1
|
Boehler NA, Seheult SDI, Wahid M, Hase K, D'Amico SF, Saini S, Mascarenhas B, Bergman ME, Phillips MA, Faure PA, Cheng HYM. A novel copy number variant in the murine Cdh23 gene gives rise to profound deafness and vestibular dysfunction. Hum Mol Genet 2024; 33:1648-1659. [PMID: 38981620 DOI: 10.1093/hmg/ddae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/10/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
Hearing loss is the most common congenital sensory deficit worldwide and exhibits high genetic heterogeneity, making molecular diagnoses elusive for most individuals. Detecting novel mutations that contribute to hearing loss is crucial to providing accurate personalized diagnoses, tailored interventions, and improving prognosis. Copy number variants (CNVs) are structural mutations that are understudied, potential contributors to hearing loss. Here, we present the Abnormal Wobbly Gait (AWG) mouse, the first documented mutant exhibiting waltzer-like locomotor dysfunction, hyperactivity, circling behaviour, and profound deafness caused by a spontaneous CNV deletion in cadherin 23 (Cdh23). We were unable to identify the causative mutation through a conventional whole-genome sequencing (WGS) and variant detection pipeline, but instead found a linked variant in hexokinase 1 (Hk1) that was insufficient to recapitulate the AWG phenotype when introduced into C57BL/6J mice using CRISPR-Cas9. Investigating nearby deafness-associated genes revealed a pronounced downregulation of Cdh23 mRNA and a complete absence of full-length CDH23 protein, which is critical for the development and maintenance of inner ear hair cells, in whole head extracts from AWG neonates. Manual inspection of WGS read depth plots of the Cdh23 locus revealed a putative 10.4 kb genomic deletion of exons 11 and 12 that was validated by PCR and Sanger sequencing. This study underscores the imperative to refine variant detection strategies to permit identification of pathogenic CNVs easily missed by conventional variant calling to enhance diagnostic precision and ultimately improve clinical outcomes for individuals with genetically heterogenous disorders such as hearing loss.
Collapse
Affiliation(s)
- Nicholas A Boehler
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Shane D I Seheult
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Muhammad Wahid
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Kazuma Hase
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Sierra F D'Amico
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Shakshi Saini
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Brittany Mascarenhas
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Matthew E Bergman
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Michael A Phillips
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
2
|
Lee SH, Cooke ME, Duan KZ, Williams Avram SK, Song J, Elkahloun AG, McGrady G, Howley A, Samal B, Young WS. Investigation of the Fasciola Cinereum, Absent in BTBR mice, and Comparison with the Hippocampal Area CA2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586108. [PMID: 38883723 PMCID: PMC11178005 DOI: 10.1101/2024.03.21.586108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The arginine vasopressin 1b receptor (Avpr1b) plays an important role in social behaviors including social learning, memory, and aggression, and is known to be a specific marker for the cornu ammonis area 2 (CA2) regions of the hippocampus. The fasciola cinereum (FC) is an anatomical region in which Avpr1b expressing neurons are prominent, but the functional roles of the FC have yet to be investigated. Surprisingly, the FC is absent in the inbred BTBR T+tf/J (BTBR) mouse strain used to study core behavioral deficits of autism. Here, we characterized and compared transcriptomic expression profiles using single nucleus RNA sequencing and identified 7 different subpopulations and heterogeneity within the dorsal CA2 (dCA2) and FC. Mef2c, involved in autism spectrum disorder, is more highly expressed in the FC. Using Hiplex in situ hybridization, we examined the neuroanatomical locations of these subpopulations in the proximal and distal regions of the hippocampus. Anterograde tracing of Avpr1b neurons specific for the FC showed projections to the IG, dCA2, lacunosum molecular layer of CA1, dorsal fornix, septofibrial nuclei, and intermediate lateral septum (iLS). In contrast to the dCA2, inhibition of Avpr1b neurons in the FC by the inhibitory DREADD system during behavioral testing did not impair social memory. We performed single nucleus RNA sequencing in the dCA2 region and compared between wildtype (WT) and BTBR mice. We found that transcriptomic profiles of dCA2 neurons between BTBR and WT mice are very similar as they did not form any unique clusters; yet, we found there were differentially expressed genes between the dCA2s of BTBR and WT mice. Overall, this is a comprehensive study of the comparison of Avpr1b neuronal subpopulations between the FC and dCA2. The fact that FC is absent in BTBR mice, a mouse model for autism spectrum disorder, suggests that the FC may play a role in understanding neuropsychiatric disease.
Collapse
|
3
|
Zarate-Lopez D, Torres-Chávez AL, Gálvez-Contreras AY, Gonzalez-Perez O. Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder. Curr Neuropharmacol 2024; 22:260-289. [PMID: 37873949 PMCID: PMC10788883 DOI: 10.2174/1570159x22666231003121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.
Collapse
Affiliation(s)
- David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Ana Laura Torres-Chávez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Alma Yadira Gálvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, México
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
| |
Collapse
|
4
|
Licinio J, Wong ML. Psychosis and autism spectrum disorder: a special issue of Molecular Psychiatry. Mol Psychiatry 2023; 28:1830-1832. [PMID: 37833367 DOI: 10.1038/s41380-023-02250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Julio Licinio
- State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Ma-Li Wong
- State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|