1
|
Tomimatsu N, Di Cristofaro LFM, Kanji S, Samentar L, Jordan BR, Kittler R, Habib AA, Espindola-Netto JM, Tchkonia T, Kirkland JL, Burns TC, Sarkaria JN, Gilbert A, Floyd JR, Hromas R, Zhao W, Zhou D, Sung P, Mukherjee B, Burma S. Targeting cIAP2 in a novel senolytic strategy prevents glioblastoma recurrence after radiotherapy. EMBO Mol Med 2025; 17:645-678. [PMID: 39972068 PMCID: PMC11982261 DOI: 10.1038/s44321-025-00201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
Glioblastomas (GBM) are routinely treated with high doses of ionizing radiation (IR), yet these tumors recur quickly, and the recurrent tumors are highly therapy resistant. Here, we report that IR-induced senescence of tumor cells counterintuitively spurs GBM recurrence, driven by the senescence-associated secretory phenotype (SASP). We find that irradiated GBM cell lines and patient derived xenograft (PDX) cultures senesce rapidly in a p21-dependent manner. Senescent glioma cells upregulate SASP genes and secrete a panoply of SASP factors, prominently interleukin IL-6, an activator of the JAK-STAT3 pathway. These SASP factors collectively activate the JAK-STAT3 and NF-κB pathways in non-senescent GBM cells, thereby promoting tumor cell proliferation and SASP spreading. Transcriptomic analyses of irradiated GBM cells and the TCGA database reveal that the cellular inhibitor of apoptosis protein 2 (cIAP2), encoded by the BIRC3 gene, is a potential survival factor for senescent glioma cells. Senescent GBM cells not only upregulate BIRC3 but also induce BIRC3 expression and promote radioresistance in non-senescent tumor cells. We find that second mitochondria-derived activator of caspases (SMAC) mimetics targeting cIAP2 act as novel senolytics that trigger apoptosis of senescent GBM cells with minimal toxicity towards normal brain cells. Finally, using both PDX and immunocompetent mouse models of GBM, we show that the SMAC mimetic birinapant, administered as an adjuvant after radiotherapy, can eliminate senescent GBM cells and prevent the emergence of recurrent tumors. Taken together, our results clearly indicate that significant improvement in GBM patient survival may become possible in the clinic by eliminating senescent cells arising after radiotherapy.
Collapse
Affiliation(s)
- Nozomi Tomimatsu
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA
| | | | - Suman Kanji
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA
| | - Lorena Samentar
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA
| | - Benjamin Russell Jordan
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Andrea Gilbert
- Department of Pathology, University of Texas Health, San Antonio, TX, USA
| | - John R Floyd
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health, San Antonio, TX, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA
| | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA.
| | - Sandeep Burma
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA.
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA.
| |
Collapse
|
2
|
Lee JE, Jeon BE, Kwon CS, Kim HY, Kim TJ, Seo Y, Lee SH, Shin HJ, Kim SW. Norchelerythrine from Corydalis incisa (Thunb.) Pers. promotes differentiation and apoptosis by activating DNA damage response in acute myeloid leukemia. Int J Oncol 2025; 66:17. [PMID: 39918000 PMCID: PMC11837901 DOI: 10.3892/ijo.2025.5723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/07/2025] [Indexed: 02/21/2025] Open
Abstract
Acute myeloid leukemia (AML) is the most prevalent form of leukemia in adults. The cornerstone of first‑line chemotherapy for AML has poor survival rates, underscoring the urgent need for development of novel therapeutic agents. Differentiation therapy targets the blockade of differentiation in myeloid progenitor cells. The present study screened 100 plant extracts native to South Korea to search for those with differentiation‑inducing activity in AML. Differentiation‑inducing activity was assessed by measuring CD11b expression using fluorescence activated cell sorting. Of these, Corydalis incisa (Thunb.) Pers. (CIP) exhibited the highest efficacy. CIP induced myeloid differentiation, decreased viability and increased cell apoptosis and cell cycle arrest in HL‑60, U937 and THP‑1 cells. Furthermore, ultra‑performance liquid chromatography‑quadrupole time‑of‑flight mass spectrometry identified norchelerythrine as the primary anti‑leukemic compound in CIP. Norchelerythrine induced differentiation and promoted cell cycle arrest and apoptosis, mirroring the tumor‑suppressive effects of CIP, and notably decreased cell viability in patients with various genetic abnormalities. The present mechanistic study showed that norchelerythrine stimulated reactive oxygen species generation, leading to activation of DNA damage signaling and upregulation of p21cip1, a cyclin‑dependent kinase inhibitor. Overall, norchelerythrine isolated from CIP may be a novel therapeutic option in AML.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Byeol-Eun Jeon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Chan-Seong Kwon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeon-Young Kim
- Department of Molecular and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Youngseob Seo
- Korea Research Institute of Standard and Science, Daejeon 34113, Republic of Korea
| | - Sang Hun Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 46241, Republic of Korea
| | - Ho-Jin Shin
- Division of Hematology-Oncology, Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 46241, Republic of Korea
| | - Sang-Woo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Mukherjee S, Barua A, Wang L, Tian B, Moore CL. The alternative polyadenylation regulator CFIm25 promotes macrophage differentiation and activates the NF-κB pathway. Cell Commun Signal 2025; 23:115. [PMID: 40022203 PMCID: PMC11871739 DOI: 10.1186/s12964-025-02114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Macrophages are required for development and tissue repair and protect against microbial attacks. In response to external signals, monocytes differentiate into macrophages, but our knowledge of changes that promote this transition at the level of mRNA processing, in particular mRNA polyadenylation, needs advancement if it is to inform new disease treatments. Here, we identify CFIm25, a well-documented regulator of poly(A) site choice, as a novel mediator of macrophage differentiation. METHODS CFIm25 expression was analyzed in differentiating primary human monocytes and monocytic cell lines. Overexpression and depletion experiments were performed to assess CFIm25's role in differentiation, NF-κB signaling, and alternative polyadenylation (APA). mRNA 3' end-focused sequencing was conducted to identify changes in poly(A) site use of genes involved in macrophage differentiation and function. Cell cycle markers, NF-κB pathway components, and their targets were examined. The role of CFIm25 in NF-κB signaling was further evaluated through chemical inhibition and knockdown of pathway regulators. RESULTS CFIm25 showed a striking increase upon macrophage differentiation, suggesting it promotes this process. Indeed, CFIm25 overexpression during differentiation amplified the acquisition of macrophage characteristics and caused an earlier slowing of the cell cycle, a hallmark of this transition, along with APA-mediated downregulation of cyclin D1. The NF-κB signaling pathway plays a major role in maturation of monocytes to macrophages, and the mRNAs of null, TBL1XR1, and NFKB1, all positive regulators of NF-κB signaling, underwent 3'UTR shortening, coupled with an increase in the corresponding proteins. CFIm25 overexpression also elevated phosphorylation of the NF-κB-p65 transcription activator, produced an earlier increase in the NF-κB targets p21, Bcl-XL, ICAM1 and TNF-α, and resulted in greater resistance to NF-κB chemical inhibition. Knockdown of Tables 2 and TBL1XR1 in CFIm25-overexpressing cells attenuated these effects, reinforcing the mechanistic link between CFIm25-regulated APA and NF-κB activation. Conversely, depletion of CFIm25 hindered differentiation and led to lengthening of NFKB1, TAB2, and TBL1XR1 3' UTRs. CONCLUSIONS Our study establishes CFIm25 as a key mediator of macrophage differentiation that operates through a coordinated control of cell cycle progression and NF-κB signaling. This linkage of mRNA processing and immune cell function also expands our understanding of the role of alternative polyadenylation in regulating cell signaling.
Collapse
Affiliation(s)
- Srimoyee Mukherjee
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Atish Barua
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Luyang Wang
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Bin Tian
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Claire L Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
4
|
Kwon CS, Jeon BE, Lee JE, Kim HY, Kang RY, Kim KH, Lee EJ, Jang JY, Kim TJ, Shin HJ, Kim SW. Therapeutic Potential of Adina rubella Hance Stem and Picroside III as a Differentiation Inducer in AML Cells via Mitochondrial ROS Accumulation. Int J Mol Sci 2025; 26:1350. [PMID: 39941121 PMCID: PMC11818474 DOI: 10.3390/ijms26031350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the accumulation of immature myeloid cells and a differentiation block, highlighting the urgent need for novel differentiation-inducing therapies. This study evaluated Adina rubella Hance (ARH) stem as a potent differentiation inducer by systematically screening 200 plant extracts. ARH stem promoted phenotypic differentiation in AML cells. In addition to its differentiation-inducing effects, ARH stem exhibited strong antileukemic activities, such as inhibiting cell proliferation, inducing cell death, and enhancing mitochondrial reactive oxygen species (mtROS) levels, the latter of which is critical for its differentiation-promoting activity. Comparative analysis with the extracts from other parts of the plant confirmed the superior efficacy of the stem extract because of its unique chemical composition. Ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry analysis identified Picroside III as a major active compound within the stem extract, capable of recapitulating ARH stem-induced differentiation and demonstrating significant antileukemic properties. These findings underscore the therapeutic potential of ARH stem and its active component, Picroside III, as promising agents for differentiation-based treatment strategies in AML.
Collapse
Affiliation(s)
- Chan-Seong Kwon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (C.-S.K.); (B.-E.J.); (J.-E.L.)
| | - Byeol-Eun Jeon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (C.-S.K.); (B.-E.J.); (J.-E.L.)
| | - Ji-Eun Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (C.-S.K.); (B.-E.J.); (J.-E.L.)
| | - Hyeon-Young Kim
- Department of Molecular and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea;
| | - Ryun-Young Kang
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (R.-Y.K.); (K.-H.K.); (E.-J.L.); (J.-Y.J.); (T.-J.K.)
| | - Keun-Hu Kim
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (R.-Y.K.); (K.-H.K.); (E.-J.L.); (J.-Y.J.); (T.-J.K.)
| | - Eun-Ju Lee
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (R.-Y.K.); (K.-H.K.); (E.-J.L.); (J.-Y.J.); (T.-J.K.)
| | - Ju-Yeon Jang
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (R.-Y.K.); (K.-H.K.); (E.-J.L.); (J.-Y.J.); (T.-J.K.)
| | - Tae-Jin Kim
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (R.-Y.K.); (K.-H.K.); (E.-J.L.); (J.-Y.J.); (T.-J.K.)
| | - Ho-Jin Shin
- Division of Hematology-Oncology, Department of Internal Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea;
| | - Sang-Woo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (C.-S.K.); (B.-E.J.); (J.-E.L.)
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (R.-Y.K.); (K.-H.K.); (E.-J.L.); (J.-Y.J.); (T.-J.K.)
| |
Collapse
|
5
|
Renaudin X, Al Ahmad Nachar B, Mancini B, Gueiderikh A, Louis-Joseph N, Maczkowiak-Chartois F, Rosselli F. Contribution of p53-dependent and -independent mechanisms to upregulation of p21 in Fanconi anemia. PLoS Genet 2024; 20:e1011474. [PMID: 39509458 PMCID: PMC11575784 DOI: 10.1371/journal.pgen.1011474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Abnormal expression of the cell cycle inhibitor and p53 target CDKN1A/p21 has been associated with paradoxical outcomes, such as hyperproliferation in p53-deficient cancer cells or hypoproliferation that affects hematopoietic stem cell behavior, leading to bone marrow failure (BMF). Notably, p21 is known to be overexpressed in Fanconi anemia (FA), which is a rare syndrome that predisposes patients to BMF and cancer. However, why p21 is overexpressed in FA and how it contributes to the FA phenotype(s) are still poorly understood. Here, we revealed that while the upregulation of p21 is largely dependent on p53, it also depends on the transcription factor microphthalmia (MITF) as well as on its interaction with the nucleolar protein NPM1. Upregulation of p21 expression in FA cells leads to p21 accumulation in the chromatin fraction, p21 immunoprecipitation with PCNA, S-phase lengthening and genetic instability. p21 depletion in FA cells rescues the S-phase abnormalities and reduces their genetic instability. In addition, we observed that reactive oxygen species (ROS) accumulation, another key feature of FA cells, is required to trigger an increase in PCNA/chromatin-associated p21 and to impact replication progression. Therefore, we propose a mechanism by which p21 and ROS cooperate to induce replication abnormalities that fuel genetic instability.
Collapse
Affiliation(s)
- Xavier Renaudin
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Baraah Al Ahmad Nachar
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Benedetta Mancini
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Anna Gueiderikh
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Noémie Louis-Joseph
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Frédérique Maczkowiak-Chartois
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Filippo Rosselli
- CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Institute Cancer Campus, Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| |
Collapse
|
6
|
Mukherjee S, Barua A, Wang L, Tian B, Moore CL. The alternative polyadenylation regulator CFIm25 promotes macrophage differentiation and activates the NF-κβ pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611136. [PMID: 39282342 PMCID: PMC11398326 DOI: 10.1101/2024.09.03.611136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Macrophages are required for our body's development and tissue repair and protect against microbial attacks. We previously reported a crucial role for regulation of mRNA 3'-end cleavage and polyadenylation (C/P) in monocyte to macrophage differentiation. The CFIm25 subunit of the C/P complex showed a striking increase upon differentiation of monocytes with Phorbol Myristate Acetate, suggesting that it promotes this process. To test this hypothesis, CFIm25 was overexpressed in two different monocytic cell lines, followed by differentiation. Both cell lines showed a significant increase in macrophage characteristics and an earlier slowing of the cell cycle. In contrast, depletion of CFIm25 hindered differentiation. Cell cycle slowing upon CFIm25 overexpression was consistent with a greater decrease in the proliferation markers PCNA and cyclin D1, coupled with increased 3'UTR lengthening of cyclin D1 mRNA. Since choice of other poly(A) sites could be affected by manipulating CFIm25, we identified additional genes with altered use of poly(A) sites during differentiation and examined how this changed upon CFIm25 overexpression. The mRNAs of positive regulators of NF-κB signaling, TAB2 and TBL1XR1, and NFKB1, which encodes the NF-κB p50 precursor, underwent 3'UTR shortening that was associated with increased protein expression compared to the control. Cells overexpressing CFIm25 also showed elevated levels of phosphorylated NF-κB-p65 and the NF-κB targets p21, Bcl-XL, ICAM1 and TNF-α at an earlier time and greater resistance to NF-κB chemical inhibition. In conclusion, our study supports a model in which CFIm25 accelerates the monocyte to macrophage transition by promoting alternative polyadenylation events which lead to activation of the NF-κB pathway.
Collapse
|
7
|
Keizer HG, Brands R, Oosting RS, Seinen W. A comprehensive model for the biochemistry of ageing, senescence and longevity. Biogerontology 2024; 25:615-626. [PMID: 38441836 DOI: 10.1007/s10522-024-10097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 07/02/2024]
Abstract
Various models for ageing, each focussing on different biochemical and/or cellular pathways have been proposed. This has resulted in a complex and non-coherent portrayal of ageing. Here, we describe a concise and comprehensive model for the biochemistry of ageing consisting of three interacting signalling hubs. These are the nuclear factor kappa B complex (NFκB), controlling the innate immune system, the mammalian target for rapamycin complex, controlling cell growth, and the integrated stress responses, controlling homeostasis. This model provides a framework for most other, more detailed, biochemical pathways involved in ageing, and explains why ageing involves chronic inflammation, cellular senescence, and vulnerability to environmental stress, while starting with the spontaneous formation of advanced glycation end products. The totality of data underlying this model suggest that the gradual inhibition of the AMPK-ISR probably determines the maximal lifespan. Based on this model, anti-ageing drugs in general, are expected to show hormetic dose response curves. This complicates the process of dose-optimization. Due to its specific mechanism of action, the anti-aging drug alkaline phosphatase is an exception to this rule, because it probably exhibits saturation kinetics.
Collapse
Affiliation(s)
| | - R Brands
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
| | - Ronald Sake Oosting
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
| | - Willem Seinen
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|
8
|
Khan D, Zhou H, You J, Kaiser VA, Khajuria RK, Muhammad S. Tobacco smoke condensate-induced senescence in endothelial cells was ameliorated by colchicine treatment via suppression of NF-κB and MAPKs P38 and ERK pathways activation. Cell Commun Signal 2024; 22:214. [PMID: 38570838 PMCID: PMC10988825 DOI: 10.1186/s12964-024-01594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
Smoking is the major cause of cardiovascular diseases and cancer. It induces oxidative stress, leading to DNA damage and cellular senescence. Senescent cells increase the expression and release of pro-inflammatory molecules and matrix metalloproteinase, which are known to play a vital role in the initiation and progression of cardiovascular diseases and metastasis in cancer. The current study investigated the smoking induced cellular senescence and employed colchicine that blocked senescence in endothelial cells exposed to tobacco smoke condensate. Colchicine prevented oxidative stress and DNA damage in tobacco smoke-condensate-treated endothelial cells. Colchicin reduced β-gal activity, improved Lamin B1, and attenuated cell growth arrest markers P21 and P53. Colchicine also ameliorated the expression of SASP factors and inhibited the activation of NF-kB and MAPKs P38 and ERK. In summary, colchicine inhibited tobacco smoke condensate-induced senescence in endothelial cells by blocking the activation of NF-kB and MAPKs P38 and ERK.
Collapse
Affiliation(s)
- Dilaware Khan
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstr.5, Düsseldorf, 40225, Germany
| | - Huakang Zhou
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstr.5, Düsseldorf, 40225, Germany
| | - Jinliang You
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstr.5, Düsseldorf, 40225, Germany
| | - Vera Annika Kaiser
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstr.5, Düsseldorf, 40225, Germany
| | - Rajiv K Khajuria
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstr.5, Düsseldorf, 40225, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstr.5, Düsseldorf, 40225, Germany.
- Department of Neurosurgery, University Hospital Helsinki, Topeliuksenkatu 5, Helsinki, 00260, Finland.
| |
Collapse
|
9
|
Kamal M, Joanisse S, Parise G. Bleomycin-treated myoblasts undergo p21-associated cellular senescence and have severely impaired differentiation. GeroScience 2024; 46:1843-1859. [PMID: 37751045 PMCID: PMC10828175 DOI: 10.1007/s11357-023-00929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
As we age, the ability to regenerate and repair skeletal muscle damage declines, partially due to increasing dysfunction of muscle resident stem cells-satellite cells (SC). Recent evidence implicates cellular senescence, which is the irreversible arrest of proliferation, as a potentiator of SC impairment during aging. However, little is known about the role of senescence in SC, and there is a large discrepancy in senescence classification within skeletal muscle. The purpose of this study was to develop a model of senescence in skeletal muscle myoblasts and identify how common senescence-associated biomarkers respond. Low-passage C2C12 myoblasts were treated with bleomycin or vehicle and then evaluated for cytological and molecular senescence markers, proliferation status, cell cycle kinetics, and differentiation potential. Bleomycin treatment caused double-stranded DNA breaks, which upregulated p21 mRNA and protein, potentially through NF-κB and senescence-associated super enhancer (SASE) signaling (p < 0.01). Consequently, cell proliferation was abruptly halted due to G2/M-phase arrest (p < 0.01). Bleomycin-treated myoblasts displayed greater senescence-associated β-galactosidase staining (p < 0.01), which increased over several days. These myoblasts remained senescent following 6 days of differentiation and had significant impairments in myotube formation (p < 0.01). Furthermore, our results show that senescence can be maintained despite the lack of p16 gene expression in C2C12 myoblasts. In conclusion, bleomycin treatment provides a valid model of damage-induced senescence that was associated with elevated p21, reduced myoblast proliferation, and aberrant cell cycle kinetics, while confirming that a multi-marker approach is needed for the accurate classification of senescence within skeletal muscle.
Collapse
Affiliation(s)
- Michael Kamal
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Sophie Joanisse
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sport Medicine Research Centre, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Gianni Parise
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
10
|
Dong Y, He L, Zhu Z, Yang F, Ma Q, Zhang Y, Zhang X, Liu X. The mechanism of gut-lung axis in pulmonary fibrosis. Front Cell Infect Microbiol 2024; 14:1258246. [PMID: 38362497 PMCID: PMC10867257 DOI: 10.3389/fcimb.2024.1258246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Pulmonary fibrosis (PF) is a terminal change of a lung disease that is marked by damage to alveolar epithelial cells, abnormal proliferative transformation of fibroblasts, excessive deposition of extracellular matrix (ECM), and concomitant inflammatory damage. Its characteristics include short median survival, high mortality rate, and limited treatment effectiveness. More in-depth studies on the mechanisms of PF are needed to provide better treatment options. The idea of the gut-lung axis has emerged as a result of comprehensive investigations into the microbiome, metabolome, and immune system. This theory is based on the material basis of microorganisms and their metabolites, while the gut-lung circulatory system and the shared mucosal immune system act as the connectors that facilitate the interplay between the gastrointestinal and respiratory systems. The emergence of a new view of the gut-lung axis is complementary and cross-cutting to the study of the mechanisms involved in PF and provides new ideas for its treatment. This article reviews the mechanisms involved in PF, the gut-lung axis theory, and the correlation between the two. Exploring the gut-lung axis mechanism and treatments related to PF from the perspectives of microorganisms, microbial metabolites, and the immune system. The study of the gut-lung axis and PF is still in its early stages. This review systematically summarizes the mechanisms of PF related to the gut-lung axis, providing ideas for subsequent research and treatment of related mechanisms.
Collapse
Affiliation(s)
- Yawei Dong
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Lanlan He
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhongbo Zhu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fan Yang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Quan Ma
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yanmei Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xuhui Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiping Liu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Chui JS, Izuel‐Idoype T, Qualizza A, de Almeida RP, Piessens L, van der Veer BK, Vanmarcke G, Malesa A, Athanasouli P, Boon R, Vriens J, van Grunsven L, Koh KP, Verfaillie CM, Lluis F. Osmolar Modulation Drives Reversible Cell Cycle Exit and Human Pluripotent Cell Differentiation via NF-κВ and WNT Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307554. [PMID: 38037844 PMCID: PMC10870039 DOI: 10.1002/advs.202307554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 12/02/2023]
Abstract
Terminally differentiated cells are commonly regarded as the most stable cell state in adult organisms, characterized by growth arrest while fulfilling their specialized functions. A better understanding of the mechanisms involved in promoting cell cycle exit will improve the ability to differentiate pluripotent cells into mature tissues for both pharmacological and therapeutic use. Here, it demonstrates that a hyperosmolar environment enforces a protective p53-independent quiescent state in immature hepatoma cells and in pluripotent stem cell-derived models of human hepatocytes and endothelial cells. Prolonged culture in hyperosmolar conditions stimulates changes in gene expression promoting functional cell maturation. Interestingly, hyperosmolar conditions do not only trigger growth arrest and cellular maturation but are also necessary to maintain this maturated state, as switching back to plasma osmolarity reverses the changes in expression of maturation and proliferative markers. Transcriptome analysis revealed sequential stages of osmolarity-regulated growth arrest followed by cell maturation, mediated by activation of NF-κВ, and repression of WNT signaling, respectively. This study reveals that a modulated increase in osmolarity serves as a biochemical signal to promote long-term growth arrest and cellular maturation into different lineages, providing a practical method to generate differentiated hiPSCs that resemble their mature counterpart more closely.
Collapse
Affiliation(s)
- Jonathan Sai‐Hong Chui
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Teresa Izuel‐Idoype
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Alessandra Qualizza
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Rita Pires de Almeida
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Lindsey Piessens
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Bernard K. van der Veer
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Gert Vanmarcke
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Aneta Malesa
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Paraskevi Athanasouli
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Ruben Boon
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive MedicineDepartment of Development and RegenerationKU LeuvenHerestraat 49Leuven3000Belgium
| | - Leo van Grunsven
- Liver Cell Biology Research GroupVrije Universiteit BrusselLaarbeeklaan 103Brussels1090Belgium
| | - Kian Peng Koh
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Catherine M. Verfaillie
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Frederic Lluis
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| |
Collapse
|
12
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
13
|
Zhou H, Khan D, Hussain SM, Gerdes N, Hagenbeck C, Rana M, Cornelius JF, Muhammad S. Colchicine prevents oxidative stress-induced endothelial cell senescence via blocking NF-κB and MAPKs: implications in vascular diseases. J Inflamm (Lond) 2023; 20:41. [PMID: 38001470 PMCID: PMC10675905 DOI: 10.1186/s12950-023-00366-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Smoking, alcohol abuse, and hypertension are - among others, potential risk factors for cardiovascular diseases. These risk factors generate oxidative stress and cause oxidative stress-induced DNA damage, resulting in cellular senescence and senescence-associated secretory phenotype (SASP). The SASP factors in feed-forward response exacerbate inflammation and cause tissue remodeling, resulting in atherosclerotic plaque formation and rupture. RESULTS Colchicine inhibited ROS generation and mitigated oxidative stress-induced DNA damage. It dampened oxidative stress-induced endothelial cell senescence and improved the expression of DNA repair protein KU80 and aging marker Lamin B1. The drug attenuated the expression of senescence marker P21 at mRNA and protein levels. The pathway analysis showed that colchicine inhibited NF-κB and MAPKs pathways and subdued mTOR activation. Colchicine also attenuated mRNA expression of interleukin (IL)-1β, IL-6, IL-8, MCP-1, ICAM-1, and E-selectin. Furthermore, colchicine reduced the mRNA and protein expression of matrix metalloproteinase (MMP-2). CONCLUSION In summary, colchicine blocked oxidative stress-induced senescence and SASP by inhibiting the activation of NF-κB and MAPKs pathways.
Collapse
Affiliation(s)
- Huakang Zhou
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Dilaware Khan
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - Sajid Muhammad Hussain
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931, Cologne, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Cardiovascular Reasearch Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine- University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Carsten Hagenbeck
- Clinic for Gynecology and Obstetrics, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Majeed Rana
- Department of Oral-, Maxillofacial and Facial Plastic Surgery, University Hospital Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Jan Frederick Cornelius
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine- Universität Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Department of Neurosurgery, University Hospital Helsinki, Topeliuksenkatu 5, Helsinki, 00260, Finland
- Department of Neurosurgery, King Edward Medical University, Lahore, Pakistan
| |
Collapse
|
14
|
Zhou H, Li X, Rana M, Cornelius JF, Khan D, Muhammad S. mTOR Inhibitor Rapalink-1 Prevents Ethanol-Induced Senescence in Endothelial Cells. Cells 2023; 12:2609. [PMID: 37998344 PMCID: PMC10670449 DOI: 10.3390/cells12222609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The cardiovascular risk factors, including smoking, ethanol, and oxidative stress, can induce cellular senescence. The senescent cells increase the expression and release of pro-inflammatory molecules and matrix metalloproteinase (MMPs). These pro-inflammatory molecules and MMPs promote the infiltration and accumulation of inflammatory cells in the vascular tissue, exacerbating vascular tissue inflammation. MMPs damage vascular tissue by degenerating the extracellular matrix. Consequently, these cellular and molecular events promote the initiation and progression of cardiovascular diseases. We used Rapalink-1, an mTOR inhibitor, to block ethanol-induced senescence. Rapalink-1 inhibited oxidative-stress-induced DNA damage and senescence in endothelial cells exposed to ethanol. It attenuated the relative protein expression of senescence marker P21 and improved the relative protein expression of DNA repair protein KU70 and aging marker Lamin B1. It inhibited the activation of NF-κB, MAPKs (P38 and ERK), and mTOR pathway proteins (mTOR, 4EBP-1, and S6). Moreover, Rapalink-1 suppressed ethanol-induced mRNA expression of ICAM-1, E-selectin, MCP-1, IL-8, MMP-2, and TIMP-2. Rapalink-1 also reduced the relative protein expression of MMP-2. In summary, Rapalink-1 prevented senescence, inhibited pro-inflammatory pathway activation, and ameliorated pro-inflammatory molecule expression and MMP-2.
Collapse
Affiliation(s)
- Huakang Zhou
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany (S.M.)
| | - Xuanchen Li
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany (S.M.)
| | - Majeed Rana
- Department of Oral and Maxillofacial Surgery, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jan Frederick Cornelius
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany (S.M.)
| | - Dilaware Khan
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany (S.M.)
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany (S.M.)
- Department of Neurosurgery, University Hospital Helsinki, Topeliuksenkatu 5, 00260 Helsinki, Finland
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan
| |
Collapse
|
15
|
Long ZJ, Wang JD, Qiu SX, Zhang Y, Wu SJ, Lei XX, Huang ZW, Chen JJ, Yang YL, Zhang XZ, Liu Q. Dietary γ-mangostin triggers immunogenic cell death and activates cGAS signaling in acute myeloid leukemia. Pharmacol Res 2023; 197:106973. [PMID: 37898441 DOI: 10.1016/j.phrs.2023.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Immunogenic cell death (ICD), one of cell-death types through release of damage-associated molecular patterns from dying tumor cells, activates tumor-specific immune response and elicits anti-tumor immunity by traditional radiotherapy and chemotherapy. However, whether natural products could induce ICD in leukemia is not elucidated. Here, we report dietary γ-mangostin eradicates murine primary leukemic cells and prolongs the survival of leukemic mice. As well, it restrains primary leukemic cells and CD34+ leukemic progenitor cells from leukemia patients. Strikingly, γ-mangostin attenuates leukemic cells by inducing ICD as characterized by expression of HSP90B1, ANXA1 and IL1B. Additionally, γ-mangostin accelerates cytoplasmic chromatin fragments generation, promoting DNA damage response, and enhances cGAS activation, leading to up-regulation of chemokines. Meanwhile, it induces HDAC4 degradation and acetylated histone H3 accumulation, which promotes chemokines transcription. Ultimately, CD8+ T cell is activated and recruited by γ-mangostin-induced chemokines in the microenvironment. Our study identifies γ-mangostin triggers ICD and activates cGAS signaling through DNA damage response and epigenetic modification. Therefore, dietary γ-mangostin would act as a potential agent to provoke anti-tumor immunity in the prevention and treatment of leukemia.
Collapse
Affiliation(s)
- Zi-Jie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China; Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, China.
| | - Jun-Dan Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China
| | - Sheng-Xiang Qiu
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, China
| | - Yi Zhang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China
| | - Si-Jin Wu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, China
| | - Xin-Xing Lei
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, China
| | - Ze-Wei Huang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China
| | - Jia-Jie Chen
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China
| | - Yong-Liang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, China
| | - Xiang-Zhong Zhang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China.
| | - Quentin Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China; Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, China.
| |
Collapse
|
16
|
Benada J, Alsowaida D, Megeney LA, Sørensen CS. Self-inflicted DNA breaks in cell differentiation and cancer. Trends Cell Biol 2023; 33:850-859. [PMID: 36997393 DOI: 10.1016/j.tcb.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023]
Abstract
Self-inflicted DNA strand breaks are canonically linked with cell death pathways and the establishment of genetic diversity in immune and germline cells. Moreover, this form of DNA damage is an established source of genome instability in cancer development. However, recent studies indicate that nonlethal self-inflicted DNA strand breaks play an indispensable but underappreciated role in a variety of cell processes, including differentiation and cancer therapy responses. Mechanistically, these physiological DNA breaks originate from the activation of nucleases, which are best characterized for inducing DNA fragmentation in apoptotic cell death. In this review, we outline the emerging biology of one critical nuclease, caspase-activated DNase (CAD), and how directed activation or deployment of this enzyme can lead to divergent cell fate outcomes.
Collapse
Affiliation(s)
- Jan Benada
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200 N, Denmark
| | - Dalal Alsowaida
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute and the Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8L6, Canada; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lynn A Megeney
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute and the Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8L6, Canada.
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200 N, Denmark.
| |
Collapse
|
17
|
Zhou H, Khan D, Gerdes N, Hagenbeck C, Rana M, Cornelius JF, Muhammad S. Colchicine Protects against Ethanol-Induced Senescence and Senescence-Associated Secretory Phenotype in Endothelial Cells. Antioxidants (Basel) 2023; 12:antiox12040960. [PMID: 37107335 PMCID: PMC10135532 DOI: 10.3390/antiox12040960] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammaging is a potential risk factor for cardiovascular diseases. It results in the development of thrombosis and atherosclerosis. The accumulation of senescent cells in vessels causes vascular inflammaging and contributes to plaque formation and rupture. In addition to being an acquired risk factor for cardiovascular diseases, ethanol can induce inflammation and senescence, both of which have been implicated in cardiovascular diseases. In the current study, we used colchicine to abate the cellular damaging effects of ethanol on endothelial cells. Colchicine prevented senescence and averted oxidative stress in endothelial cells exposed to ethanol. It lowered the relative protein expression of aging and senescence marker P21 and restored expression of the DNA repair proteins KU70/KU80. Colchicine inhibited the activation of nuclear factor kappa B (NFκ-B) and mitogen activated protein kinases (MAPKs) in ethanol-treated endothelial cells. It reduced ethanol-induced senescence-associated secretory phenotype. In summary, we show that colchicine ameliorated the ethanol-caused molecular events, resulting in attenuated senescence and senescence-associated secretory phenotype in endothelial cells.
Collapse
Affiliation(s)
- Huakang Zhou
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dilaware Khan
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Carsten Hagenbeck
- Clinic for Gynecology and Obstetrics, University Clinic, 40225 Düsseldorf, Germany
| | - Majeed Rana
- Department of Oral, Maxillofacial and Facial Plastic Surgery, University Hospital Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jan Frederick Cornelius
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
- Department of Neurosurgery, University Hospital Helsinki, Topeliuksenkatu 5, 00260 Helsinki, Finland
| |
Collapse
|
18
|
Ma X, Han S, Liu Y, Chen Y, Li P, Liu X, Chang L, Chen YA, Chen F, Hou Q, Hou L. DAPL1 prevents epithelial-mesenchymal transition in the retinal pigment epithelium and experimental proliferative vitreoretinopathy. Cell Death Dis 2023; 14:158. [PMID: 36841807 PMCID: PMC9968328 DOI: 10.1038/s41419-023-05693-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) is a hallmark of the pathogenesis of proliferative vitreoretinopathy (PVR) that can lead to severe vision loss. Nevertheless, the precise regulatory mechanisms underlying the pathogenesis of PVR remain largely unknown. Here, we show that the expression of death-associated protein-like 1 (DAPL1) is downregulated in PVR membranes and that DAPL1 deficiency promotes EMT in RPE cells in mice. In fact, adeno-associated virus (AAV)-mediated DAPL1 overexpression in RPE cells of Dapl1-deficient mice inhibited EMT in physiological and retinal-detachment states. In a rabbit model of PVR, ARPE-19 cells overexpressing DAPL1 showed reduced ability to induce experimental PVR, and AAV-mediated DAPL1 delivery attenuated the severity of experimental PVR. Furthermore, a mechanistic study revealed that DAPL1 promotes P21 phosphorylation and its stabilization partially through NFκB (RelA) in RPE cells, whereas the knockdown of P21 led to neutralizing effects on DAPL1-dependent EMT inhibition and enhanced the severity of experimental PVR. These results suggest that DAPL1 acts as a novel suppressor of RPE-EMT and has an important role in antagonizing the pathogenesis of experimental PVR. Hence, this finding has implications for understanding the mechanism of and potential therapeutic applications for PVR.
Collapse
Affiliation(s)
- Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China. .,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325003, China.
| | - Shuxian Han
- grid.268099.c0000 0001 0348 3990Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003 China ,grid.412679.f0000 0004 1771 3402Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Youjia Liu
- grid.268099.c0000 0001 0348 3990Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003 China
| | - Yu Chen
- grid.268099.c0000 0001 0348 3990Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003 China ,grid.268099.c0000 0001 0348 3990State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325003 China
| | - Pingping Li
- grid.268099.c0000 0001 0348 3990Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003 China
| | - Xiaoyan Liu
- grid.268099.c0000 0001 0348 3990Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003 China
| | - Lifu Chang
- grid.268099.c0000 0001 0348 3990Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003 China
| | - Ying-ao Chen
- grid.268099.c0000 0001 0348 3990Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003 China
| | - Feng Chen
- grid.268099.c0000 0001 0348 3990School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003 China
| | - Qiang Hou
- grid.268099.c0000 0001 0348 3990State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325003 China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China. .,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325003, China.
| |
Collapse
|
19
|
Lasa M, Contreras-Jurado C. Thyroid hormones act as modulators of inflammation through their nuclear receptors. Front Endocrinol (Lausanne) 2022; 13:937099. [PMID: 36004343 PMCID: PMC9393327 DOI: 10.3389/fendo.2022.937099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Reciprocal crosstalk between endocrine and immune systems has been well-documented both in physiological and pathological conditions, although the connection between the immune system and thyroid hormones (THs) remains largely unclear. Inflammation and infection are two important processes modulated by the immune system, which have profound effects on both central and peripheral THs metabolism. Conversely, optimal levels of THs are necessary for the maintenance of immune function and response. Although some effects of THs are mediated by their binding to cell membrane integrin receptors, triggering a non-genomic response, most of the actions of these hormones involve their binding to specific nuclear thyroid receptors (TRs), which generate a genomic response by modulating the activity of a great variety of transcription factors. In this special review on THs role in health and disease, we highlight the relevance of these hormones in the molecular mechanisms linked to inflammation upon their binding to specific nuclear receptors. In particular, we focus on THs effects on different signaling pathways involved in the inflammation associated with various infectious and/or pathological processes, emphasizing those mediated by NF-kB, p38MAPK and JAK/STAT. The findings showed in this review suggest new opportunities to improve current therapeutic strategies for the treatment of inflammation associated with several infections and/or diseases, such as cancer, sepsis or Covid-19 infection.
Collapse
Affiliation(s)
- Marina Lasa
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas “Alberto Sols”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Constanza Contreras-Jurado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Alfonso X El Sabio, Madrid, Spain
- Departamento de Fisiopatología Endocrina y del Sistema Nervioso, Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
20
|
Yoon DS, Lee KM, Choi Y, Ko EA, Lee NH, Cho S, Park KH, Lee JH, Kim HW, Lee JW. TLR4 downregulation by the RNA-binding protein PUM1 alleviates cellular aging and osteoarthritis. Cell Death Differ 2022; 29:1364-1378. [PMID: 35034101 DOI: 10.1038/s41418-021-00925-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Dysfunction of mRNA or RNA-binding proteins (RBPs) causes cellular aging and age-related degenerative diseases; however, information regarding the mechanism through which RBP-mediated posttranscriptional regulation affects cellular aging and related disease processes is limited. In this study, PUM1 was found to be associated with the self-renewal capacity and aging process of human mesenchymal stem cells (MSC). PUM1 interacted with the 3'-untranslated region of Toll-like receptor 4 (TLR4) to suppress TLR4 mRNA translation and regulate the activity of nuclear factor-κB (NF-κB), a master regulator of the aging process in MSCs. PUM1 overexpression protected MSCs against H2O2-induced cellular senescence by suppressing TLR4-mediated NF-κB activity. TLR4-mediated NF-κB activation is a key regulator in osteoarthritis (OA) pathogenesis. PUM1 overexpression enhanced the chondrogenic potential of MSCs even under the influence of inflammation-inducing factors, such as lipopolysaccharide (LPS) or interleukin-1β (IL-1β), whereas the chondrogenic potential was reduced following the PUM1 knockdown-mediated TLR4 activation. PUM1 levels decreased under inflammatory conditions in vitro and during OA progression in human and mouse disease models. PUM1 knockdown in human chondrocytes promoted chondrogenic phenotype loss, whereas PUM1 overexpression protected the cells from inflammation-mediated disruption of the chondrogenic phenotype. Gene therapy using a lentiviral vector encoding mouse PUM1 showed promise in preserving articular cartilage integrity in OA mouse models. In conclusion, PUM1 is a novel suppressor of MSC aging, and the PUM1-TLR4 regulatory axis represents a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kyoung-Mi Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yoorim Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Eun Ae Ko
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Sehee Cho
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kwang Hwan Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea. .,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea. .,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea. .,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea.
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea. .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
21
|
Moss BJ, Ryter SW, Rosas IO. Pathogenic Mechanisms Underlying Idiopathic Pulmonary Fibrosis. ANNUAL REVIEW OF PATHOLOGY 2022; 17:515-546. [PMID: 34813355 DOI: 10.1146/annurev-pathol-042320-030240] [Citation(s) in RCA: 344] [Impact Index Per Article: 114.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of idiopathic pulmonary fibrosis (IPF) involves a complex interplay of cell types and signaling pathways. Recurrent alveolar epithelial cell (AEC) injury may occur in the context of predisposing factors (e.g., genetic, environmental, epigenetic, immunologic, and gerontologic), leading to metabolic dysfunction, senescence, aberrant epithelial cell activation, and dysregulated epithelial repair. The dysregulated epithelial cell interacts with mesenchymal, immune, and endothelial cells via multiple signaling mechanisms to trigger fibroblast and myofibroblast activation. Recent single-cell RNA sequencing studies of IPF lungs support the epithelial injury model. These studies have uncovered a novel type of AEC with characteristics of an aberrant basal cell, which may disrupt normal epithelial repair and propagate a profibrotic phenotype. Here, we review the pathogenesis of IPF in the context of novel bioinformatics tools as strategies to discover pathways of disease, cell-specific mechanisms, and cell-cell interactions that propagate the profibrotic niche.
Collapse
Affiliation(s)
- Benjamin J Moss
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| |
Collapse
|
22
|
Transcription Factor Activation Profiles (TFAP) identify compounds promoting differentiation of Acute Myeloid Leukemia cell lines. Cell Death Dis 2022; 8:16. [PMID: 35013135 PMCID: PMC8748454 DOI: 10.1038/s41420-021-00811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022]
Abstract
Repurposing of drugs for new therapeutic use has received considerable attention for its potential to limit time and cost of drug development. Here we present a new strategy to identify chemicals that are likely to promote a desired phenotype. We used data from the Connectivity Map (CMap) to produce a ranked list of drugs according to their potential to activate transcription factors that mediate myeloid differentiation of leukemic progenitor cells. To validate our strategy, we tested the in vitro differentiation potential of candidate compounds using the HL-60 human cell line as a myeloid differentiation model. Ten out of 22 compounds, which were ranked high in the inferred list, were confirmed to promote significant differentiation of HL-60. These compounds may be considered candidate for differentiation therapy. The method that we have developed is versatile and it can be adapted to different drug repurposing projects.
Collapse
|
23
|
O'Connor MJ, Thakar T, Nicolae CM, Moldovan GL. PARP14 regulates cyclin D1 expression to promote cell-cycle progression. Oncogene 2021; 40:4872-4883. [PMID: 34158578 PMCID: PMC8384455 DOI: 10.1038/s41388-021-01881-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 11/09/2022]
Abstract
Cyclin D1 is an essential regulator of the G1-S cell-cycle transition and is overexpressed in many cancers. Expression of cyclin D1 is under tight cellular regulation that is controlled by many signaling pathways. Here we report that PARP14, a member of the poly(ADP-ribose) polymerase (PARP) family, is a regulator of cyclin D1 expression. Depletion of PARP14 leads to decreased cyclin D1 protein levels. In cells with a functional retinoblastoma (RB) protein pathway, this results in G1 cell-cycle arrest and reduced proliferation. Mechanistically, we found that PARP14 controls cyclin D1 mRNA levels. Using luciferase assays, we show that PARP14 specifically regulates cyclin D1 3'UTR mRNA stability. Finally, we also provide evidence that G1 arrest in PARP14-depleted cells is dependent on an intact p53-p21 pathway. Our work uncovers a new role for PARP14 in promoting cell-cycle progression through both cyclin D1 and the p53 pathway.
Collapse
Affiliation(s)
- Michael J O'Connor
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
24
|
Kolmus K, Erdenebat P, Szymańska E, Stewig B, Goryca K, Derezińska-Wołek E, Szumera-Ciećkiewicz A, Brewińska-Olchowik M, Piwocka K, Prochorec-Sobieszek M, Mikula M, Miączyńska M. Concurrent depletion of Vps37 proteins evokes ESCRT-I destabilization and profound cellular stress responses. J Cell Sci 2021; 134:134/1/jcs250951. [PMID: 33419951 DOI: 10.1242/jcs.250951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023] Open
Abstract
Molecular details of how endocytosis contributes to oncogenesis remain elusive. Our in silico analysis of colorectal cancer (CRC) patients revealed stage-dependent alterations in the expression of 112 endocytosis-related genes. Among them, transcription of the endosomal sorting complex required for transport (ESCRT)-I component VPS37B was decreased in the advanced stages of CRC. Expression of other ESCRT-I core subunits remained unchanged in the investigated dataset. We analyzed an independent cohort of CRC patients, which also showed reduced VPS37A mRNA and protein abundance. Transcriptomic profiling of CRC cells revealed non-redundant functions of Vps37 proteins. Knockdown of VPS37A and VPS37B triggered p21 (CDKN1A)-mediated inhibition of cell proliferation and sterile inflammatory response driven by the nuclear factor (NF)-κB transcription factor and associated with mitogen-activated protein kinase signaling. Co-silencing of VPS37C further potentiated activation of these independently induced processes. The type and magnitude of transcriptional alterations correlated with the differential ESCRT-I stability upon individual and concurrent Vps37 depletion. Our study provides novel insights into cancer cell biology by describing cellular stress responses that are associated with ESCRT-I destabilization.
Collapse
Affiliation(s)
- Krzysztof Kolmus
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Purevsuren Erdenebat
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Ewelina Szymańska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Blair Stewig
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Edyta Derezińska-Wołek
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | | | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Monika Prochorec-Sobieszek
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| |
Collapse
|
25
|
Carrà G, Lingua MF, Maffeo B, Taulli R, Morotti A. P53 vs NF-κB: the role of nuclear factor-kappa B in the regulation of p53 activity and vice versa. Cell Mol Life Sci 2020; 77:4449-4458. [PMID: 32322927 PMCID: PMC11104960 DOI: 10.1007/s00018-020-03524-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022]
Abstract
The onco-suppressor p53 is a transcription factor that regulates a wide spectrum of genes involved in various cellular functions including apoptosis, cell cycle arrest, senescence, autophagy, DNA repair and angiogenesis. p53 and NF-κB generally have opposing effects in cancer cells. While p53 activity is associated with apoptosis induction, the stimulation of NF-κB has been demonstrated to promote resistance to programmed cell death. Although the transcription factor NF-κB family is considered as the master regulator of cancer development and maintenance, it has been mainly studied in relation to its ability to regulate p53. This has revealed the importance of the crosstalk between NF-κB, p53 and other crucial cell signaling pathways. This review analyzes the various mechanisms by which NF-κB regulates the activity of p53 and the role of p53 on NF-κB activity.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy.
| | | | - Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy.
| |
Collapse
|
26
|
Williams M, Liu X, Zhang Y, Reske J, Bahal D, Gohl TG, Hollern D, Ensink E, Kiupel M, Luo R, Das R, Xiao H. NCOA5 deficiency promotes a unique liver protumorigenic microenvironment through p21 WAF1/CIP1 overexpression, which is reversed by metformin. Oncogene 2020; 39:3821-3836. [PMID: 32203160 PMCID: PMC7210077 DOI: 10.1038/s41388-020-1256-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 01/14/2023]
Abstract
Prevention and treatment options for hepatocellular carcinoma (HCC) are presently limited, underscoring the necessity for further elucidating molecular mechanisms underlying HCC development and identifying new prevention and therapeutic targets. Here, we demonstrate a unique protumorigenic niche in the livers of Ncoa5+/- mouse model of HCC, which is characterized by altered expression of a subset of genes including p21WAF1/CIP1 and proinflammatory cytokine genes, increased putative hepatic progenitors, and expansions of activated and tissue-resident memory (TRM) CD8+ T lymphocytes, myeloid-derived suppressor cells (MDSCs), and alternatively activated M2 macrophages. Importantly, prophylactic metformin treatment reversed these characteristics including aberrant p21WAF1/CIP1 expression and subsequently reduced HCC incidence in Ncoa5+/- male mice. Heterozygous deletion of the p21WAF1/CIP1 gene alleviated the key features associated with the protumorigenic niche in the livers of Ncoa5+/- male mice. Moreover, transcriptomic analysis reveals that preneoplastic livers of Ncoa5+/- mice are similar to the livers of nonalcoholic steatohepatitis patients as well as the adjacent noncancerous liver tissues of a subset of HCC patients with a relatively poor prognosis. Together, our results suggest that p21WAF1/CIP1 overexpression is essential in the development of protumorigenic microenvironment induced by NCOA5 deficiency and metformin prevents HCC development via alleviating p21WAF1/CIP1 overexpression and protumorigenic microenvironment.
Collapse
Affiliation(s)
- Mark Williams
- Department of Physiology, Michigan State University, East Lansing, Michigan, 48824, USA
- Cellular and Molecular biology Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Xinhui Liu
- Department of Physiology, Michigan State University, East Lansing, Michigan, 48824, USA
- Cancer Center, Southern Medical University, Guangzhou, 510315, Guangdong, China
- Integrated hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Yueqi Zhang
- Department of Physiology, Michigan State University, East Lansing, Michigan, 48824, USA
- Cellular and Molecular biology Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Jake Reske
- Department of Physiology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Devika Bahal
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Trevor G Gohl
- Department of Physiology, Michigan State University, East Lansing, Michigan, 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Daniel Hollern
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Elliot Ensink
- Department of Physiology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, 48910, USA
| | - Rongcheng Luo
- Cancer Center, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Rupali Das
- Department of Physiology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Hua Xiao
- Department of Physiology, Michigan State University, East Lansing, Michigan, 48824, USA.
| |
Collapse
|
27
|
Ho CJ, Lin RW, Zhu WH, Wen TK, Hu CJ, Lee YL, Hung TI, Wang C. Transcription-independent and -dependent p53-mediated apoptosis in response to genotoxic and non-genotoxic stress. Cell Death Discov 2019; 5:131. [PMID: 31482012 PMCID: PMC6711993 DOI: 10.1038/s41420-019-0211-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
We previously reported that p53-mediated apoptosis is determined by severity of DNA damage, not by the level of p53, in doxorubicin-treated prostate cancer cells. In addition to doxorubicin, our results here indicated that camptothecin and bortezomib, which are a topoisomerase 1 poison and a 26 S proteasome inhibitor, respectively, could also induce apoptosis in a p53-dependent manner in prostate cancer. Then, we examined whether p53-mediated apoptosis induced by genotoxic and non-genotoxic stress occur in the same or a different way. By using dominant negative p53 to compete with wild-type p53 in transcription activity, we demonstrated that p53-mediated apoptosis in response to doxorubicin- or camptothecin-induced genotoxic stress is transcription-independent. In contrast, p53-mediated apoptosis from bortezomib-induced stress is transcription-dependent. Interestingly, we also found that doxorubicin-induced p21 expression is activated by p53 in transcription-dependent manner, while camptothecin-induced p21 expression is p53-independent. We then investigated the p53 ratio of nucleus to cytosol corresponding to low and high dose doxorubicin, camptothecin, or bortezomib treatment. The results suggested that p53 translocation from cytoplasm to nucleus actively drives cells toward apoptosis in either transcription-dependent or -independent manner for responding to non-genotoxic or genotoxic stress, respectively.
Collapse
Affiliation(s)
- Cheng-Jung Ho
- 1Department of Orthopedics, Kaohsiung Medical University Hospital, 80708 Kaohsiung, Taiwan
| | - Ru-Wei Lin
- 2Graduate Institute of Food Safety Management, National Pingtung University of Science and Technology, 91201 Pingtung, Taiwan
| | - Wei-Hua Zhu
- 3Department of Biotechnology, Kaohsiung Medical University, 80708 Kaohsiung, Taiwan
| | - Tsung-Kai Wen
- 4School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, 97004 Hualien, Taiwan
| | - Chieh-Ju Hu
- 3Department of Biotechnology, Kaohsiung Medical University, 80708 Kaohsiung, Taiwan
| | - Yi-Lin Lee
- 3Department of Biotechnology, Kaohsiung Medical University, 80708 Kaohsiung, Taiwan
| | - Ta-I Hung
- 3Department of Biotechnology, Kaohsiung Medical University, 80708 Kaohsiung, Taiwan
| | - Chihuei Wang
- 3Department of Biotechnology, Kaohsiung Medical University, 80708 Kaohsiung, Taiwan.,5Department of Medical Research, Kaohsiung Medical University Hospital, 80708 Kaohsiung, Taiwan
| |
Collapse
|
28
|
Nicolae CM, O'Connor MJ, Schleicher EM, Song C, Gowda R, Robertson G, Dovat S, Moldovan GL. PARI (PARPBP) suppresses replication stress-induced myeloid differentiation in leukemia cells. Oncogene 2019; 38:5530-5540. [PMID: 30967629 DOI: 10.1038/s41388-019-0810-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/22/2019] [Accepted: 03/19/2019] [Indexed: 01/06/2023]
Abstract
Hyperproliferative cancer cells face increased replication stress, which can result in accumulation of DNA damage. As DNA damage can arrest proliferation, and, in the case of myeloid leukemia, induce differentiation of cancer cells, understanding the mechanisms that regulate the replication stress response is paramount. Here, we show that PARI, a replisome protein involved in regulating DNA repair and replication stress, suppresses differentiation of myeloid leukemia cells. We show that PARI is overexpressed in myeloid leukemia cells, and its knockdown reduces leukemia cell proliferation in vitro and in vivo in xenograft mouse models. PARI depletion enhances replication stress and DNA-damage accumulation, coupled with increased myeloid differentiation. Mechanistically, we show that PARI inhibits activation of the NF-κB pathway, which can initiate p21-mediated differentiation and proliferation arrest. Finally, we show that PARI expression negatively correlates with expression of differentiation markers in clinical myeloid leukemia samples, suggesting that targeting PARI may restore differentiation ability of leukemia cells and antagonize their proliferation.
Collapse
Affiliation(s)
- Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Michael J O'Connor
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Emily M Schleicher
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Chunhua Song
- Department of Pediatrics, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Gavin Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Sinisa Dovat
- Department of Pediatrics, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
29
|
Ranoa DRE, Widau RC, Mallon S, Parekh AD, Nicolae CM, Huang X, Bolt MJ, Arina A, Parry R, Kron SJ, Moldovan GL, Khodarev NN, Weichselbaum RR. STING Promotes Homeostasis via Regulation of Cell Proliferation and Chromosomal Stability. Cancer Res 2018; 79:1465-1479. [PMID: 30482772 DOI: 10.1158/0008-5472.can-18-1972] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/08/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Given the integral role of stimulator of interferon genes (STING, TMEM173) in the innate immune response, its loss or impairment in cancer is thought to primarily affect antitumor immunity. Here we demonstrate a role for STING in the maintenance of cellular homeostasis through regulation of the cell cycle. Depletion of STING in human and murine cancer cells and tumors resulted in increased proliferation compared with wild-type controls. Microarray analysis revealed genes involved in cell-cycle regulation are differentially expressed in STINGko compared with WT MEFs. STING-mediated regulation of the cell cycle converged on NFκB- and p53-driven activation of p21. The absence of STING led to premature activation of cyclin-dependent kinase 1 (CDK1), early onset to S-phase and mitosis, and increased chromosome instability, which was enhanced by ionizing radiation. These results suggest a pivotal role for STING in maintaining cellular homeostasis and response to genotoxic stress. SIGNIFICANCE: These findings provide clear mechanistic understanding of the role of STING in cell-cycle regulation, which may be exploited in cancer therapy because most normal cells express STING, while many tumor cells do not.See related commentary by Gius and Zhu, p. 1295.
Collapse
Affiliation(s)
- Diana Rose E Ranoa
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Ryan C Widau
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Stephen Mallon
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Akash D Parekh
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Xiaona Huang
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Michael J Bolt
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Ainhoa Arina
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Renate Parry
- Translational Medicine, Varian Medical Systems Inc., Palo Alto, California
| | - Stephen J Kron
- Department of Molecular Genetics and Cellular Biology, The University of Chicago, Chicago, Illinois.,The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Nikolai N Khodarev
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois. .,The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois. .,The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| |
Collapse
|
30
|
Zeng F, Huang L, Cheng X, Yang X, Li T, Feng G, Tang Y, Yang Y. Overexpression of LASS2 inhibits proliferation and causes G0/G1 cell cycle arrest in papillary thyroid cancer. Cancer Cell Int 2018; 18:151. [PMID: 30302058 PMCID: PMC6167791 DOI: 10.1186/s12935-018-0649-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Background The aim of this study was to investigate the role of LAG1 longevity-assurance homologue 2 (LASS2) in papillary thyroid cancer (PTC). Methods Immunohistochemistry staining was conducted to explore the expression levels of LASS2 in PTC tissues and adjacent normal thyroid tissues and nodular goiter tissues. Western blotting and RT-qPCR were performed to explore the expression levels of LASS2 in three PTC cell lines (TPC-1, K1, BCPAP). An Adv-LASS2-GFP recombinant adenovirus vector was constructed and transduced into BCPAP cells. Then CCK-8 assay, colony formation assay, cell cycle distribution, and apoptosis were performed. Western blotting was used to examine the expression of p21, cyclin D1, cyclin-dependent kinase 4, p53 and p-p53. Results LASS2 was downregulated in PTC tissues compared with adjacent thyroid tissues or nodular goiter tissues. In addition, the expression of LASS2 was found to be associated with TNM stage and lymph node metastasis. BCPAP cells expressed the lowest LASS2 compared to TPC-1 cells or K1 cells. Overexpression of LASS2 significantly inhibited proliferation, promoted apoptosis and caused G0/G1 cell cycle arrest in BCPAP cells. Furthermore, overexpression of LASS2 significantly increased the expression of p21, inhibited the expression of cyclin D1 and cyclin-dependent kinase 4, and increased the expression of p-p53, but did not effect the expression of p53 in BCPAP cells. Conclusion Our findings indicate that overexpression of LASS2 inhibits PTC cell proliferation, promotes apoptosis and causes G0/G1 cell cycle arrest via a p53-dependent pathway. Thus, LASS2 may serve as a novel biomarker in PTC.
Collapse
Affiliation(s)
- Feng Zeng
- 1Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical College, Zunyi, 563003 Guizhou People's Republic of China
| | - Liangliang Huang
- 1Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical College, Zunyi, 563003 Guizhou People's Republic of China
| | - Xiaoming Cheng
- 1Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical College, Zunyi, 563003 Guizhou People's Republic of China
| | - Xiaoli Yang
- 2College of Laboratory Medicine, Affiliated Hospital of ZunYi Medical College, Zunyi, 563003 Guizhou People's Republic of China.,3Department of Clinical Laboratory, Affiliated Hospital of ZunYi Medical College, 149 Dalian Road, Zunyi, 563003 Guizhou People's Republic of China
| | - Taolang Li
- 1Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical College, Zunyi, 563003 Guizhou People's Republic of China
| | - Guoli Feng
- 1Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical College, Zunyi, 563003 Guizhou People's Republic of China
| | - Yingqi Tang
- 1Medical Center of Breast and Thyroid Disease, Affiliated Hospital of ZunYi Medical College, Zunyi, 563003 Guizhou People's Republic of China
| | - Yan Yang
- 2College of Laboratory Medicine, Affiliated Hospital of ZunYi Medical College, Zunyi, 563003 Guizhou People's Republic of China.,3Department of Clinical Laboratory, Affiliated Hospital of ZunYi Medical College, 149 Dalian Road, Zunyi, 563003 Guizhou People's Republic of China
| |
Collapse
|