1
|
Bahi A. Hippocampal microRNA-181a overexpression participates in anxiety and ethanol related behaviors via regulating the expression of SIRT-1. Physiol Behav 2025; 292:114839. [PMID: 39920909 DOI: 10.1016/j.physbeh.2025.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Understanding the molecular mechanisms underlying anxiety and ethanol-related behaviors is crucial for developing effective therapeutic interventions. This study identifies a novel role for microRNA miR-181a and its target, Sirtuin 1 (SIRT-1), in the hippocampus as contributors to anxiety-like behavior and voluntary ethanol intake. Using male and female C57BL/6 mice, we explored the causal relationship between hippocampal miR-181a expression and these behaviors. Lentivirus vectors were delivered into the hippocampus for focal miR-181a overexpression in mice. Then behaviors were observed by elevated plus maze (EPM) and open field (OF) tests. Results showed that the viral approach employed to overexpress miR-181a, in the hippocampus, resulted in increased anxiety-like behavior in the EPM and OF tests. Additionally, miR-181a overexpression exacerbated voluntary ethanol intake and preference in the two-bottle choice paradigm without affecting saccharin or quinine consumption. Mechanistically, miR-181a gain-of-function reduced SIRT-1 expression in the hippocampus. These findings demonstrate that miR-181a upregulation in the hippocampus promotes anxiety and ethanol-related behaviors, likely through SIRT-1 repression. This work highlights miR-181a as a key molecular mediator in the epigenetic regulation of mood disorders and ethanol consumption.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, UAE; Center of Medical & Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE; College of Medicine & Health Sciences, UAEU, Al Ain, UAE.
| |
Collapse
|
2
|
Yu H, Li X, Ning B, Feng L, Ren Y, Li S, Kang Y, Ma J, Zhao M. SIRT1: a potential therapeutic target for coronary heart disease combined with anxiety or depression. J Drug Target 2025; 33:328-340. [PMID: 39470049 DOI: 10.1080/1061186x.2024.2422882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Coronary heart disease (CHD) combined with anxiety or depression is increasingly receiving attention in the clinical field of cardiology, and exploring the comorbidity pathological mechanisms of cardiovascular disease combined with psychological disorders is a hot research topic for scholars in this field. Current research suggests that Silent Information Regulatory Factor 1 (SIRT1) may serve as a potential biomarker for the comorbidity mechanism and treatment of CHD with anxiety or depression. SIRT1 is considered a promising therapeutic target for CHD combined with anxiety or depression, with the ability to regulate inflammatory cytokine levels, alleviate oxidative stress damage, activate multiple signalling pathways, reduce platelet hyperresponsiveness, and exert neuroprotective and cardioprotective effects. In this comprehensive review, we deeply studied the structure, function, and mechanism of SIRT1, and discussed its protective effects in the cardiovascular and nervous system. The latest progress in the mechanism of SIRT1's role in CHD combined with anxiety or depression was emphasised, including its specific mechanisms in regulating inflammatory response, alleviating oxidative stress, and mediating various signalling pathways. In addition, this article also summarises the therapeutic potential of SIRT1 as a potential biomarker in patients with CHD combined with anxiety or depression.
Collapse
Affiliation(s)
- Hubin Yu
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xinping Li
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Bo Ning
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lanshuan Feng
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yaolong Ren
- Department of Cardiology, Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shilin Li
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yalong Kang
- School of Graduate, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Ma
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Mingjun Zhao
- Department of Cardiology, Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
3
|
Li M, She K, Zhu P, Li Z, Liu J, Luo F, Ye Y. Chronic Pain and Comorbid Emotional Disorders: Neural Circuitry and Neuroimmunity Pathways. Int J Mol Sci 2025; 26:436. [PMID: 39859152 PMCID: PMC11764837 DOI: 10.3390/ijms26020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic pain is a multidimensional experience that not only involves persistent nociception but is also frequently accompanied by significant emotional disorders, such as anxiety and depression, which complicate its management and amplify its impact. This review provides an in-depth exploration of the neurobiological mechanisms underlying the comorbidity of chronic pain and emotional disturbances. Key areas of focus include the dysregulation of major neurotransmitter systems (serotonin, gamma-aminobutyric acid, and glutamate) and the resulting functional remodeling of critical neural circuits implicated in pain processing, emotional regulation, and reward. Given the contribution of neuroimmune mechanisms to pain chronicity and mood disorders, we further conducted an in-depth investigation into the role of neuroimmune factors, including resident immune cells, infiltrating immune cells, and the release of inflammatory mediators. This review further discusses current therapeutic strategies, encompassing pharmacological interventions, neuromodulation, and integrative approaches, and emphasizes the necessity of targeted treatments that address both pain and emotional components. Finally, it identifies gaps in the current understanding and outlines future research directions aimed at elucidating the complex interplay between chronic pain and emotional disorders, thereby laying the foundation for more effective and holistic treatment paradigms.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.L.); (K.S.); (P.Z.); (Z.L.); (J.L.)
| | - Yingze Ye
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.L.); (K.S.); (P.Z.); (Z.L.); (J.L.)
| |
Collapse
|
4
|
Xie M, Xiong Y, Wang H. The regulative role and mechanism of BNST in anxiety disorder. Front Psychiatry 2024; 15:1437476. [PMID: 39698215 PMCID: PMC11652476 DOI: 10.3389/fpsyt.2024.1437476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Anxiety disorders, common yet impactful emotional disturbances, significantly affect physical and mental health globally. Many neuron circuits are associated with anxiety regulation like septo-hippocampal loop, amygdala(AMYG), bed nucleus of the stria terminalis (BNST), ventral hippocampus (vHPC), and brain regions like medial prefrontal cortex (mPFC). However, the concrete mechanism of anxiety disorder in BNST is relatively unknown. Recent research showed BNST plays a critical role in modulating anxiety owing to its anatomical location and special circuit characteristics, which are considered to be a hub in the limbic system regulating anxiety. BNST consists with multiple subregions, which can project separately into different brain regions and exert projecting independently to various brain regions with distinct regulatory effects. Moreover, multiple signal pathways in BNST are reported to play significant roles in regulating anxiety and stress behavior. This review briefly describes anxiety disorders and subdivisions and functions of BNST, focusing on the main neural circuits that serve as fundamental pathways in both the genesis and potential treatment of anxiety disorders and the molecular mechanism of BNST on anxiety. The complexity of structures and mechanisms has facilitated the development of imaging techniques. Innovative multimodal imaging techniques, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), have non-invasively illuminated BNST activities and their functional connections with other brain areas. These methodologies provide a deeper understanding of how BNST responds to anxiety-inducing stimuli, offering invaluable insights into its complex role in anxiety regulation. The continued exploration of BNST in anxiety research promises not only to elucidate fundamental neurobiological mechanisms but also to foster advancements in clinical treatments for anxiety disorders.
Collapse
Affiliation(s)
| | | | - Haijun Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese
Medicine, Jinan, China
| |
Collapse
|
5
|
Bonomi RE, Riordan W, Gelovani JG. The Structures, Functions, and Roles of Class III HDACs (Sirtuins) in Neuropsychiatric Diseases. Cells 2024; 13:1644. [PMID: 39404407 PMCID: PMC11476333 DOI: 10.3390/cells13191644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Over the past two decades, epigenetic regulation has become a rapidly growing and influential field in biology and medicine. One key mechanism involves the acetylation and deacetylation of lysine residues on histone core proteins and other critical proteins that regulate gene expression and cellular signaling. Although histone deacetylases (HDACs) have received significant attention, the roles of individual HDAC isoforms in the pathogenesis of psychiatric diseases still require further research. This is particularly true with regard to the sirtuins, class III HDACs. Sirtuins have unique functional activity and significant roles in normal neurophysiology, as well as in the mechanisms of addiction, mood disorders, and other neuropsychiatric abnormalities. This review aims to elucidate the differences in catalytic structure and function of the seven sirtuins as they relate to psychiatry.
Collapse
Affiliation(s)
- Robin E. Bonomi
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA;
| | - William Riordan
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA;
| | - Juri G. Gelovani
- College of Medicine and Health Sciences, Office of the Provost, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Radiology, Division of Nuclear Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
6
|
Torres-Berrío A. Epigenetic Regulation of Neural Activity in the Depressed Brain: The Two Faces of the Histone Deacetylase SIRT1. Biol Psychiatry 2024; 96:e7-e9. [PMID: 39168543 DOI: 10.1016/j.biopsych.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Angélica Torres-Berrío
- Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
7
|
Wu L, Zhang S, Zhang M, Ou Y, Chen J. Occlusal disharmony promotes anxiety-like behaviours by suppressing Sirt1. Clin Oral Investig 2024; 28:526. [PMID: 39276172 DOI: 10.1007/s00784-024-05918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/08/2024] [Indexed: 09/16/2024]
Abstract
BACKGROUND Previous studies have indicated that occlusal disharmony (OD) can promote anxiety-like behaviours. However, the specific molecules involved in the development of anxiety-like behaviours and their underlying mechanisms remain unknown. METHODS OD was produced by anterior crossbite of female mice. We measured the anxiety levels of mice in each group and screened the hippocampal mRNA expression profiles of mice in the control group and OD group. The role of target mRNA in OD-induced anxiety-like behaviours was evaluated and we preliminarily explored the possible downstream pathways. RESULTS The results suggested that OD can induce and promote anxiety-like behaviours with/without chronic unpredictable mild stress. We found that Sirt1 was significantly downregulated within the hippocampus in OD mice. In addition, the downregulation of Sirt1 within the hippocampus in OD and control mice promoted anxiety-like behaviours, increased acetylated histone H3 expression and decreased Dnah12 transcription levels. In contrast, in OD mice subjected to an injection of resveratrol, there was a remission of anxiety-like behaviours and an upregulation of Sirt1 in the hippocampus, the effects of which were accompanied by decreased acetylated histone H3 expression and increased Dnah12 transcription levels. CONCLUSIONS OD leads to increased sensitivity to chronic stress in mice, resulting in anxiety-like behaviours. During this process, Sirt1 acts as an effective factor in the regulation of OD-induced anxiety-like behaviours. CLINICAL RELEVANCE OD, as a stressor, could induce anxiety-like behaviours. It investigates the impact of OD (a stressor) on the molecular genetic of the pathophysiology of major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ling Wu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Sihui Zhang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Mi Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yanjing Ou
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Zhong Road, Fuzhou, China.
| |
Collapse
|
8
|
Free T. Recording the brain in vivo: emerging technologies for the exploration of mental health conditions. Biotechniques 2024; 76:121-124. [PMID: 38482795 DOI: 10.2144/btn-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Standfirst Mounting interest in mental health conditions over the last two decades has been coupled with the increasing sophistication of techniques to study the brain in vivo. [Formula: see text].
Collapse
Affiliation(s)
- Tristan Free
- Senior Digital Editor, Taylor & Francis, Unitec House, 2 Albert Place, London, N3 1QB, UK
| |
Collapse
|
9
|
Wang Y, Xia M, Lu J, Wang T, Zhang X, Ntim M, Wang B. TIP60 mediates stress-induced hypertension via promoting glutamate dmPFC-to-vCA1 release. Clin Exp Hypertens 2023; 45:2259130. [PMID: 37817460 DOI: 10.1080/10641963.2023.2259130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/08/2023] [Indexed: 10/12/2023]
Abstract
Hypertension is well-known to be influenced by genetic and environmental factors. Managing stress is one of the non-pharmacologic approaches to treating hypertension. It is, therefore, imperative to unravel the molecular mechanism by which stress conditions influence hypertension. In this study, TIP60 expressions in human blood samples and cell lines, glutamatedmPFC-to-vCA1 release, and receptor expressions in the Stress-induced hypertension mice were determined using western blotting, CSF (obtained by microdialysis), and ELISA. The study reports increased protein expressions of TIP60 in the peripheral blood of hypertensive patients and in cell lines representing hypertension. In Chronic restraint stress (CRS) conditions TIP60 expression and vCA1 glutamate release were found to be up-regulated, with high SBP and DSP indicating hypertension was induced. After electrical stimulation at the dmPFC, release of glutamate in the vCA1 increased, indicating that activity within the dmPFC drives the release of glutamate in the vCA1, which was blocked by injecting MG149 (a TIP60 inhibitor) into dmPFC. To further determine whether TIP60 was involved in glutamate release and eventually results in hypertension, MG149 was also injected i.p. alongside CRS modeling. The increased glutamate release, NR2B, and IL-18 expressions as well as the CRS-induced hypertension was therefore reversed by chronic application with MG149. Altogether, these results suggest that TIP60 influences the glutamatedmPFC-to-vCA1 release and receptor expressions. This study, therefore, proposes that stressful condition induces increased expression of TIP60 which lead to the transcription of genes that result in conditions that favors glutamate release and receptor expressions hence triggering hypertension.
Collapse
Affiliation(s)
- Ying Wang
- Department of Cardiology, the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, Liaoning, China
| | - Min Xia
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
- Department of Anesthesiology, General Hospital of The Yang Tze River Shipping, Wuhan Brain Hospital, Wuhan, China
| | - Jincheng Lu
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Tianyu Wang
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Xuan Zhang
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Michael Ntim
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bin Wang
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|