1
|
Pankratova MD, Riabinin AA, Butova EA, Selivanovskiy AV, Morgun EI, Ulianov SV, Vorotelyak EA, Kalabusheva EP. YAP/TAZ Signalling Controls Epidermal Keratinocyte Fate. Int J Mol Sci 2024; 25:12903. [PMID: 39684613 DOI: 10.3390/ijms252312903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The paralogues Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) control cell proliferation and cell fate determination from embryogenesis to ageing. In the skin epidermis, these proteins are involved in both homeostatic cell renewal and injury-induced regeneration and also drive carcinogenesis and other pathologies. YAP and TAZ are usually considered downstream of the Hippo pathway. However, they are the central integrating link for the signalling microenvironment since they are involved in the interplay with signalling cascades induced by growth factors, cytokines, and physical parameters of the extracellular matrix. In this review, we summarise the evidence on how YAP and TAZ are activated in epidermal keratinocytes; how YAP/TAZ-mediated signalling cooperates with other signalling molecules at the plasma membrane, cytoplasmic, and nuclear levels; and how YAP/TAZ ultimately controls transcription programmes, defining epidermal cell fate.
Collapse
Affiliation(s)
- Maria D Pankratova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Andrei A Riabinin
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta A Butova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Arseniy V Selivanovskiy
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena I Morgun
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey V Ulianov
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina A Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina P Kalabusheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
2
|
Jin L, Jin A, Wang L, Qi X, Jin Y, Zhang C, Niu M. NRP1 Induces Enhanced Stemness and Chemoresistance in Glioma Cells via YAP. Biol Pharm Bull 2024; 47:166-174. [PMID: 38220212 DOI: 10.1248/bpb.b23-00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Neuropilin-1 (NRP1), a transmembrane glycoprotein, plays an important role in the malignant progression of gliomas; however, its role in chemoresistance is not fully understood. In this study, we observed the effects of NRP1 on the stemness and chemoresistance of glioma cells and the mediating role of Yes-associated protein (YAP). We constructed NRP1 overexpressing LN-229 glioma cells. Cells were treated with recombinant NRP1 protein (rNRP1) and the YAP inhibitor Super-TDU when necessary. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect the sensitivity of cells to temozolomide (TMZ). Sphere and clone formation assays were performed to detect the sphere- and clone-forming abilities of cells. Western blotting was performed to detect cellular CD133, CD44, p-LATS1, and p-YAP protein expression. Immunofluorescence and flow cytometry were used to detect the subcellular localization of YAP and apoptosis, respectively. We found that both NRP1 overexpression and rNRP1 treatment enhanced self-renewal, TMZ resistance, and CD133 and CD44 protein expression in LN-229 cells. NRP1 overexpression and rNRP1 treatment also induced LATS1 and YAP dephosphorylation and YAP nuclear translocation. Super-TDU inhibits NRP1 overexpression-induced enhanced self-renewal and TMZ resistance in LN-229 cells. Our study suggests that NRP1 induces increased stemness in glioma cells, resulting in chemoresistance, and that this effect is associated with YAP activation.
Collapse
Affiliation(s)
| | - Ai Jin
- Cangzhou People's Hospital
| | | | | | | | | | | |
Collapse
|
3
|
Samanta A, Saha P, Johnson O, Bishayee A, Sinha D. Dysregulation of delta Np63 alpha in squamous cell carcinoma and its therapeutic targeting. Biochim Biophys Acta Rev Cancer 2024; 1879:189034. [PMID: 38040268 DOI: 10.1016/j.bbcan.2023.189034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/05/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
The gene p63 has two isoforms -a full length transactivated isoform (TA) p63 and an amino-terminally truncated isoform, ∆Np63. DeltaNp63 alpha (∆Np63α) is the predominant splice variant of the isoform, ∆Np63 and is expressed in the basal layer of stratified epithelia. ∆Np63α that is normally essential for the epithelial lineage maintenance may be dysregulated in squamous cell carcinomas (SCCs). The pro-tumorigenic or antitumorigenic role of ∆Np63 is a highly contentious arena. ∆Np63α may act as a double-edged sword. It may either promote tumor progression, epithelial-mesenchymal transition, migration, chemoresistance, and immune-inflammatory responses, or inhibit the aforementioned phenomena depending upon cell type and tumor microenvironment. Several signaling pathways, transforming growth factor-β, Wnt and Notch, as well as epigenetic alterations involving microRNAs, and long noncoding RNAs are regulated by ∆Np63α. This review has attempted to provide an in-depth insight into the role of ∆Np63α in the development of SCCs during different stages of tumor formation and how it may be targeted for therapeutic implications.
Collapse
Affiliation(s)
- Anurima Samanta
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India
| | - Priyanka Saha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India
| | - Olivia Johnson
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India.
| |
Collapse
|
4
|
Rodrigues EM, Giovanini AF, Ribas CAPM, Malafaia O, Roesler R, Isolan GR. The Nervous System Development Regulator Neuropilin-1 as a Potential Prognostic Marker and Therapeutic Target in Brain Cancer. Cancers (Basel) 2023; 15:4922. [PMID: 37894289 PMCID: PMC10605093 DOI: 10.3390/cancers15204922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropilins are transmembrane glycoproteins that regulate developmental processes in the nervous system and other tissues. Overexpression of neuropilin-1 (NRP1) occurs in many solid tumor types and, in several instances, may predict patient outcome in terms of overall survival. Experimental inhibition of NRP1 activity can display antitumor effects in different cancer models. Here, we review NRP1 expression and function in adult and pediatric brain cancers, particularly glioblastomas (GBMs) and medulloblastomas, and present analyses of NRP1 transcript levels and their association with patient survival in GBMs. The case of NRP1 highlights the potential of regulators of neurodevelopment as biomarkers and therapeutic targets in brain cancer.
Collapse
Affiliation(s)
- Eduardo Mello Rodrigues
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
| | - Allan Fernando Giovanini
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
| | | | - Osvaldo Malafaia
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
| | - Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Gustavo R. Isolan
- Graduate Program in Principles of Surgery, Mackenzie Evangelical University, Curitiba 80730-000, PR, Brazil; (E.M.R.)
- The Center for Advanced Neurology and Neurosurgery (CEANNE), Porto Alegre 90560-010, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Spalt Therapeutics, Porto Alegre 90560-010, RS, Brazil
| |
Collapse
|
5
|
Chen X, Adhikary G, Newland JJ, Xu W, Keillor JW, Weber DJ, Eckert RL. Transglutaminase 2 Binds to the CD44v6 Cytoplasmic Domain to Stimulate CD44v6/ERK1/2 Signaling and Maintain an Aggressive Cancer Phenotype. Mol Cancer Res 2023; 21:922-932. [PMID: 37227250 DOI: 10.1158/1541-7786.mcr-23-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Transglutaminase 2 (TG2) is a key cancer cell survival protein in many cancer types. As such, efforts are underway to characterize the mechanism of TG2 action. In this study, we report that TG2 stimulates CD44v6 activity to enhance cancer cell survival via a mechanism that involves formation of a TG2/CD44v6/ERK1/2 complex that activates ERK1/2 signaling to drive an aggressive cancer phenotype. TG2 and ERK1/2 bind to the CD44v6 C-terminal intracellular cytoplasmic domain to activate ERK1/2 and stimulate cell proliferation and invasion. This is the same region that binds to ERM proteins and ankyrin to activate CD44v6-dependent cell proliferation, invasion, and migration. We further show that treatment with hyaluronan (HA), the physiologic CD44v6 ligand, stimulates CD44v6 activity, as measured by ERK1/2 activation, but that this response is severely attenuated in TG2 or CD44v6 knockdown or knockout cells. Moreover, treatment with TG2 inhibitor reduces tumor growth and that is associated with reduced CD44v6 level and ERK1/2 activity, and reduced stemness and epithelial-mesenchymal transition (EMT). These changes are replicated in CD44v6 knockout cells. These findings suggest that a unique TG2/CD44v6/ERK1/2 complex leads to increased ERK1/2 activity to stimulate an aggressive cancer phenotype and stimulate tumor growth. These findings have important implications for cancer stem cell maintenance and suggest that cotargeting of TG2 and CD44v6 with specific inhibitors may be an effective anticancer treatment strategy. IMPLICATIONS TG2 and CD44v6 are important procancer proteins. TG2 and ERK1/2 bind to the CD44v6 C-terminal domain to form a TG2/CD44v6/ERK1/2 complex that activates ERK1/2 to stimulate the cancer phenotype.
Collapse
Affiliation(s)
- Xi Chen
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - John J Newland
- Department of Surgery Division of Thoracic Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wen Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - David J Weber
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
6
|
Fisher ML, Balinth S, Hwangbo Y, Wu C, Ballon C, Goldberg GL, Mills AA. Cancer-associated fibroblasts promote cancer stemness by inducing expression of the chromatin-modifying protein CBX4 in squamous cell carcinoma. Carcinogenesis 2023; 44:485-496. [PMID: 37463322 PMCID: PMC10436759 DOI: 10.1093/carcin/bgad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
The chromobox-containing protein CBX4 is an important regulator of epithelial cell proliferation and differentiation, and has been implicated in several cancer types. The cancer stem cell (CSC) population is a key driver of metastasis and recurrence. The undifferentiated, plastic state characteristic of CSCs relies on cues from the microenvironment. Cancer-associated fibroblasts (CAFs) are a major component of the microenvironment that can influence the CSC population through the secretion of extracellular matrix and a variety of growth factors. Here we show CBX4 is a critical regulator of the CSC phenotype in squamous cell carcinomas of the skin and hypopharynx. Moreover, CAFs can promote the expression of CBX4 in the CSC population through the secretion of interleukin-6 (IL-6). IL-6 activates JAK/STAT3 signaling to increase ∆Np63α-a key transcription factor that is essential for epithelial stem cell function and the maintenance of proliferative potential that is capable of regulating CBX4. Targeting the JAK/STAT3 axis or CBX4 directly suppresses the aggressive phenotype of CSCs and represents a novel opportunity for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew L Fisher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yon Hwangbo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Caizhi Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Carlos Ballon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Gary L Goldberg
- Zucker School of Medicine, Hofstra University/Northwell Health, Hempstead, NY 11549, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
7
|
Fisher ML, Balinth S, Mills AA. ΔNp63α in cancer: importance and therapeutic opportunities. Trends Cell Biol 2023; 33:280-292. [PMID: 36115734 PMCID: PMC10011024 DOI: 10.1016/j.tcb.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Our understanding of cancer and the key pathways that drive cancer survival has expanded rapidly over the past several decades. However, there are still important challenges that continue to impair patient survival, including our inability to target cancer stem cells (CSCs), metastasis, and drug resistance. The transcription factor p63 is a p53 family member with multiple isoforms that carry out a wide array of functions. Here, we discuss the critical importance of the ΔNp63α isoform in cancer and potential therapeutic strategies to target ΔNp63α expression to impair the CSC population, as well as to prevent metastasis and drug resistance to improve patient survival.
Collapse
Affiliation(s)
- Matthew L Fisher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
8
|
Wang Y, Zhang L, Sun XL, Lu YC, Chen S, Pei DS, Zhang LS. NRP1 contributes to stemness and potentiates radioresistance via WTAP-mediated m6A methylation of Bcl-2 mRNA in breast cancer. Apoptosis 2023; 28:233-246. [PMID: 36333630 DOI: 10.1007/s10495-022-01784-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
NRP1 is a transmembrane glycoprotein that is highly expressed in a variety of tumors. There is evidence that NRP1 can enhance the stem cell properties of tumor cells, which are thought to be resistant to radiotherapy. This study aims to elucidate the potential mechanism of NRP1 in radiation resistance. We transfected NRP1 siRNA and plasmid in breast cancer cells to detect the expression of cancer stem cell markers by western blot and qRT-PCR. The effect of NRP1 on radiotherapy resistance was assesses by immunofluorescence and flow cytometry. In vivo, we established xenograft tumor model treating with shRNA-NRP1 to assess radiotherapy sensitivity. We found that NRP1 could enhance the stem cell properties and confer radioresistance of breast cancer cells. Mechanistically, we proved that NRP1 reduced IR-induced apoptosis by downregulation of Bcl-2 via methyltransferase WTAP in m6A-depentent way. It is suggested that these molecules may be the therapeutic targets for improving the efficacy of radiotherapy for breast cancer.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lin Zhang
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiao-Lin Sun
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ya-Chun Lu
- Department of Oncological Radiotherapy, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Si Chen
- Department of Oncological Radiotherapy, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lan-Sheng Zhang
- Department of Oncological Radiotherapy, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
9
|
Song Y, Sun K, Gong L, Shi L, Qin T, Wang S, Deng W, Chen W, Zheng F, Li G. CPSF4 promotes tumor-initiating phenotype by enhancing VEGF/NRP2/TAZ signaling in lung cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:62. [PMID: 36567417 DOI: 10.1007/s12032-022-01919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/29/2022] [Indexed: 12/27/2022]
Abstract
Lung cancer is the leading cause of malignant tumor-related deaths worldwide. The presence of tumor-initiating cells in lung cancer leads to tumor recurrence, metastasis, and resistance to conventional treatment. Cleavage and polyadenylation specificity factor 4 (CPSF4) activation in tumor cells contributes to the poor prognosis of lung cancer. However, the precise biological functions and molecular mechanisms of CPSF4 in the regulation of tumor-initiating cells remain unclear. We demonstrated that CPSF4 promotes tumor-initiating phenotype and confers chemoresistance to paclitaxel both in vitro and in vivo. Mechanistically, we showed that CPSF4 binds to the promoters of vascular endothelial growth factor (VEGF) and neuropilin-2 (NRP2) and activated their transcription. In addition, we showed that CPSF4/VEGF/NRP2-mediated tumor-initiating phenotype and chemoresistance through TAZ induction. Furthermore, analysis of clinical data revealed that lung cancer patients with high CPSF4 expression exhibit high expression levels of VEGF, NRP2, and TAZ and that expression of these proteins are positively correlated with poor prognosis. Importantly, selective inhibition of VEGF, NRP2, or TAZ markedly suppressed CPSF4-mediated tumor-initiating phenotype and chemoresistance. Our findings reveal the mechanism of CPSF4 modulating tumor-initiating phenotype and chemoresistance in lung cancer and indicate that the CPSF4-VEGF-NRP2-TAZ signaling pathway may be a prognosis marker and therapeutic target in lung cancer.
Collapse
Affiliation(s)
- YingQiu Song
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - LiLan Gong
- Department of Ultrasound, Wuhan No.1 Hospital, Wuhan, China
| | - LinLi Shi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Qin
- Department of Medical Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - ShuSen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - WuGuo Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - WangBing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - FeiMeng Zheng
- Department of Medical Oncology, The Eastern Hospital, The First Affiliated Hospital, Sun Yat-Sen University, No.58, Zhong Shan Er Lu, Guangzhou, 510080, China.
| | - GuiLing Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Neuropilin (NRPs) Related Pathological Conditions and Their Modulators. Int J Mol Sci 2022; 23:ijms23158402. [PMID: 35955539 PMCID: PMC9368954 DOI: 10.3390/ijms23158402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 01/08/2023] Open
Abstract
Neuropilin 1 (NRP1) represents one of the two homologous neuropilins (NRP, splice variants of neuropilin 2 are the other) found in all vertebrates. It forms a transmembrane glycoprotein distributed in many human body tissues as a (co)receptor for a variety of different ligands. In addition to its physiological role, it is also associated with various pathological conditions. Recently, NRP1 has been discovered as a coreceptor for the SARS-CoV-2 viral entry, along with ACE2, and has thus become one of the COVID-19 research foci. However, in addition to COVID-19, the current review also summarises its other pathological roles and its involvement in clinical diseases like cancer and neuropathic pain. We also discuss the diversity of native NRP ligands and perform a joint analysis. Last but not least, we review the therapeutic roles of NRP1 and introduce a series of NRP1 modulators, which are typical peptidomimetics or other small molecule antagonists, to provide the medicinal chemistry community with a state-of-the-art overview of neuropilin modulator design and NRP1 druggability assessment.
Collapse
|
11
|
Kudaravalli S, den Hollander P, Mani SA. Role of p38 MAP kinase in cancer stem cells and metastasis. Oncogene 2022; 41:3177-3185. [PMID: 35501462 PMCID: PMC9166676 DOI: 10.1038/s41388-022-02329-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/01/2023]
Abstract
Therapeutic resistance and metastatic progression are responsible for the majority of cancer mortalities. In particular, the development of resistance is a significant barrier to the efficacy of cancer treatments such as chemotherapy, radiotherapy, targeted therapies, and immunotherapies. Cancer stem cells (CSCs) underlie treatment resistance and metastasis. p38 mitogen-activated protein kinase (p38 MAPK) is downstream of several CSC-specific signaling pathways, and it plays an important role in CSC development and maintenance and contributes to metastasis and chemoresistance. Therefore, the development of therapeutic approaches targeting p38 can sensitize tumors to chemotherapy and prevent metastatic progression.
Collapse
Affiliation(s)
- Sriya Kudaravalli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Rice University, Houston, TX, 77030, USA
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Fisher ML, Balinth S, Hwangbo Y, Wu C, Ballon C, Wilkinson JE, Goldberg GL, Mills AA. BRD4 REGULATES TRANSCRIPTION FACTOR ∆Np63αTO DRIVE A CANCER STEM CELL PHENOTYPE IN SQUAMOUS CELL CARCINOMAS. Cancer Res 2021; 81:6246-6258. [PMID: 34697072 DOI: 10.1158/0008-5472.can-21-0707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/27/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Bromodomain containing protein 4 (BRD4) plays a critical role in controlling the expression of genes involved in development and cancer. Inactivation of BRD4 inhibits cancer growth, making it a promising anticancer drug target. The cancer stem cell population is a key driver of recurrence and metastasis in cancer patients. Here we show that cancer stem-like cells can be enriched from squamous cell carcinomas, and that these cells display an aggressive phenotype with enhanced stem cell marker expression, migration, invasion, and tumor growth. BRD4 was highly elevated in this aggressive subpopulation of cells, and its function is critical for these cancer stem cell-like properties. Moreover, BRD4 regulated ∆Np63α, a key transcription factor that is essential for epithelial stem cell function that is often overexpressed in cancers. BRD4 regulated an EZH2/STAT3 complex that led to increased ∆Np63α-mediated transcription. Targeting BRD4 in human squamous cell carcinoma reduces ∆Np63α, leading to inhibition of spheroid formation, migration, invasion and tumor growth. These studies identify a novel BRD4-regulated signaling network in a subpopulation of cancer stem-like cells elucidating a possible avenue for effective therapeutic intervention.
Collapse
Affiliation(s)
- Matthew L Fisher
- Departments of Biochemistry and Molecular Biology, Cold Spring Harbor Laboratory
| | | | - Yon Hwangbo
- Cancer Genetics, Cold Spring Harbor Laboratory
| | - Caizhi Wu
- Cancer Genetics, Cold Spring Harbor Laboratory
| | | | - John E Wilkinson
- Unit for Laboratory Animal Medicine, University of Michigan–Ann Arbor
| | - Gary L Goldberg
- Ob/Gyn, Gynecologic Oncology, Zucker School of Medicine at Hofstra/Northwel
| | - Alea A Mills
- Div. of Cancer Genetics, Cold Spring Harbor Laboratory
| |
Collapse
|
13
|
Wang L, Zhao L, Zhang L, Jing X, Zhang Y, Shao S, Zhao X, Luo M. [Vascular endothelial growth factor promotes cancer stemness of triple-negative breast cancer via MAPK/ERK pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1484-1491. [PMID: 34755663 DOI: 10.12122/j.issn.1673-4254.2021.10.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the role of vascular endothelial growth factor (VEGF) in regulating triple-negative breast cancer (TNBC) stem cells and the possible pathways involved in this regulatory mechanism. METHODS The Oncomine database, UALCAN database and Human Protein Atlas (HPA) database were used to analyze the expression of VEGF in breast cancer and its association with the molecular subtypes and prognosis of breast cancer. Sphere formation assay was carried out to examine the effects of hVEGF165 on sphere formation ability of TNBC MDA-MB-231 cell line; Western blotting and RT-qPCR were performed to detect the expression of the tumor stem cell markers including CD44, c-Myc, Nanog, and ALDH1 and the activation of the related pathways. RESULTS Data from the online databases all showed a significant increase of VEGF expression in breast cancer tissues than in the adjacent tissues (P < 0.0001), and its expression level was associated with the molecular subtypes of breast cancer. Specifically, the expression of VEGF was markedly higher in TNBC than in other subtypes of breast cancer. Survival analysis showed that breast cancer patients with a high VEGF expression had a significantly shortened overall survival (P < 0.0001). In the cell experiments, the sphere formation ability of MDA-MB-231 cells was significantly enhanced after treatment with hVEGF165 (P=0.0029). Compared with the monolayer cells, MDA-MB-231 spheres showed significantly increased expressions of VEGF, NRP-1, CD44, Nanog and c-Myc. Treatment with hVEGF165 resulted in significant time-dependent up-regulation of the expressions of CD44, c-Myc, Nanog and ALDH1 and down-regulation of CD24 expression in the cells. The results of Western blotting demonstrated that treatment with hVEGF165 caused significant activation of the ERK/MAPK pathway in MDA-MB-231 cells. CONCLUSION VEGF promotes cancer stemness of triple-negative breast cancer possibly through the ERK/MAPK pathway.
Collapse
Affiliation(s)
- L Wang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - L Zhao
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - L Zhang
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - X Jing
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Y Zhang
- Department of Respiratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - S Shao
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - X Zhao
- Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - M Luo
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
14
|
Mickle M, Adhikary G, Shrestha S, Xu W, Eckert RL. VGLL4 inhibits YAP1/TEAD signaling to suppress the epidermal squamous cell carcinoma cancer phenotype. Mol Carcinog 2021; 60:497-507. [PMID: 34004031 PMCID: PMC8243851 DOI: 10.1002/mc.23307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022]
Abstract
Epidermal squamous cell carcinoma (SCC) develops in response to ultraviolet light exposure and is among the most common cancers. The transglutaminase 2 cancer cell survival protein stimulates the activity of the YAP1/TEAD transcription complex to drive the expression of genes that promote aggressive epidermal SCC cell invasion, migration, and tumor formation. Therefore, we are interested in mechanisms that may inhibit these events. Vestigial-like protein-4 (VGLL4) is a transcription cofactor/tumor suppressor that inhibits several pro-cancer pathways including YAP1 signaling. Our present studies show that VGLL4 inhibits YAP1/TEAD-dependent transcription to reduce the expression of YAP1 target genes (CCND1, CYR61, and CTGF) and pro-cancer collagen genes (COL1A2 and COL3A1). We further show that loss of these YAP1 regulated genes is required for VGLL4 suppression of the cancer cell phenotype, as forced CCND1 or COL1A2 expression partially restores the aggressive cancer phenotype in VGLL4 expressing cells. Consistent with these findings, VGLL4 expression reduces tumor formation, and this is associated with reduced CCND1, CYR61, CTGF, COL1A2, and COL1A3 mRNA and protein levels, and reduced EMT marker expression. These findings indicate that VGLL4 suppresses the malignant epidermal SCC cancer phenotype by inhibiting YAP1/TEAD-dependent pro-cancer signaling.
Collapse
Affiliation(s)
- McKayla Mickle
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Suruchi Shrestha
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Wen Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Department of Marlene and Stewart Greenebaum Comprehensive Cancer, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| |
Collapse
|
15
|
Douyère M, Chastagner P, Boura C. Neuropilin-1: A Key Protein to Consider in the Progression of Pediatric Brain Tumors. Front Oncol 2021; 11:665634. [PMID: 34277411 PMCID: PMC8281001 DOI: 10.3389/fonc.2021.665634] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropilins are transmembrane glycoproteins that play important roles in cardiovascular and neuronal development, as well as in immunological system regulations. NRP1 functions as a co-receptor, binding numerous ligands, such as SEMA 3 or VEGF and, by doing so, reinforcing their signaling pathways and can also interface with the cytoplasmic protein synectin. NRP1 is expressed in many cancers, such as brain cancers, and is associated with poor prognosis. The challenge today for patients with pediatric brain tumors is to improve their survival rate while minimizing the toxicity of current treatments. The aim of this review is to highlight the involvement of NRP1 in pediatric brain cancers, focusing essentially on the roles of NRP1 in cancer stem cells and in the regulation of the immune system. For this purpose, recent literature and tumor databases were analyzed to show correlations between NRP1 and CD15 (a stem cancer cells marker), and between NRP1 and PDL1, for various pediatric brain tumors, such as high- and low-grade gliomas, medulloblastomas, and ependymomas. Finally, this review suggests a relevant role for NRP1 in pediatric brain tumors progression and identifies it as a potential diagnostic or therapeutic target to improve survival and life quality of these young patients.
Collapse
Affiliation(s)
| | - Pascal Chastagner
- Université de Lorraine, CNRS, CRAN, Nancy, France.,Service d'Onco-Hématologie Pédiatrique, CHRU-Nancy, Nancy, France
| | - Cédric Boura
- Université de Lorraine, CNRS, CRAN, Nancy, France
| |
Collapse
|
16
|
Pokorná Z, Vysloužil J, Hrabal V, Vojtěšek B, Coates PJ. The foggy world(s) of p63 isoform regulation in normal cells and cancer. J Pathol 2021; 254:454-473. [PMID: 33638205 DOI: 10.1002/path.5656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
The p53 family member p63 exists as two major protein variants (TAp63 and ΔNp63) with distinct expression patterns and functional properties. Whilst downstream target genes of p63 have been studied intensively, how p63 variants are themselves controlled has been relatively neglected. Here, we review advances in understanding ΔNp63 and TAp63 regulation, highlighting their distinct pathways. TAp63 has roles in senescence and metabolism, and in germ cell genome maintenance, where it is activated post-transcriptionally by phosphorylation cascades after DNA damage. The function and regulation of TAp63 in mesenchymal and haematopoietic cells is less clear but may involve epigenetic control through DNA methylation. ΔNp63 functions to maintain stem/progenitor cells in various epithelia and is overexpressed in squamous and certain other cancers. ΔNp63 is transcriptionally regulated through multiple enhancers in concert with chromatin modifying proteins. Many signalling pathways including growth factors, morphogens, inflammation, and the extracellular matrix influence ΔNp63 levels, with inconsistent results reported. There is also evidence for reciprocal regulation, including ΔNp63 activating its own transcription. ΔNp63 is downregulated during cell differentiation through transcriptional regulation, while post-transcriptional events cause proteasomal degradation. Throughout the review, we identify knowledge gaps and highlight discordances, providing potential explanations including cell-context and cell-matrix interactions. Identifying individual p63 variants has roles in differential diagnosis and prognosis, and understanding their regulation suggests clinically approved agents for targeting p63 that may be useful combination therapies for selected cancer patients. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zuzana Pokorná
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jan Vysloužil
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Václav Hrabal
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Borˇivoj Vojtěšek
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Philip J Coates
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
17
|
Ahmed T, Mythreye K, Lee NY. Strength and duration of GIPC-dependent signaling networks as determinants in cancer. Neoplasia 2021; 23:181-188. [PMID: 33360508 PMCID: PMC7773760 DOI: 10.1016/j.neo.2020.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 10/25/2022]
Abstract
GIPC is a PDZ-domain containing adaptor protein that regulates the cell surface expression and endocytic trafficking of numerous transmembrane receptors and signaling complexes. Interactions with over 50 proteins have been reported to date including VEGFR, insulin-like growth factor-1 receptor (IGF-1R), GPCRs, and APPL, many of which have essential roles in neuronal and cardiovascular development. In cancer, a major subset of GIPC-binding receptors and cytoplasmic effectors have been shown to promote tumorigenesis or metastatic progression, while other subsets have demonstrated strong tumor-suppressive effects. Given that these diverse pathways are widespread in normal tissues and human malignancies, precisely how these opposing signals are integrated and regulated within the same tumor setting likely depend on the strength and duration of their interactions with GIPC. This review highlights the major pathways and divergent mechanisms of GIPC signaling in various cancers and provide a rationale for emerging GIPC-targeted cancer therapies.
Collapse
Affiliation(s)
- Tasmia Ahmed
- Deparment of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Nam Y Lee
- Deparment of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA; The University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
18
|
Jiang K, Dong C, Yin Z, Li R, Mao J, Wang C, Zhang J, Gao Z, Liang R, Wang Q, Wang L. Exosome-derived ENO1 regulates integrin α6β4 expression and promotes hepatocellular carcinoma growth and metastasis. Cell Death Dis 2020; 11:972. [PMID: 33184263 PMCID: PMC7661725 DOI: 10.1038/s41419-020-03179-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Alpha-enolase (ENO1) has been found to be dysregulated in several human malignancies, including hepatocellular carcinoma (HCC). Although the role of ENO1 as a glycolytic enzyme in HCC cells has been well characterized, little is known about the other roles of ENO1, especially exosome-derived ENO1, in regulating HCC progression. Here, we demonstrated that ENO1 is frequently upregulated in HCC cells or tissues, with even higher expression in highly metastatic HCC cells or metastatic tissues as well as in exosomes derived from highly metastatic sources. Moreover, ENO1 expression is associated with the tumor-node-metastasis (TNM) stage, differentiation grade and poor prognosis in HCC patients. Surprisingly, ENO1 can be transferred between HCC cells via exosome-mediated crosstalk, exhibiting an effect similar to that of ENO1 overexpression in HCC cells, which promoted the growth and metastasis of HCC cells with low ENO1 expression by upregulating integrin α6β4 expression and activating the FAK/Src-p38MAPK pathway. In summary, our data suggest that exosome-derived ENO1 is essential to promoting HCC growth, metastasis, and further patient deterioration. The findings from this study implicate a novel biomarker for the clinical evaluation of HCC progression, especially the prediction of HCC metastatic risk.
Collapse
Affiliation(s)
- Keqiu Jiang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China
| | - Chengyong Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China
| | - Zeli Yin
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China
| | - Rui Li
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China
| | - Jiakai Mao
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China
| | - Chengye Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China
| | - Junlin Zhang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China
| | - Zhenming Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China
| | - Rui Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China. .,Engineering Technology Research Center for Translational Medicine, Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China. .,Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, NO. 467 Zhongshan Road, Dalian, Liaoning, 116027, China.
| |
Collapse
|
19
|
Abstract
p63 (also known as TP63) is a transcription factor of the p53 family, along with p73. Multiple isoforms of p63 have been discovered and these have diverse functions encompassing a wide array of cell biology. p63 isoforms are implicated in lineage specification, proliferative potential, differentiation, cell death and survival, DNA damage response and metabolism. Furthermore, p63 is linked to human disease states including cancer. p63 is critical to many aspects of cell signaling, and in this Cell science at a glance article and the accompanying poster, we focus on the signaling cascades regulating TAp63 and ΔNp63 isoforms and those that are regulated by TAp63 and ΔNp63, as well the role of p63 in disease.
Collapse
Affiliation(s)
- Matthew L Fisher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.,Stony Brook University, Department of Molecular and Cell Biology, Stony Brook, NY, 11794, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
20
|
Feng Q, Gao H, Wen H, Huang H, Li Q, Liang M, Liu Y, Dong H, Cao X. Engineering the cellular mechanical microenvironment to regulate stem cell chondrogenesis: Insights from a microgel model. Acta Biomater 2020; 113:393-406. [PMID: 32629189 DOI: 10.1016/j.actbio.2020.06.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/07/2023]
Abstract
Biophysical cues (especially mechanical cues) embedded in cellular microenvironments show a critical impact on stem cell fate. Despite the capability of traditional hydrogels to mimic the feature of extracellular matrix (ECM) and tune their physicochemical properties via diverse approaches, their relatively large size not only induces biased results, but also hinders high-throughput screening and analysis. In this paper, a microgel model is proposed to recapitulate the role of 3D mechanical microenvironment on stem cell behaviors especially chondrogenesis in vitro. The small diameter of microgels brings the high surface area to volume ratio and then the enlarged diffusion area and shortened diffusion distance of soluble molecules, leading to uniform distribution of nutrients and negligible biochemical gradient inside microgels. To construct ECM-like microenvironment with tunable mechanical strength, three gelatin/hyaluronic acid hybrid microgels with low, medium and high crosslinking densities, i.e., Gel-HA(L), Gel-HA(M) and Gel-HA(H), are fabricated in microfluidic devices by Michael addition reaction between thiolated gelatin (Gel-SH) and ethylsulfated hyaluronic acid (HA-VS) with different substitution degrees of vinyl sulfone groups. Our results show that mouse bone marrow mesenchymal stem cell (BMSC) proliferation, distribution and chondrogenesis are all closely dependent on mechanical microenvironments in microgels. Noteworthily, BMSCs show a clear trend of differentiating into hyaline cartilage in Gel-HA(L) and fibrocartilage in Gel-HA(M) and Gel-HA(H). Whole transcriptome RNA sequencing reveals that mechanical microenvironment of microgels affects BMSC differentiation via TGF-β/Smad signaling pathway, Hippo signaling pathway and Integrin/YAP/TAZ signaling pathway. We believe this microgel model provides a new way to further explore the interaction between cells and 3D microenvironment. STATEMENT OF SIGNIFICANCE: In recent years, hydrogels have been frequently used to construct 3D microenvironment for cells. However, their relatively large size not only brings biased experimental results, but also limits high-throughput screening and analysis. Herein we propose a gelatin/hyaluronic acid microgel model to explore the effects of 3D cellular mechanical microenvironment (biophysical cues) on BMSC behaviors especially chondrogenesis, which can minimize the interference of biochemical gradients. Our results reveal that BMSC differentiation into either hyaline cartilage or fibrocartilage can be regulated via tailoring the mechanical properties of microgels. Whole transcriptome RNA sequencing proves that "TGF-β/Smad signaling pathway", "Hippo signaling pathway" and "Integrins/YAP/ TAZ signaling pathway" are activated or inhibited in this process.
Collapse
Affiliation(s)
- Qi Feng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Huichang Gao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Hongji Wen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Hanhao Huang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Minhua Liang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Yang Liu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P R China.
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P R China; Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
21
|
Linc-OIP5 in the breast cancer cells regulates angiogenesis of human umbilical vein endothelial cells through YAP1/Notch/NRP1 signaling circuit at a tumor microenvironment. Biol Res 2020; 53:5. [PMID: 32046779 PMCID: PMC7014737 DOI: 10.1186/s40659-020-0273-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background LincRNAs have been revealed to be tightly associated with various tumorigeneses and cancer development, but the roles of specific lincRNA on tumor-related angiogenesis was hardly studied. Here, we aimed to investigate whether linc-OIP5 in breast cancer cells affects the angiogenesis of HUVECs and whether the linc-OIP5 regulations are involved in angiogenesis-related Notch and Hippo signaling pathways. Methods A trans-well system co-cultured HUVECs with linc-OIP5 knockdown breast cancer cell MDA-MB-231 was utilized to study the proliferation, migration and tube formation abilities of HUVECs and alterations of related signaling indicators in breast cancer cells and their conditioned medium through a series of cell and molecular experiments. Results Overexpressed linc-OIP5, YAP1, and JAG1 were found in breast cancer cell lines MCF7 and MDA-MB-231 and the expression levels of YAP1 and JAG1 were proportional to the breast cancer tissue grades. MDA-MB-231 cells with linc-OIP5 knockdown led to weakened proliferation, migration, and tube formation capacity of co-cultured HUVECs. Besides, linc-OIP5 knockdown in co-cultured MDA-MB-231 cells showed downregulated YAP1 and JAG1 expression, combined with a reduced JAG1 level in conditioned medium. Furthermore, a disrupted DLL4/Notch/NRP1 signaling in co-cultured HUVECs were also discovered under this condition. Conclusion Hence, linc-OIP5 in MDA-MB-231 breast cancer cells may act on the upstream of the YAP1/Notch/NRP1 signaling circuit to affect proliferation, migration, and tube formation of co-cultured HUVECs in a non-cellular direct contact way through JAG1 in conditioned medium. These findings at least partially provide a new angiogenic signaling circuit in breast cancers and suggest linc-OIP5 could be considered as a therapeutic target in angiogenesis of breast cancers.
Collapse
|
22
|
Gu YY, Luo B, Li CY, Huang LS, Chen G, Feng ZB, Peng ZG. Expression and clinical significance of neuropilin-1 in Epstein-Barr virus-associated lymphomas. Cancer Biomark 2020; 25:259-273. [PMID: 31282408 DOI: 10.3233/cbm-192437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND The expression of neuropilin-1 (NRP-1) in Epstein-Barr virus (EBV)-associated lymphomas and its relationships with clinicopathological parameters was investigated. METHODS The researchers compared 111 cases of patients with lymphoma to 20 cases of reactive lymphoid hyperplasia. In situ hybridization was applied to observe the expression of EBV-encoded RNA (EBER) in lymphomas, and immunohistochemistry was used to detect the NRP-1 expression in lymphoma tissues and lymph node tissues with reactive hyperplasia. RESULTS In these 111 cases, the EBER of 62 cases (55.9%) appeared positive. NRP-1 was relatively highly expressed in lymphomas (P= 0.019). Further, NRP-1 showed higher expression in lymphomas with positive EBER than in negative ones. A comprehensive analysis revealed that NRP-1 was differently expressed in NK/T-cell lymphoma, Hodgkin's lymphoma, diffuse large B-cell lymphoma, and anaplastic large cell lymphoma (P= 0.027). Moreover, highly expressed NRP-1 was found to be a useful independent prognostic factor in assessing overall survival and progression-free survival rates in cases of non-Hodgkin's lymphoma (NHL). CONCLUSIONS NRP-1 exhibited higher expression in lymphomas, and it was positively expressed in EBV-positive lymphomas. Moreover, highly expressed NRP-1 can be used as an undesirable independent prognostic factor in NHL.
Collapse
Affiliation(s)
- Yong-Yao Gu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.,Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Bin Luo
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.,Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chun-Yao Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lan-Shan Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhi-Gang Peng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
23
|
Kim YJ, Baek DS, Lee S, Park D, Kang HN, Cho BC, Kim YS. Dual-targeting of EGFR and Neuropilin-1 attenuates resistance to EGFR-targeted antibody therapy in KRAS-mutant non-small cell lung cancer. Cancer Lett 2019; 466:23-34. [DOI: 10.1016/j.canlet.2019.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 02/08/2023]
|
24
|
Huang X, Ye Q, Chen M, Li A, Mi W, Fang Y, Zaytseva YY, O'Connor KL, Vander Kooi CW, Liu S, She QB. N-glycosylation-defective splice variants of neuropilin-1 promote metastasis by activating endosomal signals. Nat Commun 2019; 10:3708. [PMID: 31420553 PMCID: PMC6697747 DOI: 10.1038/s41467-019-11580-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Neuropilin-1 (NRP1) is an essential transmembrane receptor with a variety of cellular functions. Here, we identify two human NRP1 splice variants resulting from the skipping of exon 4 and 5, respectively, in colorectal cancer (CRC). Both NRP1 variants exhibit increased endocytosis/recycling activity and decreased levels of degradation, leading to accumulation on endosomes. This increased endocytic trafficking of the two NRP1 variants, upon HGF stimulation, is due to loss of N-glycosylation at the Asn150 or Asn261 site, respectively. Moreover, these NRP1 variants enhance interactions with the Met and β1-integrin receptors, resulting in Met/β1-integrin co-internalization and co-accumulation on endosomes. This provides persistent signals to activate the FAK/p130Cas pathway, thereby promoting CRC cell migration, invasion and metastasis. Blocking endocytosis or endosomal Met/β1-integrin/FAK signaling profoundly inhibits the oncogenic effects of both NRP1 variants. These findings reveal an important role for these NRP1 splice variants in the regulation of endocytic trafficking for cancer cell dissemination.
Collapse
Affiliation(s)
- Xiuping Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Qing Ye
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Min Chen
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenting Mi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yekaterina Y Zaytseva
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Kathleen L O'Connor
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Craig W Vander Kooi
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Qing-Bai She
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
| |
Collapse
|
25
|
Elaimy AL, Amante JJ, Zhu LJ, Wang M, Walmsley CS, FitzGerald TJ, Goel HL, Mercurio AM. The VEGF receptor neuropilin 2 promotes homologous recombination by stimulating YAP/TAZ-mediated Rad51 expression. Proc Natl Acad Sci U S A 2019; 116:14174-14180. [PMID: 31235595 PMCID: PMC6628806 DOI: 10.1073/pnas.1821194116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) signaling in tumor cells mediated by neuropilins (NRPs) contributes to the aggressive nature of several cancers, including triple-negative breast cancer (TNBC), independently of its role in angiogenesis. Understanding the mechanisms by which VEGF-NRP signaling contributes to the phenotype of such cancers is a significant and timely problem. We report that VEGF-NRP2 promote homologous recombination (HR) in BRCA1 wild-type TNBC cells by contributing to the expression and function of Rad51, an essential enzyme in the HR pathway that mediates efficient DNA double-strand break repair. Mechanistically, we provide evidence that VEGF-NRP2 stimulates YAP/TAZ-dependent Rad51 expression and that Rad51 is a direct YAP/TAZ-TEAD transcriptional target. We also discovered that VEGF-NRP2-YAP/TAZ signaling contributes to the resistance of TNBC cells to cisplatin and that Rad51 rescues the defects in DNA repair upon inhibition of either VEGF-NRP2 or YAP/TAZ. These findings reveal roles for VEGF-NRP2 and YAP/TAZ in DNA repair, and they indicate a unified mechanism involving VEGF-NRP2, YAP/TAZ, and Rad51 that contributes to resistance to platinum chemotherapy.
Collapse
Affiliation(s)
- Ameer L Elaimy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
- Medical Scientist Training Program, University of Massachusetts Medical School, Worcester, MA 01605
| | - John J Amante
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Mengdie Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Charlotte S Walmsley
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Thomas J FitzGerald
- Department of Radiation Oncology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
26
|
Grun D, Adhikary G, Eckert RL. NRP-1 interacts with GIPC1 and SYX to activate p38 MAPK signaling and cancer stem cell survival. Mol Carcinog 2019; 58:488-499. [PMID: 30456845 PMCID: PMC6417965 DOI: 10.1002/mc.22943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 01/13/2023]
Abstract
Epidermal cancer stem cells (ECS cells) comprise a limited population of cells that form aggressive, rapidly growing, and highly vascularized tumors. VEGF-A/NRP-1 signaling is a key driver of the ECS cell phenotype and aggressive tumor formation. However, relatively less is known regarding the downstream events following VEGF-A/NRP-1 interaction. In the present study, we show that VEGF-A/NRP-1, GIPC1, and Syx interact to increase RhoA-dependent p38 MAPK activity to enhance ECS cell spheroid formation, invasion, migration, and angiogenic potential. Inhibition or knockdown of NRP-1, GIPC1 or Syx attenuates RhoA and p38 activity to reduce the ECS cell phenotype, and NRP-1 knockout, or pharmacologic inhibition of VEGF-A/NRP-1 interaction or RhoA activity, reduces p38 MAPK activity and tumor growth. Moreover, expression of wild-type or constitutively-active RhoA, or p38, in NRP1-knockout cells, restores p38 activity and the ECS cell phenotype. These findings suggest that NRP-1 forms a complex with GIPC1 and Syx to activate RhoA/ROCK-dependent p38 activity to enhance the ECS cell phenotype and tumor formation.
Collapse
Affiliation(s)
- Daniel Grun
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
27
|
Eckert RL. Transglutaminase 2 takes center stage as a cancer cell survival factor and therapy target. Mol Carcinog 2019; 58:837-853. [PMID: 30693974 DOI: 10.1002/mc.22986] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
Transglutaminase 2 (TG2) has emerged as a key cancer cell survival factor that drives epithelial to mesenchymal transition, angiogenesis, metastasis, inflammation, drug resistance, cancer stem cell survival and stemness, and invasion and migration. TG2 can exist in a GTP-bound signaling-active conformation or in a transamidase-active conformation. The GTP bound conformation of TG2 contributes to cell survival and the transamidase conformation can contribute to cell survival or death. We present evidence suggesting that TG2 has a role in human cancer, summarize what is known about the TG2 mechanism of action in a range of cancer types, and discuss TG2 as a cancer therapy target.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
VEGF/Neuropilin Signaling in Cancer Stem Cells. Int J Mol Sci 2019; 20:ijms20030490. [PMID: 30678134 PMCID: PMC6387347 DOI: 10.3390/ijms20030490] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 02/07/2023] Open
Abstract
The function of vascular endothelial growth factor (VEGF) in cancer extends beyond angiogenesis and vascular permeability. Specifically, VEGF-mediated signaling occurs in tumor cells and this signaling contributes to key aspects of tumorigenesis including the self-renewal and survival of cancer stem cells (CSCs). In addition to VEGF receptor tyrosine kinases, the neuropilins (NRPs) are critical for mediating the effects of VEGF on CSCs, primarily because of their ability to impact the function of growth factor receptors and integrins. VEGF/NRP signaling can regulate the expression and function of key molecules that have been implicated in CSC function including Rho family guanosine triphosphatases (GTPases) and transcription factors. The VEGF/NRP signaling axis is a prime target for therapy because it can confer resistance to standard chemotherapy, which is ineffective against most CSCs. Indeed, several studies have shown that targeting either NRP1 or NRP2 can inhibit tumor initiation and decrease resistance to other therapies.
Collapse
|
29
|
Elaimy AL, Mercurio AM. Convergence of VEGF and YAP/TAZ signaling: Implications for angiogenesis and cancer biology. Sci Signal 2018; 11:11/552/eaau1165. [PMID: 30327408 DOI: 10.1126/scisignal.aau1165] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vascular endothelial growth factor (VEGF) stimulates endothelial cells to promote both developmental and pathological angiogenesis. VEGF also directly affects tumor cells and is associated with the initiation, progression, and recurrence of tumors, as well as the emergence and maintenance of cancer stem cells (CSCs). Studies have uncovered the importance of the transcriptional regulators YAP and TAZ in mediating VEGF signaling. For example, VEGF stimulates the GTPase activity of Rho family members and thereby alters cytoskeletal dynamics, which contributes to the activation of YAP and TAZ. In turn, YAP- and TAZ-mediated changes in gene expression sustain Rho family member activity and cytoskeletal effects to promote both vascular growth and remodeling in endothelial cells and the acquisition of stem-like traits in tumor cells. In this Review, we discuss how these findings further explain the pathophysiological roles of VEGF and YAP/TAZ, identify their connections to other receptor-mediated pathways, and reveal ways of therapeutically targeting their convergent signals in patients.
Collapse
Affiliation(s)
- Ameer L Elaimy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Medical Scientist Training Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|