1
|
Kim J, Choi C. Orphan GPCRs in Neurodegenerative Disorders: Integrating Structural Biology and Drug Discovery Approaches. Curr Issues Mol Biol 2024; 46:11646-11664. [PMID: 39451571 PMCID: PMC11505999 DOI: 10.3390/cimb46100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Neurodegenerative disorders, particularly Alzheimer's and Parkinson's diseases, continue to challenge modern medicine despite therapeutic advances. Orphan G-protein-coupled receptors (GPCRs) have emerged as promising targets in the central nervous system, offering new avenues for drug development. This review focuses on the structural biology of orphan GPCRs implicated in these disorders, providing a comprehensive analysis of their molecular architecture and functional mechanisms. We examine recent breakthroughs in structural determination techniques, such as cryo-electron microscopy and X-ray crystallography, which have elucidated the intricate conformations of these receptors. The review highlights how structural insights inform our understanding of orphan GPCR activation, ligand binding and signaling pathways. By integrating structural data with molecular pharmacology, we explore the potential of structure-guided approaches in developing targeted therapeutics toward orphan GPCRs. This structural-biology-centered perspective aims to deepen our comprehension of orphan GPCRs and guide future drug discovery efforts in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | | |
Collapse
|
2
|
Anversa RG, Maddern XJ, Lawrence AJ, Walker LC. Orphan peptide and G protein-coupled receptor signalling in alcohol use disorder. Br J Pharmacol 2024; 181:595-609. [PMID: 38073127 PMCID: PMC10953447 DOI: 10.1111/bph.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Neuropeptides and G protein-coupled receptors (GPCRs) have long been, and continue to be, one of the most popular target classes for drug discovery in CNS disorders, including alcohol use disorder (AUD). Yet, orphaned neuropeptide systems and receptors (oGPCR), which have no known cognate receptor or ligand, remain understudied in drug discovery and development. Orphan neuropeptides and oGPCRs are abundantly expressed within the brain and represent an unprecedented opportunity to address brain function and may hold potential as novel treatments for disease. Here, we describe the current literature regarding orphaned neuropeptides and oGPCRs implicated in AUD. Specifically, in this review, we focus on the orphaned neuropeptide cocaine- and amphetamine-regulated transcript (CART), and several oGPCRs that have been directly implicated in AUD (GPR6, GPR26, GPR88, GPR139, GPR158) and discuss their potential and pitfalls as novel treatments, and progress in identifying their cognate receptors or ligands.
Collapse
Affiliation(s)
- Roberta Goncalves Anversa
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Xavier J. Maddern
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Leigh C. Walker
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
3
|
Zhang Y, Zhou Y, Zhou Y, Yu X, Shen X, Hong Y, Zhang Y, Wang S, Mou M, Zhang J, Tao L, Gao J, Qiu Y, Chen Y, Zhu F. TheMarker: a comprehensive database of therapeutic biomarkers. Nucleic Acids Res 2024; 52:D1450-D1464. [PMID: 37850638 PMCID: PMC10767989 DOI: 10.1093/nar/gkad862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
Distinct from the traditional diagnostic/prognostic biomarker (adopted as the indicator of disease state/process), the therapeutic biomarker (ThMAR) has emerged to be very crucial in the clinical development and clinical practice of all therapies. There are five types of ThMAR that have been found to play indispensable roles in various stages of drug discovery, such as: Pharmacodynamic Biomarker essential for guaranteeing the pharmacological effects of a therapy, Safety Biomarker critical for assessing the extent or likelihood of therapy-induced toxicity, Monitoring Biomarker indispensable for guiding clinical management by serially measuring patients' status, Predictive Biomarker crucial for maximizing the clinical outcome of a therapy for specific individuals, and Surrogate Endpoint fundamental for accelerating the approval of a therapy. However, these data of ThMARs has not been comprehensively described by any of the existing databases. Herein, a database, named 'TheMarker', was therefore constructed to (a) systematically offer all five types of ThMAR used at different stages of drug development, (b) comprehensively describe ThMAR information for the largest number of drugs among available databases, (c) extensively cover the widest disease classes by not just focusing on anticancer therapies. These data in TheMarker are expected to have great implication and significant impact on drug discovery and clinical practice, and it is freely accessible without any login requirement at: https://idrblab.org/themarker.
Collapse
Affiliation(s)
- Yintao Zhang
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Diagnosis and Treatment of Severe Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuan Zhou
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyuan Yu
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Shen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Yanfeng Hong
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuxin Zhang
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Zhang
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunqing Qiu
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Diagnosis and Treatment of Severe Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
4
|
Mao J, Cui Y, Wang H, Duan W, Liu ZJ, Hua T, Zhou N, Cheng J. Design and Synthesis of Novel GPR139 Agonists with Therapeutic Effects in Mouse Models of Social Interaction and Cognitive Impairment. J Med Chem 2023; 66:14011-14028. [PMID: 37830160 DOI: 10.1021/acs.jmedchem.3c01034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The GPR139 receptor is an orphan G-protein-coupled receptor (GPCR) mainly found in the central nervous system and is a potential therapeutic target for the treatment of schizophrenia and drug addiction. Guided by the reported structure of GPR139, we conducted medicinal chemistry optimizations of TAK-041, the GPR139 agonist in clinical trials. New compounds with three different core structures were designed and synthesized, and their activity at GPR139 was evaluated. Among them, compounds 15a (EC50 = 31.4 nM) and 20a (EC50 = 24.7 nM) showed potent agonist activity at GPR139 and good pharmacokinetic properties. In murine schizophrenia models, both compounds rescued the social interaction deficits observed in BALB/c mice. Compound 20a also alleviated cognitive deficits in mice with a pharmacologically induced model of schizophrenia. These findings further demonstrated the potential of GPR139 agonists in alleviating the negative symptoms and cognitive deficits of schizophrenia. Compound 20a is worth further evaluation as an antischizophrenia drug candidate.
Collapse
Affiliation(s)
- Jianhang Mao
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yilong Cui
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Huan Wang
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Wenwen Duan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Ning Zhou
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
5
|
Pallareti L, Rath TF, Trapkov B, Tsonkov T, Nielsen AT, Harpsøe K, Gentry PR, Bräuner-Osborne H, Gloriam DE, Foster SR. Pharmacological characterization of novel small molecule agonists and antagonists for the orphan receptor GPR139. Eur J Pharmacol 2023; 943:175553. [PMID: 36736525 DOI: 10.1016/j.ejphar.2023.175553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
The orphan G protein-coupled receptor GPR139 is predominantly expressed in the central nervous system and has attracted considerable interest as a therapeutic target. However, the biological role of this receptor remains somewhat elusive, in part due to the lack of quality pharmacological tools to investigate GPR139 function. In an effort to understand GPR139 signaling and to identify improved compounds, in this study we performed virtual screening and analog searches, in combination with multiple pharmacological assays. We characterized GPR139-dependent signaling using previously published reference agonists in Ca2+ mobilization and inositol monophosphate accumulation assays, as well as a novel real-time GPR139 internalization assay. For the four reference agonists tested, the rank order of potency was conserved across signaling and internalization assays: JNJ-63533054 > Compound 1a » Takeda > AC4 > DL43, consistent with previously reported values. We noted an increased efficacy of JNJ-63533054-mediated inositol monophosphate signaling and internalization, relative to Compound 1a. We then performed virtual screening for GPR139 agonist and antagonist compounds that were screened and validated in GPR139 functional assays. We identified four GPR139 agonists that were active in all assays, with similar or reduced potency relative to known compounds. Likewise, compound analogs selected based on GPR139 agonist and antagonist substructure searches behaved similarly to their parent compounds. Thus, we have characterized GPR139 signaling for multiple new ligands using G protein-dependent assays and a new real-time internalization assay. These data add to the GPR139 tool compound repertoire, which could be optimized in future medical chemistry campaigns.
Collapse
Affiliation(s)
- Lisa Pallareti
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tine F Rath
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Boris Trapkov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tsonko Tsonkov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Thorup Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Patrick R Gentry
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Simon R Foster
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Monash Biomedicine Discovery Institute, Cardiovascular Disease Program, Department of Pharmacology, Monash University, Clayton, VIC, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Münster A, Sommer S, Kúkeľová D, Sigrist H, Koros E, Deiana S, Klinder K, Baader-Pagler T, Mayer-Wrangowski S, Ferger B, Bretschneider T, Pryce CR, Hauber W, von Heimendahl M. Effects of GPR139 agonism on effort expenditure for food reward in rodent models: Evidence for pro-motivational actions. Neuropharmacology 2022; 213:109078. [PMID: 35561791 DOI: 10.1016/j.neuropharm.2022.109078] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
Abstract
Apathy, deficiency of motivation including willingness to exert effort for reward, is a common symptom in many psychiatric and neurological disorders, including depression and schizophrenia. Despite improved understanding of the neurocircuitry and neurochemistry underlying normal and deficient motivation, there is still no approved pharmacological treatment for such a deficiency. GPR139 is an orphan G protein-coupled receptor expressed in brain regions which contribute to the neural circuitry that controls motivation including effortful responding for reward, typically sweet gustatory reward. The GPR139 agonist TAK-041 is currently under development for treatment of negative symptoms in schizophrenia which include apathy. To date, however, there are no published preclinical data regarding its potential effect on reward motivation or deficiencies thereof. Here we report in vitro evidence confirming that TAK-041 increases intracellular Ca2+ mobilization and has high selectivity for GPR139. In vivo, TAK-041 was brain penetrant and showed a favorable pharmacokinetic profile. It was without effect on extracellular dopamine concentration in the nucleus accumbens. In addition, TAK-041 did not alter the effort exerted to obtain sweet gustatory reward in rats that were moderately food deprived. By contrast, TAK-041 increased the effort exerted to obtain sweet gustatory reward in mice that were only minimally food deprived; furthermore, this effect of TAK-041 occurred both in control mice and in mice in which deficient effortful responding was induced by chronic social stress. Overall, this study provides preclinical evidence in support of GPR139 agonism as a molecular target mechanism for treatment of apathy.
Collapse
Affiliation(s)
- Alexandra Münster
- Systems Neurobiology Research Unit, University of Stuttgart, Stuttgart, Germany
| | - Susanne Sommer
- Systems Neurobiology Research Unit, University of Stuttgart, Stuttgart, Germany
| | - Diana Kúkeľová
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | | | | | | | - Tamara Baader-Pagler
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | | | - Boris Ferger
- CNS Diseases Research, Germany; Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | | | - Christopher R Pryce
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK) and University of Zurich (UZH), Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Wolfgang Hauber
- Systems Neurobiology Research Unit, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|