1
|
Bourne N, Keith CA, Miller AL, Pyles RB, Milligan GN. Impact of CD4 + T lymphocytes on the cellular and molecular milieu of the vaginal mucosa following HSV-2 challenge of immune guinea pigs. Virology 2023; 588:109907. [PMID: 39492229 DOI: 10.1016/j.virol.2023.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2024]
Abstract
CD4+ and CD8+ tissue resident memory cells (TRM) express many shared anti-viral activities upon re-exposure to virus. CD4+ T cells were depleted from HSV-immune guinea pigs to identify CD4-dependent functions in the vaginal mucosa following HSV-2 challenge. The incidence of animals shedding HSV-2 fell rapidly after challenge in control animals but remained significantly higher through day four post infection in CD4-depleted animals. Genes encoding CD14, IFN-γ, CCL2, and CCL5 were up-regulated in the vaginal mucosa of both groups following challenge. However, significantly higher expression of CD107b, IL-15, and TLR9 but lower expression of CD20, IL-21, and CCL5 was detected in CD4-depleted- compared to control-treated animals. Further, antigen stimulation of CD4+ TRM increased the expression of IFN-γ, IL-2, IL-21, IL-17A, and CCL5. The impact of these gene expression patterns on the recruitment and maintenance of the cellular milieu of the vaginal mucosa upon virus challenge is discussed.
Collapse
Affiliation(s)
- Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA.
| | - Celeste A Keith
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | - Aaron L Miller
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | - Richard B Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | - Gregg N Milligan
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA.
| |
Collapse
|
2
|
Co-expression of a PD-L1-specific chimeric switch receptor augments the efficacy and persistence of CAR T cells via the CD70-CD27 axis. Nat Commun 2022; 13:6051. [PMID: 36229619 PMCID: PMC9561169 DOI: 10.1038/s41467-022-33793-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Co-expression of chimeric switch receptors (CSRs) specific for PD-L1 improves the antitumor effects of chimeric antigen receptor (CAR) T cells. However, the effects of trans-recognition between CSRs and PD-L1 expressed by activated CAR T cells remain unclear. Here, we design a CSR specific for PD-L1 (CARP), containing the transmembrane and cytoplasmic signaling domains of CD28 but not the CD3 ζ chain. We show that CARP T cells enhance the antitumor activity of anti-mesothelin CAR (CARMz) T cells in vitro and in vivo. In addition, confocal microscopy indicates that PD-L1 molecules on CARMz T cells accumulate at cell-cell contacts with CARP T cells. Using single-cell RNA-sequencing analysis, we reveal that CARP T cells promote CARMz T cells differentiation into central memory-like T cells, upregulate genes related to Th1 cells, and downregulate Th2-associated cytokines through the CD70-CD27 axis. Moreover, these effects are not restricted to PD-L1, as CAR19 T cells expressing anti-CD19 CSR exhibit similar effects on anti-PSCA CAR T cells with truncated CD19 expression. These findings suggest that target trans-recognition by CSRs on CAR T cells may improve the efficacy and persistence of CAR T cells via the CD70-CD27 axis.
Collapse
|
3
|
Kulmann-Leal B, Ellwanger JH, Chies JAB. CCR5Δ32 in Brazil: Impacts of a European Genetic Variant on a Highly Admixed Population. Front Immunol 2021; 12:758358. [PMID: 34956188 PMCID: PMC8703165 DOI: 10.3389/fimmu.2021.758358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/23/2021] [Indexed: 01/10/2023] Open
Abstract
The genetic background of Brazilians encompasses Amerindian, African, and European components as a result of the colonization of an already Amerindian inhabited region by Europeans, associated to a massive influx of Africans. Other migratory flows introduced into the Brazilian population genetic components from Asia and the Middle East. Currently, Brazil has a highly admixed population and, therefore, the study of genetic factors in the context of health or disease in Brazil is a challenging and remarkably interesting subject. This phenomenon is exemplified by the genetic variant CCR5Δ32, a 32 base-pair deletion in the CCR5 gene. CCR5Δ32 originated in Europe, but the time of origin as well as the selective pressures that allowed the maintenance of this variant and the establishment of its current frequencies in the different human populations is still a field of debates. Due to its origin, the CCR5Δ32 allele frequency is high in European-derived populations (~10%) and low in Asian and African native human populations. In Brazil, the CCR5Δ32 allele frequency is intermediate (4-6%) and varies on the Brazilian States, depending on the migratory history of each region. CCR5 is a protein that regulates the activity of several immune cells, also acting as the main HIV-1 co-receptor. The CCR5 expression is influenced by CCR5Δ32 genotypes. No CCR5 expression is observed in CCR5Δ32 homozygous individuals. Thus, the CCR5Δ32 has particular effects on different diseases. At the population level, the effect that CCR5Δ32 has on European populations may be different than that observed in highly admixed populations. Besides less evident due to its low frequency in admixed groups, the effect of the CCR5Δ32 variant may be affected by other genetic traits. Understanding the effects of CCR5Δ32 on Brazilians is essential to predict the potential use of pharmacological CCR5 modulators in Brazil. Therefore, this study reviews the impacts of the CCR5Δ32 on the Brazilian population, considering infectious diseases, inflammatory conditions, and cancer. Finally, this article provides a general discussion concerning the impacts of a European-derived variant, the CCR5Δ32, on a highly admixed population.
Collapse
Affiliation(s)
| | | | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
4
|
Kiyono H, Yuki Y, Nakahashi-Ouchida R, Fujihashi K. Mucosal vaccines: wisdom from now and then. Int Immunol 2021; 33:767-774. [PMID: 34436595 PMCID: PMC8633596 DOI: 10.1093/intimm/dxab056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
The oral and nasal cavities are covered by the mucosal epithelium that starts at the beginning of the aero-digestive tract. These mucosal surfaces are continuously exposed to environmental antigens including pathogens and allergens and are thus equipped with a mucosal immune system that mediates initial recognition of pathogenicity and initiates pathogen-specific immune responses. At the dawn of our scientific effort to explore the mucosal immune system, dental science was one of the major driving forces as it provided insights into the importance of mucosal immunity and its application for the control of oral infectious diseases. The development of mucosal vaccines for the prevention of dental caries was thus part of a novel approach that contributed to building the scientific foundations of the mucosal immune system. Since then, mucosal immunology and vaccines have gone on a scientific journey to become one of the major entities within the discipline of immunology. Here, we introduce our past and current efforts and future directions for the development of mucosal vaccines, specifically a rice-based oral vaccine (MucoRice) and a nanogel-based nasal vaccine, with the aim of preventing and controlling gastrointestinal and respiratory infectious diseases using the interdisciplinary fusion of mucosal immunology with agricultural science and biomaterial engineering, respectively.
Collapse
Affiliation(s)
- Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Medicine, School of Medicine and CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, University of California, San Diego, San Diego, CA, USA
| | - Yoshikazu Yuki
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Rika Nakahashi-Ouchida
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kohtaro Fujihashi
- Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Kataoka K, Kawabata S, Koyanagi K, Hashimoto Y, Miyake T, Fujihashi K. Respiratory FimA-Specific Secretory IgA Antibodies Upregulated by DC-Targeting Nasal Double DNA Adjuvant Are Essential for Elimination of Porphyromonas gingivalis. Front Immunol 2021; 12:634923. [PMID: 33717178 PMCID: PMC7948520 DOI: 10.3389/fimmu.2021.634923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Our previous studies showed that a combination of a DNA plasmid encoding Flt3 ligand (pFL) and CpG oligodeoxynucleotides 1826 (CpG ODN) (FL/CpG) as a nasal adjuvant provoked antigen-specific immune responses. In this study, we investigated the efficacy of a nasal vaccine consisting of FimA as the structural subunit of Porphyromonas gingivalis (P. gingivalis) fimbriae and FL/CpG for the induction of FimA-specific antibody (Ab) responses and their protective roles against nasal and lung infection by P. gingivalis, a keystone pathogen in the etiology of periodontal disease. C57BL/6 mice were nasally immunized with recombinant FimA (rFimA) plus FL/CpG three times at weekly intervals. As a control, mice were given nasal rFimA alone. Nasal washes (NWs) and bronchoalveolar lavage fluid (BALF) of mice given nasal rFimA plus FL/CpG resulted in increased levels of rFimA-specific secretory IgA (SIgA) and IgG Ab responses when compared with those in controls. Significantly increased numbers of CD8- or CD11b-expressing mature-type dendritic cells (DCs) were detected in the respiratory inductive and effector tissues of mice given rFimA plus FL/CpG. Additionally, significantly upregulated Th1/Th2-type cytokine responses by rFimA-stimulated CD4+ T cells were noted in the respiratory effector tissues. When mice were challenged with live P. gingivalis via the nasal route, mice immunized nasally with rFimA plus FL/CpG inhibited P. gingivalis colonization in the nasal cavities and lungs. In contrast, controls failed to show protection. Of interest, when IgA-deficient mice given nasal rFimA plus FL/CpG were challenged with nasal P. gingivalis, the inhibition of bacterial colonization in the respiratory tracts was not seen. Taken together, these results show that nasal FL/CpG effectively enhanced DCs and provided balanced Th1- and Th2-type cytokine response-mediated rFimA-specific IgA protective immunity in the respiratory tract against P. gingivalis. A nasal administration with rFimA and FL/CpG could be a candidate for potent mucosal vaccines for the elimination of inhaled P. gingivalis in periodontal patients.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Antibodies, Bacterial/metabolism
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Bacteroidaceae Infections/immunology
- Bacteroidaceae Infections/microbiology
- Bacteroidaceae Infections/prevention & control
- Disease Models, Animal
- Female
- Fimbriae Proteins/administration & dosage
- Fimbriae Proteins/genetics
- Fimbriae Proteins/immunology
- Immunity, Mucosal/drug effects
- Immunization Schedule
- Immunogenicity, Vaccine
- Immunoglobulin A, Secretory/metabolism
- Membrane Proteins/administration & dosage
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice, Inbred C57BL
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/immunology
- Porphyromonas gingivalis/immunology
- Porphyromonas gingivalis/pathogenicity
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Respiratory System/drug effects
- Respiratory System/immunology
- Respiratory System/metabolism
- Respiratory System/microbiology
- Time Factors
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Mice
Collapse
Affiliation(s)
- Kosuke Kataoka
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Osaka Dental University, Hirakata, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Kayo Koyanagi
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Osaka Dental University, Hirakata, Japan
| | - Yoshiya Hashimoto
- Department of Biomaterials, Faculty of Dentistry, Osaka Dental University, Hirakata, Japan
| | - Tatsuro Miyake
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Osaka Dental University, Hirakata, Japan
| | - Kohtaro Fujihashi
- Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pediatric Dentistry, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Chen T, Zheng M, Li Y, Liu S, He L. The role of CCR5 in the protective effect of Esculin on lipopolysaccharide-induced depressive symptom in mice. J Affect Disord 2020; 277:755-764. [PMID: 33065814 DOI: 10.1016/j.jad.2020.08.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/18/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The purpose of this study was to evaluate whether Esculin could improve the depressive symptom induced by LPS in mice and explore the role of CCR5 in its potential mechanism. METHODS Mice were stimulated with LPS to establish depression model and treated with Esculin. The emotional alteration was assessed via behavior tests. The ELISA assay and western blot analysis were applied to detect the expressions of inflammatory cytokines and correlative proteins. RESULTS As a result, Esculin played a protective role in LPS-induced depressive dysfunction, which was possible through the reduction of M1 microglia, and elevation of M2 microglia by inhibiting TLR4/NF-κB signaling pathway regulated by CCR5. Besides, Esculin led to up-regulation of the CREB/BDNF neuroprotective pathway, and suppression of inflammatory cytokines both in the central and peripheral system. BV2 cells were stimulated with LPS to further elucidate the accordant mechanism in vitro. Molecular docking results suggested that Esc bound to CCR5 at amino acid residues TYR187 and THR105 through hydrogen-bonding. LIMITATIONS Transgenic animals might be useful for the further investigation. CONCLUSIONS From the overall results, we concluded that Esculin might exert a beneficial effect on LPS-induced depression in mice and represent an effective treatment for depression.
Collapse
Affiliation(s)
- Tong Chen
- Department of Pharmacology, China Pharmaceutical University, Longmian Avenue, Nanjing 211198, China.
| | - Menglin Zheng
- Department of Pharmacology, China Pharmaceutical University, Longmian Avenue, Nanjing 211198, China
| | - Yixuan Li
- Department of Pharmacology, China Pharmaceutical University, Longmian Avenue, Nanjing 211198, China
| | - Shengnan Liu
- Department of Pharmacology, China Pharmaceutical University, Longmian Avenue, Nanjing 211198, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|