1
|
Wingfield KK, Misic T, Jain K, McDermott CS, Abney NM, Richardson KT, Rubman MB, Beierle JA, Miracle SA, Sandago EJ, Baskin BM, Lynch WB, Borrelli KN, Yao EJ, Wachman EM, Bryant CD. The ultrasonic vocalization (USV) syllable profile during neonatal opioid withdrawal and a kappa opioid receptor component to increased USV emissions in female mice. Psychopharmacology (Berl) 2025; 242:427-447. [PMID: 39348003 PMCID: PMC11775077 DOI: 10.1007/s00213-024-06694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
RATIONALE Opioid use during pregnancy can lead to negative infant health outcomes, including neonatal opioid withdrawal syndrome (NOWS). NOWS comprises gastrointestinal, autonomic nervous system, and neurological dysfunction that manifest during spontaneous withdrawal. Variability in NOWS severity necessitates a more individualized treatment approach. Ultrasonic vocalizations (USVs) in neonatal mice are emitted in isolation as a stress response and are increased during opioid withdrawal, thus modeling a negative affective state that can be utilized to test new treatments. OBJECTIVES We sought to identify the behavioral and USV profile, brainstem transcriptomic adaptations, and role of kappa opioid receptors in USVs during neonatal opioid withdrawal. METHODS We employed a third trimester-approximate opioid exposure model, where neonatal inbred FVB/NJ pups were injected twice-daily with morphine (10mg/kg, s.c.) or saline (0.9%, 20 ul/g, s.c.) from postnatal day(P) 1 to P14. This protocol induces reduced weight gain, hypothermia, thermal hyperalgesia, and increased USVs during spontaneous morphine withdrawal. RESULTS On P14, there were increased USV emissions and altered USV syllables during withdrawal, including an increase in Complex 3 syllables in FVB/NJ females (but not males). Brainstem bulk mRNA sequencing revealed an upregulation of the kappa opioid receptor (Oprk1), which contributes to withdrawal-induced dysphoria. The kappa opioid receptor (KOR) antagonist, nor-BNI (30 mg/kg, s.c.), significantly reduced USVs in FVB/NJ females, but not males during spontaneous morphine withdrawal. Furthermore, the KOR agonist, U50,488h (0.625 mg/kg, s.c.), was sufficient to increase USVs on P10 (both sexes) and P14 (females only) in FVB/NJ mice. CONCLUSIONS We identified an elevated USV syllable, Complex 3, and a female-specific recruitment of the dynorphin/KOR system in increased USVs associated with neonatal opioid withdrawal severity.
Collapse
MESH Headings
- Animals
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, kappa/genetics
- Female
- Mice
- Vocalization, Animal/drug effects
- Vocalization, Animal/physiology
- Morphine/pharmacology
- Morphine/administration & dosage
- Male
- Animals, Newborn
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/administration & dosage
- Neonatal Abstinence Syndrome/metabolism
- Pregnancy
- Disease Models, Animal
- Brain Stem/metabolism
- Brain Stem/drug effects
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/administration & dosage
- Naltrexone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/administration & dosage
- Narcotic Antagonists/pharmacology
- Narcotic Antagonists/administration & dosage
Collapse
Affiliation(s)
- Kelly K Wingfield
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
- T32 Biomolecular Pharmacology Training Program, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Teodora Misic
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
| | - Kaahini Jain
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
| | - Carly S McDermott
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
| | - Nalia M Abney
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
| | - Kayla T Richardson
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
- Post-Baccalaureate Research Education Program, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Mia B Rubman
- NIH/NIDA Summer Undergraduate Fellowship Program, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jacob A Beierle
- T32 Biomolecular Pharmacology Training Program, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sophia A Miracle
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - Emma J Sandago
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
| | - Britahny M Baskin
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
- T32 Training Program on Development of Medications for Substance Use Disorders Fellowship, Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - William B Lynch
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
- Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - Kristyn N Borrelli
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
- T32 Biomolecular Pharmacology Training Program, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - Emily J Yao
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
| | - Elisha M Wachman
- Department of Pediatrics, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA.
| |
Collapse
|
2
|
Ferrante JR, Blendy JA. Advances in animal models of prenatal opioid exposure. Trends Neurosci 2024; 47:367-382. [PMID: 38614891 PMCID: PMC11096018 DOI: 10.1016/j.tins.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
Neonatal opioid withdrawal syndrome (NOWS) is a growing public health concern. The complexity of in utero opioid exposure in clinical studies makes it difficult to investigate underlying mechanisms that could ultimately inform early diagnosis and treatments. Clinical studies are unable to dissociate the influence of maternal polypharmacy or the environment from direct effects of in utero opioid exposure, highlighting the need for effective animal models. Early animal models of prenatal opioid exposure primarily used the prototypical opioid, morphine, and opioid exposure that was often limited to a narrow period during gestation. In recent years, the number of preclinical studies has grown rapidly. Newer models utilize both prescription and nonprescription opioids and vary the onset and duration of opioid exposure. In this review, we summarize novel prenatal opioid exposure models developed in recent years and attempt to reconcile results between studies while critically identifying gaps within the current literature.
Collapse
Affiliation(s)
- Julia R Ferrante
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Zhang Y, Butelman ER, Kreek MJ. Effect of prenatal and early post-natal oxycodone exposure on the reinforcing and antinociceptive effects of oxycodone in adult C57BL/6 J mice. Psychopharmacology (Berl) 2024; 241:359-377. [PMID: 38086926 DOI: 10.1007/s00213-023-06493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/25/2023] [Indexed: 01/24/2024]
Abstract
Abuse of opioids (mu-opioid agonists such as oxycodone) among parents during the gestation and early post-natal period is a concern for the long-term health of the offspring, beyond potential neonatal withdrawal symptoms. However, there is only limited information on such effects. OBJECTIVES We examined how prenatal, and early-post natal oxycodone exposure affected opioid addiction behaviors. METHODS Adult male and female C57BL/CJ mice housed separately were first injected with ascending doses of oxycodone 1 time/day (1 mg/kg × 10 days, 1.5 mg/kg × 10 days, 2 mg/kg × 10 days, s.c.) whereas control mice were injected with saline. Newly formed parental dyads were then housed together and continued to receive ascending doses of oxycodone (3 mg/kg × 10 days, 4 mg/kg × 10 days, 5 mg/kg × 10 days, 6 mg/kg × 10 days or saline, s.c.) or saline during mating and gestation until the birth of the litter. The dams continued to receive oxycodone or saline through lactation, until F1 offspring were weaned. Upon reaching adulthood (12 weeks of age), male and female F1 offspring were examined in intravenous self-administration (IVSA) of oxycodone, on oxycodone-induced conditioned place preference (CPP) and oxycodone-induced antinociception. RESULTS Adult F1 male and female offspring of parental dyads exposed to oxycodone self-administered more oxycodone, compared to offspring of control parental dyads. Ventral and dorsal striatal mRNA levels of genes such as Fkbp5 and Oprm1 were altered following oxycodone self-administration. CONCLUSION Prenatal and early post-natal oxycodone exposure enhanced oxycodone self-administration during adulthood in the C57BL/6 J mice.
Collapse
Affiliation(s)
- Yong Zhang
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, Box 171, New York, NY, 10065, USA.
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, Box 171, New York, NY, 10065, USA
- Neuropsychoimaging of Addictions and Related Conditions Research Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, Box 171, New York, NY, 10065, USA
| |
Collapse
|
4
|
Abstract
This paper is the forty-fifth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2022 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
5
|
von Arx AS, Dawson K, Lin HY, Mattei D, Notter T, Meyer U, Schalbetter SM. Prefrontal microglia deficiency during adolescence disrupts adult cognitive functions and synaptic structures: A follow-up study in female mice. Brain Behav Immun 2023; 111:230-246. [PMID: 37100210 DOI: 10.1016/j.bbi.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/30/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023] Open
Abstract
The prefrontal cortex (PFC) provides executive top-down control of a variety of cognitive processes. A distinctive feature of the PFC is its protracted structural and functional maturation throughout adolescence to early adulthood, which is necessary for acquiring mature cognitive abilities. Using a mouse model of cell-specific, transient and local depletion of microglia, which is based on intracerebral injection of clodronate disodium salt (CDS) into the PFC of adolescent male mice, we recently demonstrated that microglia contribute to the functional and structural maturation of the PFC in males. Because microglia biology and cortical maturation are partly sexually dimorphic, the main objective of the present study was to examine whether microglia similarly regulate this maturational process in female mice as well. Here, we show that a single, bilateral intra-PFC injection of CDS in adolescent (6-week-old) female mice induces a local and transient depletion (70 to 80% decrease from controls) of prefrontal microglia during a restricted window of adolescence without affecting neuronal or astrocytic cell populations. This transient microglia deficiency was sufficient to disrupt PFC-associated cognitive functions and synaptic structures at adult age. Inducing transient prefrontal microglia depletion in adult female mice did not cause these deficits, demonstrating that the adult PFC, unlike the adolescent PFC, is resilient to transient microglia deficiency in terms of lasting cognitive and synaptic maladaptations. Together with our previous findings in males, the present findings suggest that microglia contribute to the maturation of the female PFC in a similar way as to the prefrontal maturation occurring in males.
Collapse
Affiliation(s)
- Anina S von Arx
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse, University of Zurich, Zurich, Switzerland
| | - Kara Dawson
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse, University of Zurich, Zurich, Switzerland
| | - Han-Yu Lin
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse, University of Zurich, Zurich, Switzerland
| | - Daniele Mattei
- MSSM Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tina Notter
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Sina M Schalbetter
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Towriss M, MacVicar B, Ciernia AV. Modelling Microglial Innate Immune Memory In Vitro: Understanding the Role of Aerobic Glycolysis in Innate Immune Memory. Int J Mol Sci 2023; 24:8967. [PMID: 37240311 PMCID: PMC10219556 DOI: 10.3390/ijms24108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Microglia, the resident macrophages of the central nervous system, play important roles in maintaining brain homeostasis and facilitating the brain's innate immune responses. Following immune challenges microglia also retain immune memories, which can alter responses to secondary inflammatory challenges. Microglia have two main memory states, training and tolerance, which are associated with increased and attenuated expression of inflammatory cytokines, respectively. However, the mechanisms differentiating these two distinct states are not well understood. We investigated mechanisms underlying training versus tolerance memory paradigms in vitro in BV2 cells using B-cell-activating factor (BAFF) or bacterial lipopolysaccharide (LPS) as a priming stimulus followed by LPS as a second stimulus. BAFF followed by LPS showed enhanced responses indicative of priming, whereas LPS followed by LPS as the second stimulus caused reduced responses suggestive of tolerance. The main difference between the BAFF versus the LPS stimulus was the induction of aerobic glycolysis by LPS. Inhibiting aerobic glycolysis during the priming stimulus using sodium oxamate prevented the establishment of the tolerized memory state. In addition, tolerized microglia were unable to induce aerobic glycolysis upon LPS restimulus. Therefore, we conclude that aerobic glycolysis triggered by the first LPS stimulus was a critical step in the induction of innate immune tolerance.
Collapse
Affiliation(s)
- Morgan Towriss
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Brian MacVicar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Annie Vogel Ciernia
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
7
|
Simmons SC, Grecco GG, Atwood BK, Nugent FS. Effects of prenatal opioid exposure on synaptic adaptations and behaviors across development. Neuropharmacology 2023; 222:109312. [PMID: 36334764 PMCID: PMC10314127 DOI: 10.1016/j.neuropharm.2022.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
In this review, we focus on prenatal opioid exposure (POE) given the significant concern for the mental health outcomes of children with parents affected by opioid use disorder (OUD) in the view of the current opioid crisis. We highlight some of the less explored interactions between developmental age and sex on synaptic plasticity and associated behavioral outcomes in preclinical POE research. We begin with an overview of the rich literature on hippocampal related behaviors and plasticity across POE exposure paradigms. We then discuss recent work on reward circuit dysregulation following POE. Additional risk factors such as early life stress (ELS) could further influence synaptic and behavioral outcomes of POE. Therefore, we include an overview on the use of preclinical ELS models where ELS exposure during key critical developmental periods confers considerable vulnerability to addiction and stress psychopathology. Here, we hope to highlight the similarity between POE and ELS on development and maintenance of opioid-induced plasticity and altered opioid-related behaviors where similar enduring plasticity in reward circuits may occur. We conclude the review with some of the limitations that should be considered in future investigations. This article is part of the Special Issue on 'Opioid-induced addiction'.
Collapse
Affiliation(s)
- Sarah C Simmons
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Greg G Grecco
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fereshteh S Nugent
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
8
|
Perinatal Morphine Exposure Leads to Sex-Dependent Executive Function Deficits and Microglial Changes in Mice. eNeuro 2022; 9:ENEURO.0238-22.2022. [PMID: 36216505 PMCID: PMC9581576 DOI: 10.1523/eneuro.0238-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 01/13/2023] Open
Abstract
Children exposed prenatally to opioids are at an increased risk for behavioral problems and executive function deficits. The prefrontal cortex (PFC) and amygdala (AMG) regulate executive function and social behavior and are sensitive to opioids prenatally. Opioids can bind to toll-like receptor 4 (TLR4) to activate microglia, which may be developmentally important for synaptic pruning. Therefore, we tested the effects of perinatal morphine exposure on executive function and social behavior in male and female mouse offspring, along with microglial-related and synaptic-related outcomes. Dams were injected once daily subcutaneously with saline (n = 8) or morphine (MO; 10 mg/kg; n = 12) throughout pregestation, gestation, and lactation until offspring were weaned on postnatal day 21 (P21). Male MO offspring had impairments in attention and accuracy in the five-choice serial reaction time task, while female MO offspring were less affected. Targeted gene expression analysis at P21 in the PFC identified alterations in microglial-related and TLR4-related genes, while immunohistochemical analysis in adult brains indicated decreased microglial Iba1 and phagocytic CD68 proteins in the PFC and AMG in males, but females had an increase. Further, both male and female MO offspring had increased social preference. Overall, these data demonstrate male vulnerability to executive function deficits in response to perinatal opioid exposure and evidence for disruptions in neuron-microglial signaling.
Collapse
|
9
|
Grecco GG, Shahid SS, Atwood BK, Wu YC. Alterations of brain microstructures in a mouse model of prenatal opioid exposure detected by diffusion MRI. Sci Rep 2022; 12:17085. [PMID: 36224335 PMCID: PMC9556691 DOI: 10.1038/s41598-022-21416-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/27/2022] [Indexed: 01/04/2023] Open
Abstract
Growing opioid use among pregnant women is fueling a crisis of infants born with prenatal opioid exposure. A large body of research has been devoted to studying the management of opioid withdrawal during the neonatal period in these infants, but less substantive work has explored the long-term impact of prenatal opioid exposure on neurodevelopment. Using a translationally relevant mouse model of prenatal methadone exposure (PME), the aim of the study is to investigate the cerebral microstructural differences between the mice with PME and prenatal saline exposure (PSE). The brains of eight-week-old male offspring with either PME (n = 15) or PSE (n = 15) were imaged using high resolution in-vivo diffusion magnetic resonance imaging on a 9.4 Tesla small animal scanner. Brain microstructure was characterized using diffusion tensor imaging (DTI) and Bingham neurite orientation dispersion and density imaging (Bingham-NODDI). Voxel-based analysis (VBA) was performed using the calculated microstructural parametric maps. The VBA showed significant (p < 0.05) bilateral alterations in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), orientation dispersion index (ODI) and dispersion anisotropy index (DAI) across several cortical and subcortical regions, compared to PSE. Particularly, in PME offspring, FA, MD and AD were significantly higher in the hippocampus, dorsal amygdala, thalamus, septal nuclei, dorsal striatum and nucleus accumbens. These DTI-based results suggest widespread bilateral microstructural alterations across cortical and subcortical regions in PME offspring. Consistent with the observations in DTI, Bingham-NODDI derived ODI exhibited significant reduction in PME offspring within the hippocampus, dorsal striatum and cortex. NODDI-based results further suggest reduction in dendritic arborization in PME offspring across multiple cortical and subcortical regions. To our best knowledge, this is the first study of prenatal opioid exposure to examine microstructural organization in vivo. Our findings demonstrate perturbed microstructural complexity in cortical and subcortical regions persisting into early adulthood which could interfere with critical neurodevelopmental processes in individuals with prenatal opioid exposure.
Collapse
Affiliation(s)
- Gregory G Grecco
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University School of Medicine, Medical Scientist Training Program, Indianapolis, IN, 46202, USA
| | - Syed Salman Shahid
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16th Street, Suite 4100, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 West 16th Street, Suite 4100, Indianapolis, IN, 46202, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
10
|
Sullivan O, Ciernia AV. Work hard, play hard: how sexually differentiated microglia work to shape social play and reproductive behavior. Front Behav Neurosci 2022; 16:989011. [PMID: 36172465 PMCID: PMC9510374 DOI: 10.3389/fnbeh.2022.989011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Microglia are brain-resident immune cells that play a critical role in synaptic pruning and circuit fine-tuning during development. In the adult brain, microglia actively survey their local environment and mobilize inflammatory responses to signs of damage or infection. Sex differences in microglial gene expression and function across the lifespan have been identified, which play a key role in shaping brain function and behavior. The levels of sex hormones such as androgens, estrogens, and progesterone vary in an age-dependent and sex-dependent manner. Microglia respond both directly and indirectly to changes in hormone levels, altering transcriptional gene expression, morphology, and function. Of particular interest is the microglial function in brain regions that are highly sexually differentiated in development such as the amygdala as well as the pre-optic and ventromedial hypothalamic regions. With a focus on hormone-sensitive developmental windows, this review compares male and female microglia in the embryonic, developing, and adult brain with a particular interest in the influence of sex hormones on microglial wiring of social, reproductive, and disordered behavior circuits in the brain.
Collapse
Affiliation(s)
- Olivia Sullivan
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Annie Vogel Ciernia
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|