1
|
Cheng D, Liu Z, Sun R, Jiang Y, Zeng Z, Zhao R, Mo Z. Overexpression of mir-489-3p inhibits proliferation and migration of non-small cell lung cancer cells by suppressing the HER2/PI3K/AKT/Snail signaling pathway. Heliyon 2024; 10:e35832. [PMID: 39224367 PMCID: PMC11367056 DOI: 10.1016/j.heliyon.2024.e35832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Background Lung cancer is a highly prevalent malignancy with significant morbidity and mortality rates. MiR-489-3p, a microRNA, has been identified as a regulator of tumor cell proliferation and invasion. Its expression is downregulated in non-small cell lung cancer (NSCLC). Elucidating the molecular mechanisms underlying miR-489-3p's role in NSCLC pathogenesis is crucial for identifying potential diagnostic and therapeutic targets. Methods To investigate the molecular mechanism of miR-489-3p in NSCLC, this study utilized A549, a commonly used NSCLC cell line. MiR-489-3p mimics and inhibitors were transfected into A549 cells. Additionally, co-transfection experiments using wortmannin, an inhibitor of the PI3K/AKT pathway, were performed. Expression of miR-489-3p and related proteins was analyzed by Western blotting and quantitative real-time PCR (qRT-PCR). Cell migration and proliferation were assessed by wound healing and colony formation assays, respectively. Results Overexpression of miR-489-3p significantly inhibited the proliferation and migration of A549 cells. This inhibitory effect was further enhanced upon co-transfected with wortmannin. Analysis of human lung specimens showed increased expression of HER2, PI3K, and AKT in lung adenocarcinoma tissues compared to adjacent non-cancerous tissues. Conclusions These findings suggest that miR-489-3p overexpression may inhibit NSCLC cell proliferation and migration by suppressing the HER2/PI3K/AKT/Snail signaling pathway. This study elucidates miR-489-3p's molecular mechanisms in NSCLC and provides experimental basis for identifying early diagnostic markers and novel therapeutic targets.
Collapse
Affiliation(s)
- Di Cheng
- The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Zhong Liu
- The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, Hunan, China
- Joint Laboratory of Chronic Disease Prevention and Research in Guilin Medical University & Hunan Mingshun, Shaodong, 422800, China
| | - Renren Sun
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Yun Jiang
- The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, Hunan, China
| | - Zhaoming Zeng
- Joint Laboratory of Chronic Disease Prevention and Research in Guilin Medical University & Hunan Mingshun, Shaodong, 422800, China
| | - Rui Zhao
- The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, Hunan, China
| | - Zhongcheng Mo
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, 541199, Guangxi, China
- Joint Laboratory of Chronic Disease Prevention and Research in Guilin Medical University & Hunan Mingshun, Shaodong, 422800, China
| |
Collapse
|
2
|
Hoeflich A, Galow AM, Brenmoehl J, Hadlich F. Growth and development of the mammary gland in mice-control of the insulin-like growth factor system by hormones and metalloproteases, and putative interference with micro RNAs. Anim Front 2023; 13:77-85. [PMID: 37324202 PMCID: PMC10266761 DOI: 10.1093/af/vfad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Affiliation(s)
| | - Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Frieder Hadlich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
3
|
MicroRNAs: A Link between Mammary Gland Development and Breast Cancer. Int J Mol Sci 2022; 23:ijms232415978. [PMID: 36555616 PMCID: PMC9786715 DOI: 10.3390/ijms232415978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is among the most common cancers in women, second to skin cancer. Mammary gland development can influence breast cancer development in later life. Processes such as proliferation, invasion, and migration during mammary gland development can often mirror processes found in breast cancer. MicroRNAs (miRNAs), small, non-coding RNAs, can repress post-transcriptional RNA expression and can regulate up to 80% of all genes. Expression of miRNAs play a key role in mammary gland development, and aberrant expression can initiate or promote breast cancer. Here, we review the role of miRNAs in mammary development and breast cancer, and potential parallel roles. A total of 32 miRNAs were found to be expressed in both mammary gland development and breast cancer. These miRNAs are involved in proliferation, metastasis, invasion, and apoptosis in both processes. Some miRNAs were found to have contradictory roles, possibly due to their ability to target many genes at once. Investigation of miRNAs and their role in mammary gland development may inform about their role in breast cancer. In particular, by studying miRNA in development, mechanisms and potential targets for breast cancer treatment may be elucidated.
Collapse
|
4
|
Soni M, Saatci O, Gupta G, Patel Y, Keerthi Raja MR, Li J, Liu X, Xu P, Wang H, Fan D, Sahin O, Chen H. miR-489 Confines Uncontrolled Estrogen Signaling through a Negative Feedback Mechanism and Regulates Tamoxifen Resistance in Breast Cancer. Int J Mol Sci 2022; 23:ijms23158086. [PMID: 35897675 PMCID: PMC9331933 DOI: 10.3390/ijms23158086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Approximately 75% of diagnosed breast cancer tumors are estrogen-receptor-positive tumors and are associated with a better prognosis due to response to hormonal therapies. However, around 40% of patients relapse after hormonal therapies. Genomic analysis of gene expression profiles in primary breast cancers and tamoxifen-resistant cell lines suggested the potential role of miR-489 in the regulation of estrogen signaling and development of tamoxifen resistance. Our in vitro analysis showed that loss of miR-489 expression promoted tamoxifen resistance, while overexpression of miR-489 in tamoxifen-resistant cells restored tamoxifen sensitivity. Mechanistically, we found that miR-489 is an estrogen-regulated miRNA that negatively regulates estrogen receptor signaling by using at least the following two mechanisms: (i) modulation of the ER phosphorylation status by inhibiting MAPK and AKT kinase activities; (ii) regulation of nuclear-to-cytosol translocation of estrogen receptor α (ERα) by decreasing p38 expression and consequently ER phosphorylation. In addition, miR-489 can break the positive feed-forward loop between the estrogen-Erα axis and p38 MAPK in breast cancer cells, which is necessary for its function as a transcription factor. Overall, our study unveiled the underlying molecular mechanism by which miR-489 regulates an estrogen signaling pathway through a negative feedback loop and uncovered its role in both the development of and overcoming of tamoxifen resistance in breast cancers.
Collapse
Affiliation(s)
- Mithil Soni
- Department of Biological Science, University of South Carolina, Columbia, SC 29208, USA; (M.S.); (G.G.); (Y.P.); (M.R.K.R.)
| | - Ozge Saatci
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (O.S.); (P.X.); (O.S.)
| | - Gourab Gupta
- Department of Biological Science, University of South Carolina, Columbia, SC 29208, USA; (M.S.); (G.G.); (Y.P.); (M.R.K.R.)
| | - Yogin Patel
- Department of Biological Science, University of South Carolina, Columbia, SC 29208, USA; (M.S.); (G.G.); (Y.P.); (M.R.K.R.)
| | - Manikanda Raja Keerthi Raja
- Department of Biological Science, University of South Carolina, Columbia, SC 29208, USA; (M.S.); (G.G.); (Y.P.); (M.R.K.R.)
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29201, USA;
| | - Xinfeng Liu
- Department of Mathematics, University of South Carolina, Columbia, SC 29201, USA;
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (O.S.); (P.X.); (O.S.)
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA;
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA;
| | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; (O.S.); (P.X.); (O.S.)
| | - Hexin Chen
- Department of Biological Science, University of South Carolina, Columbia, SC 29208, USA; (M.S.); (G.G.); (Y.P.); (M.R.K.R.)
- Correspondence: ; Tel.: +1-803-777-2928; Fax: +1-803-777-4002
| |
Collapse
|
5
|
Lai CY, Hsieh MC, Yeh CM, Yang PS, Cheng JK, Wang HH, Lin KH, Nie ST, Lin TB, Peng HY. MicroRNA-489-3p attenuates neuropathic allodynia by regulating oncoprotein DEK/TET1-dependent epigenetic modification in the dorsal horn. Neuropharmacology 2022; 210:109028. [PMID: 35304174 DOI: 10.1016/j.neuropharm.2022.109028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Originally characterized as an oncoprotein overexpressed in many forms of cancer that participates in numerous cellular pathways, DEK has since been well described regarding the regulation of epigenetic markers and transcription factors in neurons. However, its role in neuropathic allodynia processes remain elusive and intriguingly complex. Here, we show that DEK, which is induced in spinal dorsal horn neurons after spinal nerve ligation (SNL), is regulated by miR-489-3p. Moreover, SNL-induced decrease in miR-489-3p expression increased the expression of DEK, which recruited TET1 to the promoter fragments of the Bdnf, Grm5, and Stat3 genes, thereby enhancing their transcription in the dorsal horn. Remarkably, these effects were also induced by intrathecally administering naïve animals with miR-489-3p inhibitor, which could be inhibited by knockdown of TET1 siRNA or DEK siRNA. Conversely, delivery of intrathecal miR-489-3p-mimic into SNL rats attenuated allodynia behavior and reversed protein expression coupled to the promoter segments in the dorsal horn. Thus, a spinal miR-489-3p/DEK/TET1 transcriptional axis may contribute to neuropathic allodynia. These results may provide a new target for treating neuropathic allodynia.
Collapse
Affiliation(s)
- Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung, Taiwan
| | - Po-Sheng Yang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Siao-Tong Nie
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
| |
Collapse
|
6
|
Belitškin D, Pant SM, Munne P, Suleymanova I, Belitškina K, Hongisto HA, Englund J, Raatikainen T, Klezovitch O, Vasioukhin V, Li S, Wu Q, Monni O, Kuure S, Laakkonen P, Pouwels J, Tervonen TA, Klefström J. Hepsin regulates TGFβ signaling via fibronectin proteolysis. EMBO Rep 2021; 22:e52532. [PMID: 34515392 PMCID: PMC8567232 DOI: 10.15252/embr.202152532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor‐beta (TGFβ) is a multifunctional cytokine with a well‐established role in mammary gland development and both oncogenic and tumor‐suppressive functions. The extracellular matrix (ECM) indirectly regulates TGFβ activity by acting as a storage compartment of latent‐TGFβ, but how TGFβ is released from the ECM via proteolytic mechanisms remains largely unknown. In this study, we demonstrate that hepsin, a type II transmembrane protease overexpressed in 70% of breast tumors, promotes canonical TGFβ signaling through the release of latent‐TGFβ from the ECM storage compartment. Mammary glands in hepsin CRISPR knockout mice showed reduced TGFβ signaling and increased epithelial branching, accompanied by increased levels of fibronectin and latent‐TGFβ1, while overexpression of hepsin in mammary tumors increased TGFβ signaling. Cell‐free and cell‐based experiments showed that hepsin is capable of direct proteolytic cleavage of fibronectin but not latent‐TGFβ and, importantly, that the ability of hepsin to activate TGFβ signaling is dependent on fibronectin. Altogether, this study demonstrates a role for hepsin as a regulator of the TGFβ pathway in the mammary gland via a novel mechanism involving proteolytic downmodulation of fibronectin.
Collapse
Affiliation(s)
- Denis Belitškin
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Shishir M Pant
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Pauliina Munne
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Ilida Suleymanova
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Kati Belitškina
- Pathology Department, North Estonia Medical Centre, Tallinn, Estonia
| | - Hanna-Ala Hongisto
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Johanna Englund
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Tiina Raatikainen
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Olga Klezovitch
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shuo Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Qingyu Wu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Outi Monni
- Research Programs Unit/Applied Tumor Genomics Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Satu Kuure
- GM-Unit, Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Laboratory Animal Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jeroen Pouwels
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Topi A Tervonen
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Juha Klefström
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Finnish Cancer Institute & FICAN South, Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|
7
|
Richard V, Davey MG, Annuk H, Miller N, Dwyer RM, Lowery A, Kerin MJ. MicroRNAs in Molecular Classification and Pathogenesis of Breast Tumors. Cancers (Basel) 2021; 13:5332. [PMID: 34771496 PMCID: PMC8582384 DOI: 10.3390/cancers13215332] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
The current clinical practice of breast tumor classification relies on the routine immunohistochemistry-based expression analysis of hormone receptors, which is inadequate in addressing breast tumor heterogeneity and drug resistance. MicroRNA expression profiling in tumor tissue and in the circulation is an efficient alternative to intrinsic molecular subtyping that enables precise molecular classification of breast tumor variants, the prediction of tumor progression, risk stratification and also identifies critical regulators of the tumor microenvironment. This review integrates data from protein, gene and miRNA expression studies to elaborate on a unique miRNA-based 10-subtype taxonomy, which we propose as the current gold standard to allow appropriate classification and separation of breast cancer into a targetable strategy for therapy.
Collapse
Affiliation(s)
- Vinitha Richard
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (M.G.D.); (H.A.); (N.M.); (R.M.D.); (A.L.)
| | | | | | | | | | | | - Michael J. Kerin
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (M.G.D.); (H.A.); (N.M.); (R.M.D.); (A.L.)
| |
Collapse
|
8
|
Divisato G, Piscitelli S, Elia M, Cascone E, Parisi S. MicroRNAs and Stem-like Properties: The Complex Regulation Underlying Stemness Maintenance and Cancer Development. Biomolecules 2021; 11:biom11081074. [PMID: 34439740 PMCID: PMC8393604 DOI: 10.3390/biom11081074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Embryonic stem cells (ESCs) have the extraordinary properties to indefinitely proliferate and self-renew in culture to produce different cell progeny through differentiation. This latter process recapitulates embryonic development and requires rounds of the epithelial-mesenchymal transition (EMT). EMT is characterized by the loss of the epithelial features and the acquisition of the typical phenotype of the mesenchymal cells. In pathological conditions, EMT can confer stemness or stem-like phenotypes, playing a role in the tumorigenic process. Cancer stem cells (CSCs) represent a subpopulation, found in the tumor tissues, with stem-like properties such as uncontrolled proliferation, self-renewal, and ability to differentiate into different cell types. ESCs and CSCs share numerous features (pluripotency, self-renewal, expression of stemness genes, and acquisition of epithelial-mesenchymal features), and most of them are under the control of microRNAs (miRNAs). These small molecules have relevant roles during both embryogenesis and cancer development. The aim of this review was to recapitulate molecular mechanisms shared by ESCs and CSCs, with a special focus on the recently identified classes of microRNAs (noncanonical miRNAs, mirtrons, isomiRs, and competitive endogenous miRNAs) and their complex functions during embryogenesis and cancer development.
Collapse
|
9
|
Li C, Gao Q, Wang M, Xin H. LncRNA SNHG1 contributes to the regulation of acute myeloid leukemia cell growth by modulating miR-489-3p/SOX12/Wnt/β-catenin signaling. J Cell Physiol 2020; 236:653-663. [PMID: 32592199 DOI: 10.1002/jcp.29892] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/28/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
The long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) is a critical regulator for the development and progression of multiple tumors. Yet, the role of SNHG1 in acute myeloid leukemia (AML) is unknown. The present study demonstrated that SNHG1 expression was upregulated in AML. SNHG1 silencing markedly repressed AML cell growth, whereas SNHG1 overexpression had the opposite effect. MicroRNA-489-3p (miR-489-3p) was identified as a SNHG1-targeting miRNA. SNHG1 knockdown increased miR-489-3p expression. Low expression of miR-489-3p was correlated with high expression of SNHG1 in AML tissues. miR-489-3p overexpression restricted AML cell growth, and SRY-related high-mobility-group box 12 (SOX12) was identified as a miR-489-3p-targeting gene. SNHG1 inhibition or miR-489-3p overexpression inactivated Wnt/β-catenin signaling through downregulation of SOX12. SOX12 overexpression partially reversed the SNHG1 knockdown- or miR-489-3p overexpression-mediated effects. Taken together, these data indicate that suppression of SNHG1 downregulates AML cell growth by inactivating SOX12/Wnt/β-catenin signaling via upregulating miR-489-3p.
Collapse
Affiliation(s)
- Chengliang Li
- Department of Hematology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Qiuying Gao
- Department of Haematology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Minjuan Wang
- Department of General Practice, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Hong Xin
- Department of Cardiovasology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
10
|
Zhang H, Li L, Yuan C, Wang C, Gao T, Zheng Z. MiR-489 inhibited the development of gastric cancer via regulating HDAC7 and PI3K/AKT pathway. World J Surg Oncol 2020; 18:73. [PMID: 32284070 PMCID: PMC7155329 DOI: 10.1186/s12957-020-01846-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023] Open
Abstract
Background Mounting evidences have displayed that the dysregulation of miRNAs plays important roles in the pathogenesis of gastric cancer (GC). The purpose of this study was to explore the biological functions and potential mechanism of miR-489 in GC progression. Methods Quantitative real-time PCR (qRT-PCR) and western blot were performed to examine the mRNA expression and protein levels of miR-489 and HDAC7. The relationship between miR-489 and HDAC7 was analyzed by Spearman rank correlation. 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assays were conducted for determining the effect of miR-489 and HDAC7 on GC cell viability, migration, and invasion. TargetScan and luciferase reporter assay were used to confirm the target gene of miR-489 in GC cells. Results The findings showed that miR-489 was dramatically decreased in GC tissues and GC cell lines (SGC-7901 and MKN45). Moreover, it was closely correlated with overall survival (OS) and progression-free survival (PFS) of GC patients. Downregulation of miR-489 significantly promoted GC cell proliferation, invasion, and migration. Additionally, HDAC7 was confirmed as the direct target of miR-489. Knockdown of HDAC7 exerted inhibited effect on GC progression and it markedly overturned miR-489 inhibitor-medicated effect on GC cells. More interestingly, via targeting HDAC7, miR-489 blocked the activation of PI3K/AKT pathway in GC cells. Conclusions Correctively, miR-489 played as a tumor suppressor in GC cell growth by targeting HDAC7, and miR-489 might function as a novel biomarker for diagnosis or therapeutic targets of human GC.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Gastroenterology, People's Hospital of Rizhao, Rizhao, 276800, China
| | - Lingyun Li
- Department of Internal Medicine, Laishan Branch Hospital of Yantai Yuhuangding Hospital, Yantai, 264003, China
| | - Cuicui Yuan
- Department of Cardiovascular Medicine, The People's Hospital of zhangqiu area, Jinan, 250200, China
| | - Congcong Wang
- Department of Operation Room, The People's Hospital of zhangqiu area, Jinan, 250200, China
| | - Tiantian Gao
- Department of Nephrology, The People's Hospital of zhangqiu area, Jinan, 250200, China
| | - Zhiwei Zheng
- Department of General Surgery, People's Hospital of Rizhao, 126, Tai'an Road, Rizhao, 276800, China.
| |
Collapse
|
11
|
A Review of ULK1-Mediated Autophagy in Drug Resistance of Cancer. Cancers (Basel) 2020; 12:cancers12020352. [PMID: 32033142 PMCID: PMC7073181 DOI: 10.3390/cancers12020352] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
The difficulty of early diagnosis and the development of drug resistance are two major barriers to the successful treatment of cancer. Autophagy plays a crucial role in several cellular functions, and its dysregulation is associated with both tumorigenesis and drug resistance. Unc-51-like kinase 1 (ULK1) is a serine/threonine kinase that participates in the initiation of autophagy. Many studies have indicated that compounds that directly or indirectly target ULK1 could be used for tumor therapy. However, reports of the therapeutic effects of these compounds have come to conflicting conclusions. In this work, we reviewed recent studies related to the effects of ULK1 on the regulation of autophagy and the development of drug resistance in cancers, with the aim of clarifying the mechanistic underpinnings of this therapeutic target.
Collapse
|
12
|
Tang W, Wang D, Shao L, Liu X, Zheng J, Xue Y, Ruan X, Yang C, Liu L, Ma J, Li Z, Liu Y. LINC00680 and TTN-AS1 Stabilized by EIF4A3 Promoted Malignant Biological Behaviors of Glioblastoma Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:905-921. [PMID: 32000032 PMCID: PMC7063483 DOI: 10.1016/j.omtn.2019.10.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 09/30/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022]
Abstract
Glioblastomas are the most common and malignant intracranial tumors with a low survival rate. Dysregulation of long non-coding RNAs and RNA-binding protein causes various diseases, including cancers. However, the function of LINC00680 and TTN-AS1 in the progression of glioblastomas is still elusive. In this study, we detected that LINC00680 and TTN-AS1 were upregulated in glioblastoma cells. RNA-binding protein EIF4A3 could prolong the half-life of LINC00680 and TTN-AS1. Knockdown of EIF4A3, LINC00680, and TTN-AS1 impaired proliferation, migration, and invasion and inhibited the growth of tumor in vivo and promoted apoptosis of glioblastoma cells. miR-320b was proven to be a target of LINC00680 and TTN-AS1. They interacted with miR-320b as competing endogenous RNAs, which resulted in the reduction of binding between transcriptional factor EGR3 (early growth response 3) mRNA and miR-320b. The accumulation of EGR3 promoted expression of plakophilin (PKP)2, which could activate the epidermal growth factor receptor (EFGR) pathway, leading to the malignant biological behaviors of glioblastoma cells. In summary, LINC00680 and TTN-AS1 promoted glioblastoma cell malignant biological behaviors via the miR-320b/EGR3/PKP2 axis by being stabilized by EIF4A3, which may provide a novel strategy for glioblastoma therapy.
Collapse
Affiliation(s)
- Wei Tang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Lianqi Shao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
| |
Collapse
|
13
|
Duforestel M, Nadaradjane A, Bougras-Cartron G, Briand J, Olivier C, Frenel JS, Vallette FM, Lelièvre SA, Cartron PF. Glyphosate Primes Mammary Cells for Tumorigenesis by Reprogramming the Epigenome in a TET3-Dependent Manner. Front Genet 2019; 10:885. [PMID: 31611907 PMCID: PMC6777643 DOI: 10.3389/fgene.2019.00885] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/22/2019] [Indexed: 01/11/2023] Open
Abstract
The acknowledgment that pollutants might influence the epigenome raises serious concerns regarding their long-term impact on the development of chronic diseases. The herbicide glyphosate has been scrutinized for an impact on cancer incidence, but reports demonstrate the difficulty of linking estimates of exposure and response analysis. An approach to better apprehend a potential risk impact for cancer is to follow a synergistic approach, as cancer rarely occurs in response to one risk factor. The known influence of glyphosate on estrogen-regulated pathway makes it a logical target of investigation in breast cancer research. We have used nonneoplastic MCF10A cells in a repeated glyphosate exposure pattern over 21 days. Glyphosate triggered a significant reduction in DNA methylation, as shown by the level of 5-methylcytosine DNA; however, in contrast to strong demethylating agent and cancer promoter UP peptide, glyphosate-treated cells did not lead to tumor development. Whereas UP acts through a DNMT1/PCNA/UHRF1 pathway, glyphosate triggered increased activity of ten-eleven translocation (TET)3. Combining glyphosate with enhanced expression of microRNA (miR) 182-5p associated with breast cancer induced tumor development in 50% of mice. Culture of primary cells from resected tumors revealed a luminal B (ER+/PR-/HER2-) phenotype in response to glyphosate-miR182-5p exposure with sensitivity to tamoxifen and invasive and migratory potentials. Tumor development could be prevented either by specifically inhibiting miR 182-5p or by treating glyphosate-miR 182-5p-cells with dimethyloxallyl glycine, an inhibitor of TET pathway. Looking for potential epigenetic marks of TET-mediated gene regulation under glyphosate exposure, we identified MTRNR2L2 and DUX4 genes, the hypomethylation of which was sustained even after stopping glyphosate exposure for 6 weeks. Our findings reveal that low pressure but sustained DNA hypomethylation occurring via the TET pathway primes cells for oncogenic response in the presence of another potential risk factor. These results warrant further investigation of glyphosate-mediated breast cancer risk.
Collapse
Affiliation(s)
- Manon Duforestel
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Arulraj Nadaradjane
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Gwenola Bougras-Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Joséphine Briand
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Christophe Olivier
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Service de toxicologie, Faculté de pharmacie de Nantes, Nantes, France
| | - Jean-Sébastien Frenel
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - François M Vallette
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Pierre-François Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| |
Collapse
|