinical studies (especially for addressing complex behavioural phenotypes), there is scope to expand current research of the molecular and epigenetic pathologies by using invertebrate models. Here, we will discuss the utility and advantages of two alternative model organisms-Caenorhabditis elegans and Drosophila melanogaster-and summarise the compelling insights of the epigenetic regulation of transgenerational inheritance that are potentially relevant to human psychiatry.
Collapse
Affiliation(s)
- Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Sophie LA Stonehouse
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3052, VIC, Australia
| | - Terence Y Pang
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, VIC, Australia
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3052, VIC, Australia
| |
Collapse
|