1
|
Kang Y, Sheng L, Li J. HINT1 promotes neuronal apoptosis and triggers schizophrenia-like behavior in rats. Behav Brain Res 2025; 477:115297. [PMID: 39426527 DOI: 10.1016/j.bbr.2024.115297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/05/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
This study aims to investigate the mechanism by which Histidine triad nucleotide-binding protein 1 (HINT1) promotes hippocampal neuronal apoptosis, triggering schizophrenia (SZ)-like behavior in rats. By establishing a rat SZ-like model, we assessed learning, memory, emotional response, and cognitive function through the Morris Water Maze, auditory startle response, and open field tests. HINT1 expression in the hippocampus was analyzed via RT-PCR and Western blot. We also created a HINT1 overexpression model in hippocampal neuronal cells to analyze its effects on cell proliferation and apoptosis. This analysis was conducted using the CCK-8 assay and flow cytometry, along with the quantification of apoptosis-related proteins and neurotrophic factors. Our findings indicated that the SZ-like model rats exhibited diminished learning and memory abilities, altered emotional reactions, and impaired cognitive functions, alongside a notable increase in HINT1 mRNA and protein levels. HINT1 overexpression was observed to inhibit hippocampal neuronal cell proliferation and promote apoptosis, with an increase in the expression of pro-apoptotic proteins and a decrease in neurotrophic factors. These results suggest HINT1's role in the onset and development of SZ-like behavior through its upregulation and induction of apoptosis in hippocampal neuronal cells, underlining its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yanhai Kang
- Department of Psychiatry and Psychology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China.
| | - Li Sheng
- The Oncology Department of Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), First Ward, Haikou, Hainan 570311, China
| | - Jia Li
- Department of Psychiatry and Psychology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| |
Collapse
|
2
|
Li S, Ni H, Wang Y, Wu X, Bi J, Ou H, Li Z, Ping J, Wang Z, Chen R, Yang Q, Jiang M, Cao L, Jiang T, Ren S, Zhao C. Gain of bipolar disorder-related lncRNA AP1AR-DT in mice induces depressive and anxiety-like behaviors by reducing Negr1-mediated excitatory synaptic transmission. BMC Med 2024; 22:543. [PMID: 39558356 PMCID: PMC11575081 DOI: 10.1186/s12916-024-03725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Bipolar disorder is a complex polygenic disorder that is characterized by recurrent episodes of depression and mania, the heterogeneity of which is likely complicated by epigenetic modifications that remain to be elucidated. METHODS We performed transcriptomic analysis of peripheral blood RNA from monozygotic (MZ) twins discordant for bipolar disorder to identify disease-associated differentially expressed long noncoding RNAs (DE-lncRNAs), which were further validated in the PsychENCODE brain RNA-seq dataset. We then performed behavioral tests, electrophysiological assays, chromatin immunoprecipitation, and PCR to investigate the function of DE-lncRNAs in the mouse and cell models. Statistical analyses were performed using GraphPad Prism 9.0 or SPSS. RESULTS We identified a bipolar disorder-associated upregulated long non-coding RNA (lncRNA), AP1AR-DT. We observed that overexpression of AP1AR-DT in the mouse medial prefrontal cortex (mPFC) resulted in a reduction of both the total spine density and the spontaneous excitatory postsynaptic current (sEPSC) frequency of mPFC neurons as well as depressive and anxiety-like behaviors. A combination of the results of brain transcriptome analysis of AP1AR-DT overexpressing mice brains with the known genes associated with bipolar disorder revealed that NEGR1, which encodes neuronal growth regulator 1, is one of the AP1AR-DT targets and is reduced in vivo upon gain of AP1AR-DT in mice. We further demonstrated that overexpression of recombinant Negr1 in the mPFC neurons of AP1AR-DTOE mice ameliorates depressive and anxiety-like behaviors and normalizes the reduced excitatory synaptic transmission induced by the gain of AP1AR-DT. We finally identified that AP1AR-DT reduces NEGR1 expression by competing for the transcriptional activator NRF1 in the overlapping binding site of the NEGR1 promoter region. CONCLUSIONS The epigenetic and pathophysiological mechanism linking AP1AR-DT to the modulation of depressive and anxiety-like behaviors and excitatory synaptic function provides etiological implications for bipolar disorder.
Collapse
Affiliation(s)
- Shufen Li
- Department of Medical Genetics, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, School of Basic Medical Sciences, and Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, and Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, Guangzhou, China
| | - Hongyu Ni
- Department of Medical Genetics, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, School of Basic Medical Sciences, and Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, and Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, Guangzhou, China
| | - Yaping Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, and Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, Guangzhou, China
| | - Xiaohui Wu
- Department of Medical Genetics, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, School of Basic Medical Sciences, and Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, and Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, Guangzhou, China
| | - Jianqiang Bi
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Haiyan Ou
- Department of Medical Genetics, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, School of Basic Medical Sciences, and Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, China
| | - Zhongwei Li
- Department of Medical Genetics, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, School of Basic Medical Sciences, and Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, China
| | - Junjiao Ping
- The Third People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Zhongju Wang
- Department of Medical Genetics, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, School of Basic Medical Sciences, and Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, China
| | - Renhao Chen
- Department of Medical Genetics, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, School of Basic Medical Sciences, and Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, China
| | - Qiong Yang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Meijun Jiang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Guangzhou, China
| | - Liping Cao
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Tingyun Jiang
- The Third People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Siqiang Ren
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, and Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, Guangzhou, China.
| | - Cunyou Zhao
- Department of Medical Genetics, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, School of Basic Medical Sciences, and Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Southern Medical University, Guangzhou, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, and Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Southern Medical University, Guangzhou, Guangzhou, China.
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Zhou B, Zheng Y, Suo Z, Zhang M, Xu W, Wang L, Ge D, Qu Y, Wang Q, Zheng H, Ni C. The role of lncRNAs related ceRNA regulatory network in multiple hippocampal pathological processes during the development of perioperative neurocognitive disorders. PeerJ 2024; 12:e17775. [PMID: 39135955 PMCID: PMC11318589 DOI: 10.7717/peerj.17775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/28/2024] [Indexed: 08/15/2024] Open
Abstract
Background Perioperative neurocognitive disorders (PND) refer to neurocognitive abnormalities during perioperative period, which are a great challenge for elderly patients and associated with increased morbidity and mortality. Our studies showed that long non-coding RNAs (lncRNAs) regulate mitochondrial function and aging-related pathologies in the aged hippocampus after anesthesia, and lncRNAs are associated with multiple neurodegenerations. However, the regulatory role of lncRNAs in PND-related pathological processes remains unclear. Methods A total of 18-month mice were assigned to control and surgery (PND) groups, mice in PND group received sevoflurane anesthesia and laparotomy. Cognitive function was assessed with fear conditioning test. Hippocampal RNAs were isolated for sequencing, lncRNA and microRNA libraries were constructed, mRNAs were identified, Gene Ontology (GO) analysis were performed, and lncRNA-microRNA-mRNA networks were established. qPCR was performed for gene expression verification. Results A total of 312 differentially expressed (DE) lncRNAs, 340 DE-Transcripts of Uncertain Coding Potential (TUCPs), and 2,003 DEmRNAs were identified in the hippocampus between groups. The lncRNA-microRNA-mRNA competing endogenous RNA (ceRNA) network was constructed with 29 DElncRNAs, 90 microRNAs, 493 DEmRNAs, 148 lncRNA-microRNA interaction pairs, 794 microRNA-mRNA interaction pairs, and 110 lncRNA-mRNA co-expression pairs. 795 GO terms were obtained. Based on the frequencies of involved pathological processes, BP terms were divided into eight categories: neurological system alternation, neuronal development, metabolism alternation, immunity and neuroinflammation, apoptosis and autophagy, cellular communication, molecular modification, and behavior changes. LncRNA-microRNA-mRNA ceRNA networks in these pathological categories were constructed, and involved pathways and targeted genes were revealed. The top relevant lncRNAs in these ceRNA networks included RP23-65G6.4, RP24-396L14.1, RP23-251I16.2, XLOC_113622, RP24-496E14.1, etc., and the top relevant mRNAs in these ceRNA networks included Dlg4 (synaptic function), Avp (lipophagy), Islr2 (synaptic function), Hcrt (regulation of awake behavior), Tnc (neurotransmitter uptake). Conclusion In summary, we have constructed the lncRNA-associated ceRNA network during PND development in mice, explored the role of lncRNAs in multiple pathological processes in the mouse hippocampus, and provided insights into the potential mechanisms and therapeutic gene targets for PND.
Collapse
Affiliation(s)
- Bowen Zhou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxiang Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zizheng Suo
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingzhu Zhang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjie Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijuan Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dazhuang Ge
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinyin Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Qiang Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Casey C, Fullard JF, Sleator RD. Unravelling the genetic basis of Schizophrenia. Gene 2024; 902:148198. [PMID: 38266791 DOI: 10.1016/j.gene.2024.148198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Neuronal development is a highly regulated mechanism that is central to organismal function in animals. In humans, disruptions to this process can lead to a range of neurodevelopmental phenotypes, including Schizophrenia (SCZ). SCZ has a significant genetic component, whereby an individual with an SCZ affected family member is eight times more likely to develop the disease than someone with no family history of SCZ. By examining a combination of genomic, transcriptomic and epigenomic datasets, large-scale 'omics' studies aim to delineate the relationship between genetic variation and abnormal cellular activity in the SCZ brain. Herein, we provide a brief overview of some of the key omics methods currently being used in SCZ research, including RNA-seq, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and high-throughput chromosome conformation capture (3C) approaches (e.g., Hi-C), as well as single-cell/nuclei iterations of these methods. We also discuss how these techniques are being employed to further our understanding of the genetic basis of SCZ, and to identify associated molecular pathways, biomarkers, and candidate drug targets.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland.
| |
Collapse
|
5
|
Ye J, Huang Z, Li Q, Li Z, Lan Y, Wang Z, Ni C, Wu X, Jiang T, Li Y, Yang Q, Lim J, Ren CY, Jiang M, Li S, Jin P, Chen JH, Zhao C. Transition of allele-specific DNA hydroxymethylation at regulatory loci is associated with phenotypic variation in monozygotic twins discordant for psychiatric disorders. BMC Med 2023; 21:491. [PMID: 38082312 PMCID: PMC10714646 DOI: 10.1186/s12916-023-03177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Major psychiatric disorders such as schizophrenia (SCZ) and bipolar disorder (BPD) are complex genetic mental illnesses. Their non-Mendelian features, such as those observed in monozygotic twins discordant for SCZ or BPD, are likely complicated by environmental modifiers of genetic effects. 5-Hydroxymethylcytosine (5hmC) is an important epigenetic mark in gene regulation, and whether it is linked to genetic variants that contribute to non-Mendelian features remains largely unexplored. METHODS We combined the 5hmC-selective chemical labeling method (5hmC-seq) and whole-genome sequencing (WGS) analysis of peripheral blood DNA obtained from monozygotic (MZ) twins discordant for SCZ or BPD to identify allelic imbalances in hydroxymethylome maps, and examined association of allele-specific hydroxymethylation (AShM) transition with disease susceptibility based on Bayes factors (BF) derived from the Bayesian generalized additive linear mixed model. We then performed multi-omics integrative analysis to determine the molecular pathogenic basis of those AShM sites. We finally employed luciferase reporter, CRISPR/Cas9 technology, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), PCR, FM4-64 imaging analysis, and RNA sequencing to validate the function of interested AShM sites in the human neuroblastoma SK-N-SH cells and human embryonic kidney 293T (HEK293T) cells. RESULTS We identified thousands of genetic variants associated with AShM imbalances that exhibited phenotypic variation-associated AShM changes at regulatory loci. These AShM marks showed plausible associations with SCZ or BPD based on their effects on interactions among transcription factors (TFs), DNA methylation levels, or other epigenomic marks and thus contributed to dysregulated gene expression, which ultimately increased disease susceptibility. We then validated that competitive binding of POU3F2 on the alternative allele at the AShM site rs4558409 (G/T) in PLLP-enhanced PLLP expression, while the hydroxymethylated alternative allele, which alleviated the POU3F2 binding activity at the rs4558409 site, might be associated with the downregulated PLLP expression observed in BPD or SCZ. Moreover, disruption of rs4558409 promoted neural development and vesicle trafficking. CONCLUSION Our study provides a powerful strategy for prioritizing regulatory risk variants and contributes to our understanding of the interplay between genetic and epigenetic factors in mediating SCZ or BPD susceptibility.
Collapse
Affiliation(s)
- Junping Ye
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhanwang Huang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiyang Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Rehabilitation, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Zhongwei Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuting Lan
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Zhongju Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chaoying Ni
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaohui Wu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tingyun Jiang
- The Third People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Yujing Li
- Departments of Human Genetics, Emory University, Atlanta, GA, USA
| | - Qiong Yang
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Junghwa Lim
- Departments of Human Genetics, Emory University, Atlanta, GA, USA
| | - Cun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Meijun Jiang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Guangdong Mental Health Center, Southern Medical University, Guangzhou, China
| | - Shufen Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Jin
- Departments of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Cunyou Zhao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, and Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Rehabilitation, Zhujiang Hospital of Southern Medical University, Guangzhou, China.
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Science), Guangdong Mental Health Center, Southern Medical University, Guangzhou, China.
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Cao T, Zhang S, Chen Q, Zeng C, Wang L, Jiao S, Chen H, Zhang B, Cai H. Long non-coding RNAs in schizophrenia: Genetic variations, treatment markers and potential targeted signaling pathways. Schizophr Res 2023; 260:12-22. [PMID: 37543007 DOI: 10.1016/j.schres.2023.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia (SZ), a complex and debilitating spectrum of psychiatric disorders, is now mainly attributed to multifactorial etiology that includes genetic and environmental factors. Long non-coding RNAs (lncRNAs) are gaining popularity as a way to better understand the comprehensive mechanisms beneath the clinical manifestation of SZ. Only in recent years has it been elucidated that mammalian genomes encode thousands of lncRNAs. Strikingly, roughly 30-40% of these lncRNAs are extensively expressed in different regions across the brain, which may be closely associated with SZ. The therapeutic and adverse effects of atypical antipsychotic drugs (AAPDs) are partially reflected by their role in the regulation of lncRNAs. This begs the question directly, do any lncRNAs exist as biomarkers for AAPDs treatment? Furthermore, we comprehend a range of mechanistic investigations that have revealed the regulatory roles for lncRNAs both involved in the brain and the periphery of SZ. More crucially, we also combine insights from a variety of signaling pathways to argue that lncRNAs probably play critical roles in SZ via their interactive downstream factors. This review provides a thorough understanding regarding dysregulation of lncRNAs, corresponding genetic alternations, as well as their potential regulatory roles in the pathology of SZ, which might help reveal useful therapeutic targets in SZ.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - ShuangYang Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - CuiRong Zeng
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - LiWei Wang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - ShiMeng Jiao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Teng P, Li Y, Ku L, Wang F, Goldsmith DR, Wen Z, Yao B, Feng Y. The human lncRNA GOMAFU suppresses neuronal interferon response pathways affected in neuropsychiatric diseases. Brain Behav Immun 2023; 112:175-187. [PMID: 37301236 PMCID: PMC10527610 DOI: 10.1016/j.bbi.2023.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/26/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play multifaceted roles in regulating brain gene networks. LncRNA abnormalities are thought to underlie the complex etiology of numerous neuropsychiatric disorders. One example is the human lncRNA gene GOMAFU, which is found dysregulated in schizophrenia (SCZ) postmortem brains and harbors genetic variants that contribute to the risk of SCZ. However, transcriptome-wide biological pathways regulated by GOMAFU have not been determined. How GOMAFU dysregulation contributes to SCZ pathogenesis remains elusive. Here we report that GOMAFU is a novel suppressor of human neuronal interferon (IFN) response pathways that are hyperactive in the postmortem SCZ brains. We analyzed recently released transcriptomic profiling datasets in clinically relevant brain areas derived from multiple SCZ cohorts and found brain region-specific dysregulation of GOMAFU. Using CRISPR-Cas9 to delete the GOMAFU promoter in a human neural progenitor cell model, we identified transcriptomic alterations caused by GOMAFU deficiency in pathways commonly affected in postmortem brains of SCZ and autism spectrum disorder (ASD), with the most striking effects on upregulation of numerous genes underlying IFN signaling. In addition, expression levels of GOMAFU target genes in the IFN pathway are differentially affected in SCZ brain regions and negatively associated with GOMAFU alterations. Furthermore, acute exposure to IFN-γ causes a rapid decline of GOMAFU and activation of a subclass of GOMAFU targets in stress and immune response pathways that are affected in SCZ brains, which form a highly interactive molecular network. Together, our studies unveiled the first evidence of lncRNA-governed neuronal response pathways to IFN challenge and suggest that GOMAFU dysregulation may mediate environmental risks and contribute to etiological neuroinflammatory responses by brain neurons of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Peng Teng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, United States
| | - Li Ku
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States
| | - Feng Wang
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, United States
| | - David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States; Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, United States.
| | - Yue Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States.
| |
Collapse
|
8
|
Bayona-Hernandez A, Guerra S, Jiménez-Ramirez IA, Sztacho M, Hozak P, Rodriguez-Zapata LC, Pereira-Santana A, Castaño E. LIPRNAseq: a method to discover lipid interacting RNAs by sequencing. Mol Biol Rep 2023; 50:6619-6626. [PMID: 37349607 DOI: 10.1007/s11033-023-08548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Current biological research extensively describes the interactions of molecules such as RNA with other nucleic acids or proteins. However, the relatively recent discovery of nuclear phospholipids playing biologically relevant processes outside membranes, as well as, RNA-lipid interactions shows the need for new methods to explore the identity of these RNAs. METHODS AND RESULTS In this study, we describe the method for LIPID-RNA isolation followed by sequencing and analysis of the RNA that has the ability to interact with the selected lipids. Here we utilized specific phospholipid coated beads for selective RNA binding. We tested RNA from organisms belonging to different realms (human, plant, and yeast), and tested their ability to bind a specific lipid. CONCLUSIONS The results show several RNAs differentially enriched in the pull-down of phosphatidyl Inositol 4,5 bisphosphate coated beads. This method is helpful to screen lipid-binding RNA, which may have relevant biological functions. The method can be used with different lipids and comparison of pull-downs and can narrow the selection of RNAs that interact with a particular lipid for further studies.
Collapse
Affiliation(s)
- Andrea Bayona-Hernandez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, Número 130, Chuburná de Hidalgo, Mérida, Yucatán, CP 97205, México
| | - Susana Guerra
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, Número 130, Chuburná de Hidalgo, Mérida, Yucatán, CP 97205, México
| | - Irma Angélica Jiménez-Ramirez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, Número 130, Chuburná de Hidalgo, Mérida, Yucatán, CP 97205, México
| | - Martin Sztacho
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, Prague, 1083, 142 20, Czech Republic
| | - Pavel Hozak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, Prague, 1083, 142 20, Czech Republic
| | - Luis Carlos Rodriguez-Zapata
- Unidad de Biotecnologia, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Calle 43, Número 130, Mérida, Yucatán, CP 97205, México
| | - Alejandro Pereira-Santana
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. Subsede Sureste, Parque Científico Tecnológico de Yucatán, Km 5.5 Carretera Sierra Papacal-Chuburná-Puerto, Mérida, 97302, Yucatán, México
- Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, 03940, México
| | - Enrique Castaño
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, Número 130, Chuburná de Hidalgo, Mérida, Yucatán, CP 97205, México.
| |
Collapse
|
9
|
Zheng J, Wang J, Qin X, Li K, Gao Q, Yang M, Liu H, Li S, Chang X, Sun Y. LncRNA HOTAIRM1 Involved in Nano NiO-Induced Pulmonary Fibrosis via Regulating PRKCB DNA Methylation-Mediated JNK/c-Jun Pathway. Toxicol Sci 2022; 190:64-78. [PMID: 36066426 DOI: 10.1093/toxsci/kfac092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nickel oxide nanoparticles (Nano NiO) lead to pulmonary fibrosis, and the mechanisms are associated with epigenetics. This study aimed to clarify the regulatory relationship among long noncoding RNA HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1), DNA methylation and expression of protein kinase C beta (PRKCB), and JNK/c-Jun pathway in Nano NiO-induced pulmonary fibrosis. Therefore, we constructed the rat pulmonary fibrosis model by intratracheal instillation of Nano NiO twice a week for 9 weeks and established the collagen deposition model by treating BEAS-2B cells with Nano NiO for 24 h. Here, the DNA methylation pattern was analyzed by whole-genome bisulfite sequencing in rat fibrotic lung tissues. Then, we integrated mRNA transcriptome data and found 93 DNA methylation genes with transcriptional significance. Meanwhile, the data showed that Nano NiO caused the down-regulation of lncRNA HOTAIRM1, the hypomethylation, and up-regulation of PRKCB2, JNK/c-Jun pathway activation, and collagen deposition (the up-regulated Col-I and α-SMA) both in vivo and in vitro. DNMTs inhibitor 5-AZDC attenuated Nano NiO-induced PRKCB2 expression, JNK/c-Jun pathway activation, and collagen deposition, but overexpression of PRKCB2 aggravated the changes mentioned indicators in Nano NiO-induced BEAS-2B cells. Furthermore, JNK/c-Jun pathway inhibitor (SP600125) alleviated Nano NiO-induced excessive collagen formation. Additionally, overexpression of HOTAIRM1 restrained the PRKCB hypomethylation, the activation of JNK/c-Jun pathway, and collagen formation induced by Nano NiO in BEAS-2B cells. In conclusion, these findings demonstrated that HOTAIRM1 could arrest Nano NiO-induced pulmonary fibrosis by suppressing the PRKCB DNA methylation-mediated JNK/c-Jun pathway.
Collapse
Affiliation(s)
- Jinfa Zheng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jinyu Wang
- Institute of Anthropotomy and Histoembryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xin Qin
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou 730050, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Liang W, Hou Y, Huang W, Wang Y, Jiang T, Huang X, Wang Z, Wu F, Zheng J, Zhang J, Ou H, Li S, Ping J, Zhang Y, Ye J, Li Z, Yang Q, Zhang J, Zheng X, Li S, Zhu XH, Chen R, Zhao C. Loss of schizophrenia-related miR-501-3p in mice impairs sociability and memory by enhancing mGluR5-mediated glutamatergic transmission. SCIENCE ADVANCES 2022; 8:eabn7357. [PMID: 35984881 PMCID: PMC9390987 DOI: 10.1126/sciadv.abn7357] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/07/2022] [Indexed: 05/16/2023]
Abstract
Schizophrenia is a polygenetic disease, the heterogeneity of which is likely complicated by epigenetic modifications yet to be elucidated. Here, we performed transcriptomic analysis of peripheral blood RNA from monozygotic twins discordant for schizophrenia and identified a schizophrenia-associated down-regulated microRNA, miR-501-3p. We showed that the loss of miR-501-3p in germline knockout (KO) male mice resulted in dendritic structure defects, glutamatergic transmission enhancement, and sociability, memory, and sensorimotor gating disruptions, which were attenuated when miR-501 expression was conditionally restored in the nervous system. Combining the results of proteomic analyses with the known genes linked to schizophrenia revealed that metabotropic glutamate receptor 5 (mGluR5) was one of the miR-501-3p targets and was elevated in vivo upon loss of miR-501. Treatment with the mGluR5 negative allosteric modulator 3-2((-methyl-4-thiazolyl) ethynyl) pyridine or the N-methyl-d-aspartate receptor antagonist 2-amino-5-phosphonopentanoic acid ameliorated the deficits observed in Mir501-KO mice. The epigenetic and pathophysiological mechanism that links miR-501-3p to the modulation of glutamatergic transmission provides etiological implications for schizophrenia.
Collapse
Affiliation(s)
- Wenquan Liang
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Hou
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
- Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Weiyuan Huang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, China
| | - Yunqian Wang
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingyun Jiang
- The Third People’s Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Xingbing Huang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Zhongju Wang
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Jiawei Zheng
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, China
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhang
- The Third People’s Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Haiyan Ou
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuyun Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Junjiao Ping
- The Third People’s Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Yuan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, China
| | - Junping Ye
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongwei Li
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiong Yang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Jian Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianzhen Zheng
- Guangdong General Hospital, Guangdong Academy of Medical Science and Guangdong Mental Health Center, Guangzhou, China
| | - Shufen Li
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin-Hong Zhu
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| | - Rongqing Chen
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, China
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| | - Cunyou Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond. J Exp Clin Cancer Res 2022; 41:100. [PMID: 35292092 PMCID: PMC8922926 DOI: 10.1186/s13046-022-02319-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
DNA methylation is one of the most important epigenetic mechanisms to regulate gene expression, which is highly dynamic during development and specifically maintained in somatic cells. Aberrant DNA methylation patterns are strongly associated with human diseases including cancer. How are the cell-specific DNA methylation patterns established or disturbed is a pivotal question in developmental biology and cancer epigenetics. Currently, compelling evidence has emerged that long non-coding RNA (lncRNA) mediates DNA methylation in both physiological and pathological conditions. In this review, we provide an overview of the current understanding of lncRNA-mediated DNA methylation, with emphasis on the roles of this mechanism in cancer, which to the best of our knowledge, has not been systematically summarized. In addition, we also discuss the potential clinical applications of this mechanism in RNA-targeting drug development.
Collapse
|
12
|
Guo B, Jiang T, Wu F, Ni H, Ye J, Wu X, Ni C, Jiang M, Ye L, Li Z, Zheng X, Li S, Yang Q, Wang Z, Huang X, Zhao C. LncRNA RP5-998N21.4 promotes immune defense through upregulation of IFIT2 and IFIT3 in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:11. [PMID: 35232977 PMCID: PMC8888552 DOI: 10.1038/s41537-021-00195-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022]
Abstract
Schizophrenia is a complex polygenic disease that is affected by genetic, developmental, and environmental factors. Accumulating evidence indicates that environmental factors such as maternal infection and excessive prenatal neuroinflammation may contribute to the onset of schizophrenia by affecting epigenetic modification. We recently identified a schizophrenia-associated upregulated long noncoding RNA (lncRNA) RP5-998N21.4 by transcriptomic analysis of monozygotic twins discordant for schizophrenia. Importantly, we found that genes coexpressed with RP5-998N21.4 were enriched in immune defense-related biological processes in twin subjects and in RP5-998N21.4-overexpressing (OE) SK-N-SH cell lines. We then identified two genes encoding an interferon-induced protein with tetratricopeptide repeat (IFIT) 2 and 3, which play an important role in immune defense, as potential targets of RP5-998N21.4 by integrative analysis of RP5-998N21.4OE-induced differentially expressed genes (DEGs) in SK-N-SH cells and RP5-998N21.4-coexpressed schizophrenia-associated DEGs from twin subjects. We further demonstrated that RP5-998N21.4 positively regulates the transcription of IFIT2 and IFIT3 by binding to their promoter regions and affecting their histone modifications. In addition, as a general nuclear coactivator, RMB14 (encoding RNA binding motif protein 14) was identified to facilitate the regulatory role of RP5-998N21.4 in IFIT2 and IFIT3 transcription. Finally, we observed that RP5-998N21.4OE can enhance IFIT2- and IFIT3-mediated immune defense responses through activation of signal transducer and activator of transcription 1 (STAT1) signaling pathway in U251 astrocytoma cells under treatment with the viral mimetic polyinosinic: polycytidylic acid (poly I:C). Taken together, our findings suggest that lncRNA RP5-998N21.4 is a critical regulator of immune defense, providing etiological and therapeutic implications for schizophrenia.
Collapse
Affiliation(s)
- Bo Guo
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingyun Jiang
- The Third People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Fengchun Wu
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Hongyu Ni
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Junping Ye
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Wu
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaoying Ni
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Meijun Jiang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Linyan Ye
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongwei Li
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianzhen Zheng
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shufen Li
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiong Yang
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Zhongju Wang
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Xingbing Huang
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China.
| | - Cunyou Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China. .,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China. .,Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China. .,Department of Rehabilitation, Zhujiang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Jia Y, Chen X, Zhao D, Ma S. SNHG1/miR-194-5p/MTFR1 Axis Promotes TGFβ1-Induced EMT, Migration and Invasion of Tongue Squamous Cell Carcinoma Cells. Mol Biotechnol 2022; 64:780-790. [PMID: 35107755 DOI: 10.1007/s12033-021-00445-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022]
Abstract
Tongue squamous cell carcinoma (TSCC) is a common malignancy with aggressive biological behaviors. Mitochondrial fission regulator 1 (MTFR1), is aberrantly expressed in head and neck squamous cell carcinoma (HNSC), but its role in TSCC remains unclear. We aimed to explore the role of MTFR1 in TSCC. The expression of long non-coding RNA small nucleolar RNA host gene 1 (SNHG1), microRNA-194-5p and MTFR1 in TSCC cells was measured by RT-qPCR. Luciferase reporter assay and RNA pull down assay were applied to confirm the binding capacity between miR-194-5p and SNHG1 (or MTFR1). TSCC cell invasion and migration were accessed by Transwell assays. The protein levels of MTFR1 and epithelial-mesenchymal transition (EMT) markers were examined by western blot. MTFR1 had high expression level in TSCC. MTFR1 knockdown inhibited transforming growth factor β1 (TGFβ1)-induced EMT, migration and invasion of TSCC cells in vitro. MiR-194-5p targeted MTFR1 and negatively regulated its expression. In addition, SNHG1 upregulated the expression of MTFR1 by binding with miR-194-5p. Importantly, SNHG1 promoted EMT, invasion and migration of TSCC cells by upregulating MTFR1. SNHG1/miR-194-5p/MTFR1 axis promotes TGFβ1-induced EMT, migration and invasion of cells in TSCC, which could be potential targets for treating TSCC patients.
Collapse
Affiliation(s)
- Yonglu Jia
- Department of Stomotology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, No. 118 Wansheng Street, Suzhou Industrial Park, Suzhou, 215028, Jiangsu, China
| | - Xiaojuan Chen
- Department of Stomotology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, No. 118 Wansheng Street, Suzhou Industrial Park, Suzhou, 215028, Jiangsu, China
| | - Dayong Zhao
- Department of Stomotology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, No. 118 Wansheng Street, Suzhou Industrial Park, Suzhou, 215028, Jiangsu, China
| | - Sancheng Ma
- Department of Stomotology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, No. 118 Wansheng Street, Suzhou Industrial Park, Suzhou, 215028, Jiangsu, China.
| |
Collapse
|
14
|
Wu G, Du X, Li Z, Du Y, Lv J, Li X, Xu Y, Liu S. The emerging role of long non-coding RNAs in schizophrenia. Front Psychiatry 2022; 13:995956. [PMID: 36226104 PMCID: PMC9548578 DOI: 10.3389/fpsyt.2022.995956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder which is contributed by both genetic and environmental factors. However, at present, its specific pathogenesis is still not very clear, and there is a lack of objective and reliable biomarkers. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) are involved in the pathophysiology of several psychiatric disorders, including SZ, and hold promise as potential biomarkers and therapeutic targets for psychiatric disorders. In this review, we summarize and discuss the role of lncRNAs in the pathogenesis of SZ and their potential value as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Guangxian Wu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xinzhe Du
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Zexuan Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yanhong Du
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jinzhi Lv
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Mental Health, Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
15
|
Guo X, Zhang G, Cai W, Huang F, Qin J, Song X. Long non-coding RNA rhabdomyosarcoma 2-associated transcript contributes to neuropathic pain by recruiting HuR to stabilize DNA methyltransferase 3 alpha mRNA expression in dorsal root ganglion neuron. Front Mol Neurosci 2022; 15:1027063. [PMID: 36911851 PMCID: PMC9992530 DOI: 10.3389/fnmol.2022.1027063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/16/2022] [Indexed: 02/24/2023] Open
Abstract
Introduction Long non-coding RNAs (lncRNAs) act as key regulators in multiple human diseases. In particular, the dysfunction of lncRNAs in dorsal root ganglion (DRG) contributes to the pathogenesis of neuropathic pain (NP). Nevertheless, the role and mechanism of most lncRNAs in NP remain unclear. Methods Two classic chronic NP models, including L4 spinal nerve ligation (SNL) model and chronic constriction injury (CCI) of the sciatic nerve, were performed. Mechanical allodynia and heat hyperalgesia were used to evaluate neuropathic pain. DRG microinjection was used to deliver agents into DRG. qRT-PCR, immunofluorescence, immunoprecipitation, western blotting, siRNA transfection, AAV transduction were performed to investigate the phenotypes and molecular basis. Results Here, we discovered that Rmst as a lncRNA was specifically expressed in Atf3 + injured DRG neurons and significantly upregulated following peripheral nerve damage. Rmst overexpression by direct DRG injection of AAV5-Rmst causes neuropathic symptoms in the absence of nerve damage. Conversely, blocking Rmst expression in injured DRGs alleviated nerve injury-induced pain hypersensitivities and downregulated Dnmt3a expression. Furthermore, we found peripheral nerve damage induced Rmst increase could interact with RNA-binding protein HuR to stabilize the Dnmt3a mRNA. Conclusion Our findings reveal a crucial role of Rmst in damaged DRG neurons under NP condition and provide a novel target for drug development against NP.
Collapse
Affiliation(s)
- Xinying Guo
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Gaolong Zhang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Weihua Cai
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Fa Huang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Jingwen Qin
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
16
|
Das T, Das TK, Khodarkovskaya A, Dash S. Non-coding RNAs and their bioengineering applications for neurological diseases. Bioengineered 2021; 12:11675-11698. [PMID: 34756133 PMCID: PMC8810045 DOI: 10.1080/21655979.2021.2003667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Engineering of cellular biomolecules is an emerging landscape presenting creative therapeutic opportunities. Recently, several strategies such as biomimetic materials, drug-releasing scaffolds, stem cells, and dynamic culture systems have been developed to improve specific biological functions, however, have been confounded with fundamental and technical roadblocks. Rapidly emerging investigations on the bioengineering prospects of mammalian ribonucleic acid (RNA) is expected to result in significant biomedical advances. More specifically, the current trend focuses on devising non-coding (nc) RNAs as therapeutic candidates for complex neurological diseases. Given the pleiotropic and regulatory role, ncRNAs such as microRNAs and long non-coding RNAs are deemed as attractive therapeutic candidates. Currently, the list of non-coding RNAs in mammals is evolving, which presents the plethora of hidden possibilities including their scope in biomedicine. Herein, we critically review on the emerging repertoire of ncRNAs in neurological diseases such as Alzheimer’s disease, Parkinson’s disease, neuroinflammation and drug abuse disorders. Importantly, we present the advances in engineering of ncRNAs to improve their biocompatibility and therapeutic feasibility as well as provide key insights into the applications of bioengineered non-coding RNAs that are investigated for neurological diseases.
Collapse
Affiliation(s)
- Tuhin Das
- Quanta Therapeutics, San Francisco, CA, 94158, USA.,RayBiotech, Inc, 3607 Parkway Lane, Peachtree Corners, GA, 30092, USA
| | - Tushar Kanti Das
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Anne Khodarkovskaya
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA
| | - Sabyasachi Dash
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024 India
| |
Collapse
|
17
|
Li Q, Wang Z, Zong L, Ye L, Ye J, Ou H, Jiang T, Guo B, Yang Q, Liang W, Zhang J, Long Y, Zheng X, Hou Y, Wu F, Zhou L, Li S, Huang X, Zhao C. Allele-specific DNA methylation maps in monozygotic twins discordant for psychiatric disorders reveal that disease-associated switching at the EIPR1 regulatory loci modulates neural function. Mol Psychiatry 2021; 26:6630-6642. [PMID: 33963283 DOI: 10.1038/s41380-021-01126-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/26/2022]
Abstract
The non-Mendelian features of phenotypic variations within monozygotic twins are likely complicated by environmental modifiers of genetic effects that have yet to be elucidated. Here, we performed methylome and genome analyses of blood DNA from psychiatric disorder-discordant monozygotic twins to study how allele-specific methylation (ASM) mediates phenotypic variations. We identified that thousands of genetic variants with ASM imbalances exhibit phenotypic variation-associated switching at regulatory loci. These ASMs have plausible causal associations with psychiatric disorders through effects on interactions between transcription factors, DNA methylations, and other epigenomic markers and then contribute to dysregulated gene expression, which eventually increases disease susceptibility. Moreover, we also experimentally validated the model that the rs4854158 alternative C allele at an ASM switching regulatory locus of EIPR1 encoding endosome-associated recycling protein-interacting protein 1, is associated with demethylation and higher RNA expression and shows lower TF binding affinities in unaffected controls. An epigenetic ASM switching induces C allele hypermethylation and then recruits repressive Polycomb repressive complex 2 (PRC2), reinforces trimethylation of lysine 27 on histone 3 and inhibits its transcriptional activity, thus leading to downregulation of EIPR1 in schizophrenia. Moreover, disruption of rs4854158 induces gain of EIPR1 function and promotes neural development and vesicle trafficking. Our study provides a powerful framework for identifying regulatory risk variants and contributes to our understanding of the interplay between genetic and epigenetic variants in mediating psychiatric disorder susceptibility.
Collapse
Affiliation(s)
- Qiyang Li
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongju Wang
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China
| | - Lu Zong
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China.,Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Linyan Ye
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China
| | - Junping Ye
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China
| | - Haiyan Ou
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingyun Jiang
- The Third People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Bo Guo
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiong Yang
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Wenquan Liang
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Yong Long
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianzhen Zheng
- Guangdong General Hospital, Guangdong Academy of Medical Science and Guangdong Mental Health Center, Guangzhou, China
| | - Yu Hou
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Fengchun Wu
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Lin Zhou
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China
| | - Shufen Li
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China
| | - Xingbing Huang
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, China
| | - Cunyou Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, and Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Southern Medical University, Guangzhou, Guangdong, China. .,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Jia J, Liu X, Ma L, Xu Y, Ren Y. A preliminary analysis of LncRNA biomarkers for schizophrenia. Epigenomics 2021; 13:1443-1458. [PMID: 34528440 DOI: 10.2217/epi-2021-0223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim of this study was to identify the long noncoding RNAs (lncRNAs) associated with schizophrenia (SZ) and the relationships among their expression, antipsychotic efficacy and SZ severity. Method: The diagnostic and predictive value of nine lncRNAs, Gomafu, DISC2, PSZA11, AK096174, AK123097, DB340248, uc011dma.1, ENST00000509804-1 and ENST00000509804-2, was investigated in 48 patients with SZ before and after antipsychotic treatment. Results: Gomafu, AK096174, AK123097, DB340248, uc011dma.1, ENST00000509804-1 and ENST00000509804-2 were individually and collectively associated with, and predictive of, SZ pathogenesis. Moreover, increased expression of plasma AK123097, uc011dma.1 and ENST00000509804-1 levels was reversed after 12 weeks of antipsychotic treatment, which was associated with SZ severity. Conclusion: Seven lncRNAs serve as novel biomarkers for SZ diagnosis and prognosis and three lncRNAs are potential therapeutic targets.
Collapse
Affiliation(s)
- Jiao Jia
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China.,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Xiaofei Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China.,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Lina Ma
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China.,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yan Ren
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China.,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
19
|
Zhang Z, Wu H, Peng Q, Xie Z, Chen F, Ma Y, Zhang Y, Zhou Y, Yang J, Chen C, Li S, Zhang Y, Tian W, Wang Y, Xu Y, Luo H, Zhu M, Kuang YQ, Yu J, Wang K. Integration of Molecular Inflammatory Interactome Analyses Reveals Dynamics of Circulating Cytokines and Extracellular Vesicle Long Non-Coding RNAs and mRNAs in Heroin Addicts During Acute and Protracted Withdrawal. Front Immunol 2021; 12:730300. [PMID: 34489980 PMCID: PMC8416766 DOI: 10.3389/fimmu.2021.730300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/04/2021] [Indexed: 01/01/2023] Open
Abstract
Heroin addiction and withdrawal influence multiple physiological functions, including immune responses, but the mechanism remains largely elusive. The objective of this study was to investigate the molecular inflammatory interactome, particularly the cytokines and transcriptome regulatory network in heroin addicts undergoing withdrawal, compared to healthy controls (HCs). Twenty-seven cytokines were simultaneously assessed in 41 heroin addicts, including 20 at the acute withdrawal (AW) stage and 21 at the protracted withdrawal (PW) stage, and 38 age- and gender-matched HCs. Disturbed T-helper(Th)1/Th2, Th1/Th17, and Th2/Th17 balances, characterized by reduced interleukin (IL)-2, elevated IL-4, IL-10, and IL-17A, but normal TNF-α, were present in the AW subjects. These imbalances were mostly restored to the baseline at the PW stage. However, the cytokines TNF-α, IL-2, IL-7, IL-10, and IL-17A remained dysregulated. This study also profiled exosomal long non-coding RNA (lncRNA) and mRNA in the plasma of heroin addicts, constructed co-expression gene regulation networks, and identified lncRNA-mRNA-pathway pairs specifically associated with alterations in cytokine profiles and Th1/Th2/Th17 imbalances. Altogether, a large amount of cytokine and exosomal lncRNA/mRNA expression profiling data relating to heroin withdrawal was obtained, providing a useful experimental and theoretical basis for further understanding of the pathogenic mechanisms of withdrawal symptoms in heroin addicts.
Collapse
Affiliation(s)
- Zunyue Zhang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongjin Wu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qingyan Peng
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhenrong Xie
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fengrong Chen
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuru Ma
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yizhi Zhang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yong Zhou
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiqing Yang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cheng Chen
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shaoyou Li
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongjin Zhang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Weiwei Tian
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan Wang
- Department of Research and Development, Echo Biotech Co., Ltd, Beijing, China
| | - Yu Xu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huayou Luo
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Zhu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi-Qun Kuang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juehua Yu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kunhua Wang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan University, Kunming, China
| |
Collapse
|
20
|
Chen Q, Li D, Jin W, Shi Y, Li Z, Ma P, Sun J, Chen S, Li P, Lin P. Research Progress on the Correlation Between Epigenetics and Schizophrenia. Front Neurosci 2021; 15:688727. [PMID: 34366776 PMCID: PMC8334178 DOI: 10.3389/fnins.2021.688727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose of the Review Nowadays, the incidence of schizophrenia is noticeably increased. If left undiagnosed and untreated, it will lead to impaired social functions, repeated hospital admissions, decline in quality of life and life expectancy. However, the diagnosis of schizophrenia is complicated and challenging. Both genetic and environmental factors are considered as important contributors to the development and progression of this disorder. The environmental factors have been linked to changes in gene expression through epigenetic modulations, which have raised more and more research interests in recent years. This review article is to summarize the current findings and understanding of epigenetic modulation associated with pathogenesis of schizophrenia, aiming to provide useful information for further research in developing biomarkers for schizophrenia. Recent Findings Three major types of epigenetic modulations have been described in this article. Firstly, both DNA hypermethylation and hypomethylated have been associated with schizophrenia via analyzing post-mortem brain tissues and peripheral blood of patients. Specific changes of non-coding RNAs, particularly microRNAs and long-chain non-coding RNAs, have been observed in central and peripheral samples of schizophrenia patients, indicating their significant diagnostic value for the disease, and may also potentially predict treatment response. The correlation between histone modification and schizophrenia, however, is largely unclear. Summary Epigenetic modulations, including DNA methylation, ncRNA transcriptional regulation and histone modification, play an important role in the pathogenesis of schizophrenia. Therefore, tests of these epigenetic alterations may be utilized to assist in the diagnosis and determination of strategies of individualized treatment in clinical practice.
Collapse
Affiliation(s)
- Qing Chen
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Jin
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Shi
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Li
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijun Ma
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Sun
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuzi Chen
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Li
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Lin
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Ghafouri-Fard S, Eghtedarian R, Taheri M, Beatrix Brühl A, Sadeghi-Bahmani D, Brand S. A Review on the Expression Pattern of Non-coding RNAs in Patients With Schizophrenia: With a Special Focus on Peripheral Blood as a Source of Expression Analysis. Front Psychiatry 2021; 12:640463. [PMID: 34220567 PMCID: PMC8249727 DOI: 10.3389/fpsyt.2021.640463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a destructive neuropsychiatric disease with a median prevalence of 4.0 per 1,000 during the whole life. Genome-wide association studies have shown the role of copy number variants (generally deletions) and certain alleles of common single nucleotide polymorphisms in the pathogenesis of schizophrenia. This disorder predominantly follows the polygenic inheritance model. Schizophrenia has also been linked with various alterations in the transcript and protein content of the brain tissue. Recent studies indicate that alterations in non-coding RNAs (ncRNAs) signature underlie a proportion of this dysregulation. High throughput microarray investigations have demonstrated momentous alterations in the expression of long non-coding RNAs (lncRNA) and microRNAs (miRNAs) in the circulation or post-mortem brain tissues of patients with schizophrenia compared with control samples. While Gomafu, PINT, GAS5, TCONS_l2_00021339, IFNG-AS1, FAS-AS1, PVT1, and TUG1 are among down-regulated lncRNAs in schizophrenia, MEG3, THRIL, HOXA-AS2, Linc-ROR, SPRY4-IT1, UCA1, and MALAT1 have been up-regulated in these patients. Moreover, several miRNAs, such as miR-30e, miR-130b, hsa-miR-130b, miR-193a-3p, hsa-miR-193a-3p, hsa-miR-181b, hsa-miR-34a, hsa-miR-346, and hsa-miR-7 have been shown to be dysregulated in blood or brain samples of patients with schizophrenia. Dysregulation of these transcripts in schizophrenia not only provides insight into the pathogenic processes of this disorder, it also suggests these transcripts could serve as diagnostic markers for schizophrenia. In the present paper, we explore the changes in the expression of miRNAs and lncRNAs in patients with schizophrenia.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhane Eghtedarian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Annette Beatrix Brühl
- Psychiatric Clinics, Center for Affective, Stress and Sleep Disorders, University of Basel, Basel, Switzerland
| | - Dena Sadeghi-Bahmani
- Psychiatric Clinics, Center for Affective, Stress and Sleep Disorders, University of Basel, Basel, Switzerland
- Exercise Neuroscience Research Laboratory, The University of Alabama at Birmingham, Birmingham, AL, United States
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Serge Brand
- Psychiatric Clinics, Center for Affective, Stress and Sleep Disorders, University of Basel, Basel, Switzerland
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Division of Sport Science and Psychosocial Health, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Suppression of lncRNA MALAT1 Reduces LPS- or IL-17A-Induced Inflammatory Response in Human Middle Ear Epithelial Cells via the NF- κB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8844119. [PMID: 33506040 PMCID: PMC7808845 DOI: 10.1155/2021/8844119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/27/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022]
Abstract
Otitis media (OM) is a common inflammatory disease of the middle ear cavity and mainly occurs in children. As a critical regulator of inflammation response, the nuclear factor kappa B (NF-κB) pathway has been found to play an essential role in the pathogenesis of various human diseases. The aim of this study was to explore the potential mechanism under the inflammatory response of human middle ear epithelial cells (HMEECs). We established in vitro models of OM by treating HMEECs with lipopolysaccharide (LPS) or interleukin 17A (IL-17A). Enzyme-linked immunosorbent assay and western blot analysis were used to measure the inflammatory response of HMEECs under LPS or IL-17A stimulation. The results revealed that the concentrations of proinflammatory cytokines (p < 0.001) and protein levels of mucin (MUC) (for MUC5AC, p = 0.002, p = 0.004; for MUC8, p = 0.004, p < 0.001) were significantly elevated by LPS or IL-17A stimulation in HMEECs. Moreover, we found that LPS or IL-17A treatment promoted the phosphorylation of IκBα (for p-IκBα, p = 0.018, p = 0.002; for IκBα, p = 0.238, p = 0.057) and the translocation of p65 from cytoplasm to nucleus in HMEECs (for nucleus p65, p = 0.01; for cytoplasm p65, p < 0.001). In addition, RT-qPCR analysis revealed that long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was verified to be upregulated in LPS- or IL-17A-stimulated HMEECs (p < 0.001). Western blot analysis and immunofluorescence staining assay revealed that that MALAT1 knockdown significantly suppressed the activation of the NF-κB pathway by reducing phosphorylated IκBα levels and inhibiting the nuclear translocation of p65 (p < 0.001) in LPS- or IL-17A-stimulated HMEECs (for p-IκBα, p < 0.001; for IκBα, p = 0.242, p = 0.647). Silence of MALAT1 decreased the proinflammatory cytokine production and MUC protein levels (p < 0.001). Furthermore, rescue assays revealed that the increase of proinflammatory cytokine production (for TNF-α, p = 0.002, p = 0.015; for IL-1β, p < 0.001, p = 0.006; for IL-6, p = 0.002, p < 0.001) and MUC protein levels (for MUC5AC, p = 0.001, p < 0.001; for MUC8, p < 0.001, p = 0.001) induced by MALAT1 overexpression was neutralized by 4-N-[2-(4-phenoxyphenyl) ethyl] quinazoline-4, 6-diamine (QNZ) treatment in LPS- or IL-17A-stimulated HMEECs. In conclusion, MALAT1 promotes inflammatory response in LPS- or IL-17A- stimulated HMEECs via the NF-κB signaling pathway, which may provide a potential novel insight for the treatment of OM.
Collapse
|
23
|
Isolation and Characterization of Porcine Astrovirus 5 from a Classical Swine Fever Virus-Infected Specimen. J Virol 2020; 95:JVI.01513-20. [PMID: 33115877 DOI: 10.1128/jvi.01513-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023] Open
Abstract
Many new astroviruses have been identified in humans and other animals in recent years, but only a few have been successfully isolated for extensive biological study. Here, we report an unusual isolation of a porcine astrovirus 5 (PAstV5) strain from a clinical classical swine fever virus (CSFV)-infected tissue sample. Incubation of porcine PK-15 cells with an extract of the CSFV-positive tissue resulted in unexpected cytopathic effects (CPEs), and high-throughput viromic sequencing identified PAstV5 and porcine circovirus type 2 (PCV2) as well as CSFV in the culture. After clearance of CSFV and PCV2, a pure PAstV5 strain, named PAstV5-AH29-2014, was obtained. Analysis revealed virus of typical astroviral morphology with a genome of 6,448 nucleotides, sharing 84.3 to 88.9% nucleotide identity with previously published PAstV5 strains. A mechanistic study showed that CSFV coinfection was likely an important factor for successful isolation by significantly enhancing PAstV5 replication in PK-15 cells via suppression of a type I interferon response. Altogether, PAstV5-AH29-2014, as the first isolated PAstV5 strain, will provide critical material for the investigation of the biological and pathogenic properties of this virus as well as for future development of relevant biological and diagnostic reagents.IMPORTANCE Porcine astroviruses are mainly associated with gastroenteritis and neurological diseases in pigs, and five genotypes have been identified (PAstV1-5). However, the clinical manifestations of genotypes other than PAstV1 have not yet been determined because of the failure of in vitro virus isolation. Here, we report a surprising isolation of a PAstV5 strain from a clinical classical swine fever virus (CSFV)-infected tissue sample, which can stably passage in PK-15 cells, and coinfection with CSFV significantly enhanced the replication of PAstV5, possibly through suppression of beta interferon production. Thus, the first isolated PAstV5 strain will be useful for investigating the biological and pathogenic properties of this virus, and the findings obtained in this study provide new insights into defining the interaction mechanism between CSFV and PAstV5.
Collapse
|
24
|
Abstract
Schizophrenia is a serious neuropsychiatric disorder with abnormal age-related neurodevelopmental (or neurodegenerative) trajectories. Although an accelerated aging hypothesis of schizophrenia has been proposed, the quantitative study of the disruption of the physiological trajectory caused by schizophrenia is inconclusive. In this study, we employed 3 "epigenetic clock" methods to quantify the epigenetic age of a large sample size of whole blood (1069 samples from patients with schizophrenia vs 1264 samples from unaffected controls) and brain tissues (500 samples from patients with schizophrenia vs 711 samples from unaffected controls). We observed significant positive correlations between epigenetic age and chronological age in both blood and brain tissues from unaffected controls and patients with schizophrenia, as estimated by 3 methods. Furthermore, we observed that epigenetic age acceleration was significantly delayed in schizophrenia from the whole blood samples (aged 20-90 years) and brain frontal cortex tissues (aged 20-39 years). Intriguingly, the genes regulated by the epigenetic clock also contained schizophrenia-associated genes, displaying differential expression and methylation in patients with schizophrenia and involving in the regulation of cell activation and development. These findings were further supported by the dysregulated leukocyte composition in patients with schizophrenia. Our study presents quantitative evidence for a neurodevelopmental model of schizophrenia from the perspective of a skewed "epigenetic clock." Moreover, landmark changes in an easily accessible biological sample, blood, reveal the value of these epigenetic clock genes as peripheral biomarkers for schizophrenia.
Collapse
Affiliation(s)
- Xiaohui Wu
- Department of Medical Genetics, School of Basic Medical Sciences, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, Southern Medical University, Guangzhou, Guangdong, China,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China
| | - Junping; Ye
- Department of Medical Genetics, School of Basic Medical Sciences, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongju Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, Southern Medical University, Guangzhou, Guangdong, China,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China
| | - Cunyou Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, and Guangdong Engineering and Technology Research Center for Genetic Testing, Southern Medical University, Guangzhou, Guangdong, China,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, Guangdong, China,To whom correspondence should be addressed; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; tel: (8620)-62789519, fax: (8620)-62789519, e-mail:
| |
Collapse
|
25
|
Blokhin IO, Khorkova O, Saveanu RV, Wahlestedt C. Molecular mechanisms of psychiatric diseases. Neurobiol Dis 2020; 146:105136. [PMID: 33080337 DOI: 10.1016/j.nbd.2020.105136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
For most psychiatric diseases, pathogenetic concepts as well as paradigms underlying neuropsychopharmacologic approaches currently revolve around neurotransmitters such as dopamine, serotonin, and norepinephrine. However, despite the fact that several generations of neurotransmitter-based psychotropics including atypical antipsychotics, selective serotonin reuptake inhibitors, and serotonin-norepinephrine reuptake inhibitors are available, the effectiveness of these medications is limited, and relapse rates in psychiatric diseases are relatively high, indicating potential involvement of other pathogenetic pathways. Indeed, recent high-throughput studies in genetics and molecular biology have shown that pathogenesis of major psychiatric illnesses involves hundreds of genes and numerous pathways via such fundamental processes as DNA methylation, transcription, and splicing. Current review summarizes these and other molecular mechanisms of such psychiatric illnesses as schizophrenia, major depressive disorder, and alcohol use disorder and suggests a conceptual framework for future studies.
Collapse
Affiliation(s)
- Ilya O Blokhin
- Center for Therapeutic Innovation, University of Miami, Miami, FL, United States of America; Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States of America; Jackson Memorial Hospital, Miami, FL, United States of America
| | - Olga Khorkova
- OPKO Health Inc., Miami, FL, United States of America
| | - Radu V Saveanu
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States of America
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, University of Miami, Miami, FL, United States of America; Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States of America.
| |
Collapse
|
26
|
Lee Y. Regulation and function of capicua in mammals. Exp Mol Med 2020; 52:531-537. [PMID: 32238859 PMCID: PMC7210929 DOI: 10.1038/s12276-020-0411-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022] Open
Abstract
Capicua (CIC) is an evolutionarily conserved transcription factor. CIC contains a high-mobility group (HMG) box that recognizes specific DNA sequences to regulate the expression of various target genes. CIC was originally identified in Drosophila melanogaster as a transcriptional repressor that suppresses the receptor tyrosine kinase signaling pathway. This molecule controls normal organ growth and tissue patterning as well as embryogenesis in Drosophila. Recent studies have also demonstrated its extensive functions in mammals. For example, CIC regulates several developmental and physiological processes, including lung development, abdominal wall closure during embryogenesis, brain development and function, neural stem cell homeostasis, T cell differentiation, and enterohepatic circulation of bile acids. CIC is also associated with the progression of various types of cancer and neurodegeneration in spinocerebellar ataxia type-1, systemic autoimmunity, and liver injury. In this review, I provide a broad overview of our current understanding of the regulation and functions of CIC in mammals and discuss future research directions.
Collapse
Affiliation(s)
- Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea.
- Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|