1
|
Sundermann B, Pfleiderer B, McLeod A, Mathys C. Seeing more than the Tip of the Iceberg: Approaches to Subthreshold Effects in Functional Magnetic Resonance Imaging of the Brain. Clin Neuroradiol 2024; 34:531-539. [PMID: 38842737 PMCID: PMC11339104 DOI: 10.1007/s00062-024-01422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/05/2024] [Indexed: 06/07/2024]
Abstract
Many functional magnetic resonance imaging (fMRI) studies and presurgical mapping applications rely on mass-univariate inference with subsequent multiple comparison correction. Statistical results are frequently visualized as thresholded statistical maps. This approach has inherent limitations including the risk of drawing overly-selective conclusions based only on selective results passing such thresholds. This article gives an overview of both established and newly emerging scientific approaches to supplement such conventional analyses by incorporating information about subthreshold effects with the aim to improve interpretation of findings or leverage a wider array of information. Topics covered include neuroimaging data visualization, p-value histogram analysis and the related Higher Criticism approach for detecting rare and weak effects. Further examples from multivariate analyses and dedicated Bayesian approaches are provided.
Collapse
Affiliation(s)
- Benedikt Sundermann
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Universitätsmedizin Oldenburg, Steinweg 13-17, 26122, Oldenburg, Germany.
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
- Clinic of Radiology, Medical Faculty, University of Münster, Münster, Germany.
| | - Bettina Pfleiderer
- Clinic of Radiology, Medical Faculty, University of Münster, Münster, Germany
| | - Anke McLeod
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Universitätsmedizin Oldenburg, Steinweg 13-17, 26122, Oldenburg, Germany
| | - Christian Mathys
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Universitätsmedizin Oldenburg, Steinweg 13-17, 26122, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
Kan RLD, Zhang BBB, Lin TTZ, Tang AHP, Xia AWL, Qin PPI, Jin M, Fong KNK, Becker B, Yau SY, Kranz GS. Sex differences in brain excitability revealed by concurrent iTBS/fNIRS. Asian J Psychiatr 2024; 96:104043. [PMID: 38598937 DOI: 10.1016/j.ajp.2024.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/14/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
Sex differences have been claimed an imperative factor in the optimization of psychiatric treatments. Intermittent theta-burst stimulation (iTBS), a patterned form of repetitive transcranial magnetic stimulation, is a promising non-invasive treatment option. Here, we investigated whether the real-time neural response to iTBS differs between men and women, and which mechanisms may mediate these differences. To this end, we capitalized on a concurrent iTBS/functional near-infrared spectroscopy setup over the left dorsolateral prefrontal cortex, a common clinical target, to test our assumptions. In a series of experiments, we show (1) a biological sex difference in absolute hemoglobin concentrations in the left dorsolateral prefrontal cortex in healthy participants; (2) that this sex difference is amplified by iTBS but not by cognitive tasks; and (3) that the sex difference amplified by iTBS is modulated by stimulation intensity. These results inform future stimulation treatment optimizations towards precision psychiatry.
Collapse
Affiliation(s)
- Rebecca L D Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Bella B B Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Tim T Z Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Alvin H P Tang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Adam W L Xia
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Penny P I Qin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Minxia Jin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, Department of Psychology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Sundermann B, Feldmann R, Mathys C, Rau JMH, Garde S, Braje A, Weglage J, Pfleiderer B. Functional connectivity of cognition-related brain networks in adults with fetal alcohol syndrome. BMC Med 2023; 21:496. [PMID: 38093292 PMCID: PMC10720228 DOI: 10.1186/s12916-023-03208-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Fetal alcohol syndrome (FAS) can result in cognitive dysfunction. Cognitive functions affected are subserved by few functional brain networks. Functional connectivity (FC) in these networks can be assessed with resting-state functional MRI (rs-fMRI). Alterations of FC have been reported in children and adolescents prenatally exposed to alcohol. Previous reports varied substantially regarding the exact nature of findings. The purpose of this study was to assess FC of cognition-related networks in young adults with FAS. METHODS Cross-sectional rs-fMRI study in participants with FAS (n = 39, age: 20.9 ± 3.4 years) and healthy participants without prenatal alcohol exposure (n = 44, age: 22.2 ± 3.4 years). FC was calculated as correlation between cortical regions in ten cognition-related sub-networks. Subsequent modelling of overall FC was based on linear models comparing FC between FAS and controls. Results were subjected to a hierarchical statistical testing approach, first determining whether there is any alteration of FC in FAS in the full cognitive connectome, subsequently resolving these findings to the level of either FC within each network or between networks based on the Higher Criticism (HC) approach for detecting rare and weak effects in high-dimensional data. Finally, group differences in single connections were assessed using conventional multiple-comparison correction. In an additional exploratory analysis, dynamic FC states were assessed. RESULTS Comparing FAS participants with controls, we observed altered FC of cognition-related brain regions globally, within 7 out of 10 networks, and between networks employing the HC statistic. This was most obvious in attention-related network components. Findings also spanned across subcomponents of the fronto-parietal control and default mode networks. None of the single FC alterations within these networks yielded statistical significance in the conventional high-resolution analysis. The exploratory time-resolved FC analysis did not show significant group differences of dynamic FC states. CONCLUSIONS FC in cognition-related networks was altered in adults with FAS. Effects were widely distributed across networks, potentially reflecting the diversity of cognitive deficits in FAS. However, no altered single connections could be determined in the most detailed analysis level. Findings were pronounced in networks in line with attentional deficits previously reported.
Collapse
Affiliation(s)
- Benedikt Sundermann
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Universitätsmedizin Oldenburg, Oldenburg, Germany
- Clinic of Radiology, Medical Faculty, University of Münster, Albert- Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Reinhold Feldmann
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Christian Mathys
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Universitätsmedizin Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Johanna M H Rau
- Clinic of Radiology, Medical Faculty, University of Münster, Albert- Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stefan Garde
- Clinic of Radiology, Medical Faculty, University of Münster, Albert- Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Anna Braje
- Clinic of Radiology, Medical Faculty, University of Münster, Albert- Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Josef Weglage
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Bettina Pfleiderer
- Clinic of Radiology, Medical Faculty, University of Münster, Albert- Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| |
Collapse
|