1
|
Zhu LS, Lai C, Zhou CW, Chen HY, Liu ZQ, Guo Z, Man H, Du HY, Lu Y, Hu F, Chen Z, Shu K, Zhu LQ, Liu D. Postsynaptic lncRNA Sera/Pkm2 pathway orchestrates the transition from social competition to rank by remodeling the neural ensemble in mPFC. Cell Discov 2024; 10:87. [PMID: 39160208 PMCID: PMC11333582 DOI: 10.1038/s41421-024-00706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
Individuals' continuous success in competitive interactions with conspecifics strongly affects their social hierarchy. Medial prefrontal cortex (mPFC) is the key brain region mediating both social competition and hierarchy. However, the molecular regulatory mechanisms underlying the neural ensemble in the mPFC remains unclear. Here, we demonstrate that in excitatory neurons of prelimbic cortex (PL), lncRNA Sera remodels the utilization of Pkm Exon9 and Exon10, resulting in a decrease in the Pkm1/2 ratio in highly competitive mice. By employing a tet-on/off system, we disrupt or rebuild the normal Pkm1/2 ratio by controlling the expression of Pkm2 in PL excitatory neurons. We find that long-term Pkm2 modulation induces timely competition alteration and hysteretic rank change, through phosphorylating the Ser845 site of GluA1. Together, this study uncovers a crucial role of lncRNA Sera/Pkm2 pathway in the transition of social competition to rank by remodeling neural ensemble in mPFC.
Collapse
Affiliation(s)
- Ling-Shuang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuan Lai
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao-Wen Zhou
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui-Yang Chen
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hengye Man
- Department of Biology, Boston University, Boston, MA, USA
| | - Hui-Yun Du
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youming Lu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiye Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Dan Liu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Grossmann CP, Sommer C, Fahliogullari IB, Neumann ID, Menon R. Mating-induced release of oxytocin in the mouse lateral septum: Implications for social fear extinction. Psychoneuroendocrinology 2024; 166:107083. [PMID: 38788461 DOI: 10.1016/j.psyneuen.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
In mammals, some physiological conditions are associated with the high brain oxytocin (OXT) system activity. These include lactation in females and mating in males and females, both of which have been linked to reduced stress responsiveness and anxiolysis. Also, in a murine model of social fear conditioning (SFC), enhanced brain OXT signaling in lactating mice, specifically in the lateral septum (LS), was reported to underlie reduced social fear expression. Here, we studied the effects of mating in male mice on anxiety-related behaviour, social (and cued) fear expression and its extinction, and the activity of OXT neurons reflected by cFos expression and OXT release in the LS and amygdala. We further focused on the involvement of brain OXT in the mating-induced facilitation of social fear extinction. We could confirm the anxiolytic effect of mating in male mice irrespective of the occurrence of ejaculation. Further, we found that only successful mating resulting in ejaculation (Ej+) facilitated social fear extinction, whereas mating without ejaculation (Ej-) did not. In contrast, mating did not affect cues fear expression. Using the cellular activity markers cFos and pErk, we further identified the ventral LS (vLS) as a potential region participating in the effect of ejaculation on social fear extinction. In support, microdialysis experiments revealed a rise in OXT release within the LS, but not the amygdala, during mating. Finally, infusion of an OXT receptor antagonist into the LS before mating or into the lateral ventricle (icv) after mating demonstrated a significant role of brain OXT receptor-mediated signaling in the mating-induced facilitation of social fear extinction.
Collapse
Affiliation(s)
- Cindy P Grossmann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Christopher Sommer
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | | | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Rohit Menon
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Luo Y, Wang H, Wang L, Wu W, Zhao J, Li X, Xiong R, Ding X, Yuan D, Yuan C. LncRNA MEG3: Targeting the Molecular Mechanisms and Pathogenic causes of Metabolic Diseases. Curr Med Chem 2024; 31:6140-6153. [PMID: 37855346 DOI: 10.2174/0109298673268051231009075027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Non-coding RNA is a type of RNA that does not encode proteins, distributed among rRNA, tRNA, snRNA, snoRNA, microRNA and other RNAs with identified functions, where the Long non-coding RNA (lncRNA) displays a nucleotide length over 200. LncRNAs enable multiple biological processes in the human body, including cancer cell invasion and metastasis, apoptosis, cell autophagy, inflammation, etc. Recently, a growing body of studies has demonstrated the association of lncRNAs with obesity and obesity-induced insulin resistance and NAFLD, where MEG3 is related to glucose metabolism, such as insulin resistance. In addition, MEG3 has been demonstrated in the pathological processes of various cancers, such as mediating inflammation, cardiovascular disease, liver disease and other metabolic diseases. OBJECTIVE To explore the regulatory role of lncRNA MEG3 in metabolic diseases. It provides new ideas for clinical treatment or experimental research. METHODS In this paper, in order to obtain enough data, we integrate and analyze the data in the PubMed database. RESULTS LncRNA MEG3 can regulate many metabolic diseases, such as insulin resistance, NAFLD, inflammation and so on. CONCLUSION LncRNA MEG3 has a regulatory role in a variety of metabolic diseases, which are currently difficult to be completely cured, and MEG3 is a potential target for the treatment of these diseases. Here, we review the role of lncRNA MEG3 in mechanisms of action and biological functions in human metabolic diseases.
Collapse
Affiliation(s)
- Yiyang Luo
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Hailin Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Lijun Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Wei Wu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Jiale Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Xueqing Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Ruisi Xiong
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xueliang Ding
- Department of Clinical Laboratory, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
4
|
Edelmann S, Wiegand A, Hentrich T, Pasche S, Schulze-Hentrich JM, Munk MHJ, Fallgatter AJ, Kreifelts B, Nieratschker V. Blood transcriptome analysis suggests an indirect molecular association of early life adversities and adult social anxiety disorder by immune-related signal transduction. Front Psychiatry 2023; 14:1125553. [PMID: 37181876 PMCID: PMC10168183 DOI: 10.3389/fpsyt.2023.1125553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/29/2023] [Indexed: 05/16/2023] Open
Abstract
Social anxiety disorder (SAD) is a psychiatric disorder characterized by severe fear in social situations and avoidance of these. Multiple genetic as well as environmental factors contribute to the etiopathology of SAD. One of the main risk factors for SAD is stress, especially during early periods of life (early life adversity; ELA). ELA leads to structural and regulatory alterations contributing to disease vulnerability. This includes the dysregulation of the immune response. However, the molecular link between ELA and the risk for SAD in adulthood remains largely unclear. Evidence is emerging that long-lasting changes of gene expression patterns play an important role in the biological mechanisms linking ELA and SAD. Therefore, we conducted a transcriptome study of SAD and ELA performing RNA sequencing in peripheral blood samples. Analyzing differential gene expression between individuals suffering from SAD with high or low levels of ELA and healthy individuals with high or low levels of ELA, 13 significantly differentially expressed genes (DEGs) were identified with respect to SAD while no significant differences in expression were identified with respect to ELA. The most significantly expressed gene was MAPK3 (p = 0.003) being upregulated in the SAD group compared to control individuals. In contrary, weighted gene co-expression network analysis (WGCNA) identified only modules significantly associated with ELA (p ≤ 0.05), not with SAD. Furthermore, analyzing interaction networks of the genes from the ELA-associated modules and the SAD-related MAPK3 revealed complex interactions of those genes. Gene functional enrichment analyses indicate a role of signal transduction pathways as well as inflammatory responses supporting an involvement of the immune system in the association of ELA and SAD. In conclusion, we did not identify a direct molecular link between ELA and adult SAD by transcriptional changes. However, our data indicate an indirect association of ELA and SAD mediated by the interaction of genes involved in immune-related signal transduction.
Collapse
Affiliation(s)
- Susanne Edelmann
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen Center for Mental Health (TüCMH), Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Ariane Wiegand
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen Center for Mental Health (TüCMH), Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Max Planck Fellow Group Precision Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Hentrich
- Institute for Medical Genetics and Applied Genomics, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Department of Genetics and Epigenetics, Faculty NT, Saarland University, Saarbrücken, Germany
| | - Sarah Pasche
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen Center for Mental Health (TüCMH), Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Julia Maria Schulze-Hentrich
- Institute for Medical Genetics and Applied Genomics, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Department of Genetics and Epigenetics, Faculty NT, Saarland University, Saarbrücken, Germany
| | - Matthias H. J. Munk
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen Center for Mental Health (TüCMH), Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Andreas J. Fallgatter
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen Center for Mental Health (TüCMH), Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Benjamin Kreifelts
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen Center for Mental Health (TüCMH), Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen Center for Mental Health (TüCMH), Eberhard Karls University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
5
|
Ru FX, Kong F, Ren CY, He YS, Xia SY, Li YN, Liang YP, Feng JJ, Wei ZY, Chen JH. Repeated Winning and Losing Experiences in Chronic Social Conflicts Are Linked to RNA Editing Pattern Difference. Front Psychiatry 2022; 13:896794. [PMID: 35664469 PMCID: PMC9161819 DOI: 10.3389/fpsyt.2022.896794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Winner-loser effects influence subsequent agonistic interactions between conspecifics. Previous winning experiences could strengthen future aggression and increase the chance of winning the next agonistic interaction, while previous losing experiences could have the opposite effect. Although the role of A-to-I RNA editing has been recently implicated in chronic social defeat stress and aggressive behavior, it remains to be further elucidated in chronic social conflicts in agonistic interactions, especially in the repeated aggression (winners) and repeated defeat (losers) resulted from these conflicts. In the current study, transcriptome-wide A-to-I RNA editing in the dorsal striatum was investigated in a mouse model of chronic social conflicts, and compared between mice repeatedly winning and losing daily agonistic interactions. Our analysis identified 622 A-to-I RNA editing sites in the mouse dorsal striatum, with 23 to be differentially edited in 22 genes, most of which had been previously associated with neurological, psychiatric, or immune disorders. Among these differential RNA editing (DRE) sites four missense variants were observed in neuroligin 2 (Nlgn2), Cdc42 guanine nucleotide exchange factor 9 (Arhgef9) BLCAP apoptosis inducing factor (Blcap), and cytoplasmic FMR1 interacting protein 2 (Cyfip2), as well as two noncoding RNA sites in small nucleolar RNA host gene 11 (Snhg11) and the maternally expressed 3 (Meg3) gene. Moreover, significant changes were observed in gene functions and pathways enriched by genes with A-to-I RNA editing in losers and especially winners compared to controls. Our results demonstrate that repeated winning and losing experiences in chronic social conflicts are linked to A-to-I RNA editing pattern difference, underlining its role in the molecular mechanism of agonistic interactions between conspecifics.
Collapse
Affiliation(s)
- Fu-Xia Ru
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Fanzhi Kong
- Shantou University Mental Health Center, Shantou University Medical College, Shantou, China
| | - Chun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Yu-Shan He
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Shou-Yue Xia
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Yu-Ning Li
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Jun-Jie Feng
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| |
Collapse
|