1
|
MacTaggart B, Wang J, Tang HY, Kashina A. Arginylation of ⍺-tubulin at E77 regulates microtubule dynamics via MAP1S. J Cell Biol 2025; 224:e202406099. [PMID: 39852692 PMCID: PMC11775831 DOI: 10.1083/jcb.202406099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/26/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Arginylation is the posttranslational addition of arginine to a protein by arginyltransferase-1 (ATE1). Previous studies have found that ATE1 targets multiple cytoskeletal proteins, and Ate1 deletion causes cytoskeletal defects, including reduced cell motility and adhesion. Some of these defects have been linked to actin arginylation, but the role of other arginylated cytoskeletal proteins has not been studied. Here, we characterize tubulin arginylation and its role in the microtubule cytoskeleton. We identify ATE1-dependent arginylation of ⍺-tubulin at E77. Ate1-/- cells and cells overexpressing non-arginylatable ⍺-tubulinE77A both show a reduced microtubule growth rate and increased microtubule stability. Additionally, they show an increase in the fraction of the stabilizing protein MAP1S associated with microtubules, suggesting that E77 arginylation directly regulates MAP1S binding. Knockdown of Map1s is sufficient to rescue microtubule growth rate and stability to wild-type levels. Together, these results demonstrate a new type of tubulin regulation by posttranslational arginylation, which modulates microtubule growth rate and stability through the microtubule-associated protein, MAP1S.
Collapse
Affiliation(s)
- Brittany MacTaggart
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| | - Junling Wang
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, Wistar Institute, Philadelphia, PA, USA
| | - Anna Kashina
- University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Øye H, Lundekvam M, Caiella A, Hellesvik M, Arnesen T. Protein N-terminal modifications: molecular machineries and biological implications. Trends Biochem Sci 2025:S0968-0004(24)00303-7. [PMID: 39837675 DOI: 10.1016/j.tibs.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
The majority of eukaryotic proteins undergo N-terminal (Nt) modifications facilitated by various enzymes. These enzymes, which target the initial amino acid of a polypeptide in a sequence-dependent manner, encompass peptidases, transferases, cysteine oxygenases, and ligases. Nt modifications - such as acetylation, fatty acylations, methylation, arginylation, and oxidation - enhance proteome complexity and regulate protein targeting, stability, and complex formation. Modifications at protein N termini are thereby core components of a large number of biological processes, including cell signaling and motility, autophagy regulation, and plant and animal oxygen sensing. Dysregulation of Nt-modifying enzymes is implicated in several human diseases. In this feature review we provide an overview of the various protein Nt modifications occurring either co- or post-translationally, the enzymes involved, and the biological impact.
Collapse
Affiliation(s)
- Hanne Øye
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Malin Lundekvam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessia Caiella
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
3
|
Kumar A, O'Shea CR, Yadav VK, Kandasamy G, Moorthy BT, Ambrose EA, Mulati A, Fontanesi F, Zhang F. Arginyltransferase1 drives a mitochondria-dependent program to induce cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624728. [PMID: 39605427 PMCID: PMC11601567 DOI: 10.1101/2024.11.22.624728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cell death regulation is essential for stress adaptation and/or signal response. Past studies have shown that eukaryotic cell death is mediated by an evolutionarily conserved enzyme, arginyltransferase1 (Ate1). The downregulation of Ate1, as seen in many types of cancer, prominently increases cellular tolerance to a variety of stressing conditions. Conversely, in yeast and mammalian cells, Ate1 is elevated under acute oxidative stress conditions and this change appears to be essential for triggering cell death. However, studies of Ate1 were conventionally focused on its function in inducing protein degradation via the N-end rule pathway in the cytosol, leading to an incomplete understanding of the role of Ate1 in cell death. Our recent investigation shows that Ate1 dually exists in the cytosol and mitochondria, the latter of which has an established role in cell death initiation. Here, by using budding yeast as a model organism, we found that mitochondrial translocation of Ate1 is promoted by the presence of oxidative stressors and is essential for inducing cell death with characteristics of apoptosis. Also, we found that Ate1-induced cell death is dependent on the formation of the mitochondrial permeability pore and at least partly dependent on the action of mitochondria-contained factors including the apoptosis-inducing factor, but is not directly dependent on mitochondrial electron transport chain activity or its derived reactive oxygen species (ROS). Furthermore, our evidence suggests that, contrary to widespread assumptions, the cytosolic protein degradation pathways including ubiquitin-proteasome, autophagy, or endoplasmic reticulum (ER) stress response has little or negligible impacts on Ate1-induced cell death. We conclude that Ate1 controls the mitochondria-dependent cell death pathway.
Collapse
|
4
|
Naga R, Poddar S, Bhattacharjee A, Kar P, Bose A, Mattaparthi VSK, Mukherjee O, Saha S. Structural analysis of human ATE1 isoforms and their interactions with Arg-tRNA Arg. J Biomol Struct Dyn 2024; 42:7554-7573. [PMID: 37505085 DOI: 10.1080/07391102.2023.2240449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Posttranslational protein arginylation has been shown as a key regulator of cellular processes in eukaryotes by affecting protein stability, function, and interaction with macromolecules. Thus, the enzyme Arginyltransferase and its targets, are of immense interest to modulate cellular processes in the normal and diseased state. While the study on the effect of this posttranslational modification in mammalian systems gained momentum in the recent times, the detail structures of human ATE1 (hATE1) enzymes has not been investigated so far. Thus, the purpose of this study was to predict the overall structure and the structure function relationship of hATE1 enzyme and its four isoforms. The structure of four ATE1 isoforms were modelled and were docked with 3'end of the Arg-tRNAArg which acts as arginine donor in the arginylation reaction, followed by MD simulation. All the isoforms showed two distinct domains. A compact domain and a somewhat flexible domain as observed in the RMSF plot. A distinct similarity in the overall structure and interacting residues were observed between hATE1-1 and X4 compared to hATE1-2 and 5. While the putative active sites of all the hATE1 isoforms were located at the same pocket, differences were observed in the active site residues across hATE1 isoforms suggesting different substrate specificity. Mining of nsSNPs showed several nsSNPs including cancer associated SNPs with deleterious consequences on hATE1 structure and function. Thus, the current study for the first time shows the structural differences in the mammalian ATE1 isoforms and their possible implications in the function of these proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rahul Naga
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
| | - Sayan Poddar
- Department of Bioscience and Biomedical Engineering, IIT Indore, Indore, India
| | - Arghyadeep Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
- Department of Microbiology, Kingston College of Science, Barasat, Kolkata, West Bengal, India
| | - Parimal Kar
- Department of Bioscience and Biomedical Engineering, IIT Indore, Indore, India
| | - Avishek Bose
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
| | | | - Oindrilla Mukherjee
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
| | - Sougata Saha
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, India
| |
Collapse
|
5
|
Hidayatullah F, Andhika DP, Prasetyawan W, Rahman ZA, Pratama PKD, Hakim L. Effects of metformin and silodosin as supplementary treatments to abiraterone on human telomerase reverse transcriptase (hTERT) level in metastatic castration-resistant prostate cancer (mCRPC) cells: An in vitro study. NARRA J 2024; 4:e680. [PMID: 38798828 PMCID: PMC11125411 DOI: 10.52225/narra.v4i1.680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/17/2024] [Indexed: 05/29/2024]
Abstract
The antiproliferative properties of metformin and silodosin have been observed in prostate cancer. Furthermore, it is hypothesized that the molecular pathways related to these drugs may impact the levels of human telomerase reverse transcriptase (hTERT) in prostate cancer cells. The aim of this study was to assess the effect of metformin and silodosin on the levels of hTERT in metastatic castration-resistant prostate cancer (mCRPC) cells. The present study employed an experimental design with a post-test-only control group. This study utilized the PC3 cell line as a model for mCRPC. A viability experiment was conducted using the CCK-8 method to determine the inhibitory concentration (IC50) values of metformin, silodosin, and abiraterone acetate (AA) after a 72-hour incubation period of PC3 cells. In order to investigate the levels of hTERT, PC3 cells were divided into two control groups: a negative control and a standard therapy with AA. Additionally, three experimental combination groups were added: metformin with AA; silodosin with AA; and metformin, silodosin and AA. The level of hTERT was measured using sandwich ELISA technique. The difference in hTERT levels was assessed using ANOVA followed by a post hoc test. The IC50 values for metformin, silodosin, and AA were 17.7 mM, 44.162 mM, and 66.9 μM, respectively. Our data indicated that the combination of metformin with AA and the combination of metformin, silodosin and AA decreased the hTERT levels when compared to control, AA, and silodosin with AA. The administration of metformin resulted in a reduction of hTERT levels in the PC3 cell line, but the impact of silodosin on hTERT levels was not statistically significant compared to AA group.
Collapse
Affiliation(s)
- Furqan Hidayatullah
- Department of Urology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Dimas P. Andhika
- Department of Urology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Universitas Airlangga Teaching Hospital, Surabaya, Indonesia
| | | | - Zakaria A. Rahman
- Department of Urology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Putu KD. Pratama
- Department of Urology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Lukman Hakim
- Department of Urology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Universitas Airlangga Teaching Hospital, Surabaya, Indonesia
| |
Collapse
|
6
|
Feng Y, Wang K, Qin M, Zhuang Q, Chen Z. MiR-183-5p promotes migration and invasion of prostate cancer by targeting TET1. BMC Urol 2023; 23:116. [PMID: 37430206 DOI: 10.1186/s12894-023-01286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the common malignant tumors worldwide. MiR-183-5p has been reported involved in the initiation of human PCa, this study aimed to investigate whether miR-183-5p affects the development of prostate cancer. METHODS In this study, we analyzed the expression of miR-183-5p in PCa patients and its correlation with clinicopathological parameters based on TCGA data portal. CCK-8, migration assay and invasion and wound-healing assay were performed to detect proliferation, migration and invasion in PCa cells. RESULTS We found the expression of miR-183-5p was significantly increased in PCa tissues, and high expression of miR-183 was positively associated with poor prognosis of PCa patients. Over-expression of miR-183-5p promoted the migration, invasion capacities of PCa cells, whereas knockdown of miR-183-5p showed reversed function. Furthermore, luciferase reporter assay showed TET1 was identified as a direct target of miR-183-5p, which was negatively correlation with miR-183-5p expression level. Importantly, rescue experiments demonstrated TET1 over-expression could reverse miR-183-5p mimic induced-acceleration of PCa malignant progression. CONCLUSION Our results indicated that miR-183-5p could act as a tumor promoter in PCa and it accelerated the malignant progression of PCa by directly targeting and down-regulating TET1.
Collapse
Affiliation(s)
- Yuehua Feng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Kai Wang
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minchao Qin
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Zhen Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
7
|
Kim JW, Moon SW, Mo HY, Son HJ, Choi EJ, Yoo NJ, Ann CH, Lee SH. Concurrent inactivating mutations and expression losses of RGS2, HNF1A, and CAPN12 candidate tumor suppressor genes in colon cancers. Pathol Res Pract 2023; 241:154288. [PMID: 36566600 DOI: 10.1016/j.prp.2022.154288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Microsatellite instability-high (MSI-H) colorectal cancer (CRC) is different from microsatellite stable (MSS) CRC concerning biological, and clinical features. In MSI-H CRCs, defects of mismatch repair genes produce increased mutation accumulation in repetitive DNA sequences. To see whether candidate tumor suppressor genes (TSGs) are altered in MSI-H CRC, we studied frameshift mutation and protein expression of candidate TSGs of RGS2, HNF1A, HNF1B, CAPN12, RCBTB2, ATE1, PKNOX1, and USP19. We found frameshift mutations of RGS2 in 5 (5%), HNF1A in 6 (6%), HNF1B in 2 (2%), CAPN12 in 3 (3%), RCBTB2 in 4 (4%), ATE1 in 2 (2%), PKNOX1 in 2 (2%), and USP19 in 2 (2%) MSI-H CRCs. However, we found no such mutations in MSS CRCs. RCBTB2, CAPN12, HNF1A, and HNF1B frameshift mutations revealed the regional difference in the same tumors. In addition, we identified loss of RGS2, HNF1A, and CAPN12 protein expression irrespective of MSI phenotype in 13-29% of CRCs. The results indicate that many TSGs harbor concurrent inactivating mutations and protein loss in MSI-H CRCs with intratumoral mutational heterogeneity, and that MSS CRCs are altered by protein losses. These alterations could contribute to CRC development and underlying mechanisms and consequences of the TSG alterations remain to be clarified.
Collapse
Affiliation(s)
- Jae Woong Kim
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Seong Won Moon
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Ha Yoon Mo
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Hyun Ji Son
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Eun Ji Choi
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Nam Jin Yoo
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Chang Hyeok Ann
- Departments of General Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea.
| | - Sug Hyung Lee
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea.
| |
Collapse
|
8
|
Sevoflurane activates the IL-6/HO-1 pathway to promote macrophage M2 polarization and prostate cancer lung metastasis. Int Immunopharmacol 2022; 113:109380. [DOI: 10.1016/j.intimp.2022.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
9
|
Moorthy BT, Jiang C, Patel DM, Ban Y, O'Shea CR, Kumar A, Yuan T, Birnbaum MD, Gomes AV, Chen X, Fontanesi F, Lampidis TJ, Barrientos A, Zhang F. The evolutionarily conserved arginyltransferase 1 mediates a pVHL-independent oxygen-sensing pathway in mammalian cells. Dev Cell 2022; 57:654-669.e9. [PMID: 35247316 PMCID: PMC8957288 DOI: 10.1016/j.devcel.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 12/01/2021] [Accepted: 02/07/2022] [Indexed: 12/20/2022]
Abstract
The response to oxygen availability is a fundamental process concerning metabolism and survival/death in all mitochondria-containing eukaryotes. However, the known oxygen-sensing mechanism in mammalian cells depends on pVHL, which is only found among metazoans but not in other species. Here, we present an alternative oxygen-sensing pathway regulated by ATE1, an enzyme ubiquitously conserved in eukaryotes that influences protein degradation by posttranslational arginylation. We report that ATE1 centrally controls the hypoxic response and glycolysis in mammalian cells by preferentially arginylating HIF1α that is hydroxylated by PHD in the presence of oxygen. Furthermore, the degradation of arginylated HIF1α is independent of pVHL E3 ubiquitin ligase but dependent on the UBR family proteins. Bioinformatic analysis of human tumor data reveals that the ATE1/UBR and pVHL pathways jointly regulate oxygen sensing in a transcription-independent manner with different tissue specificities. Phylogenetic analysis suggests that eukaryotic ATE1 likely evolved during mitochondrial domestication, much earlier than pVHL.
Collapse
Affiliation(s)
- Balaji T Moorthy
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Chunhua Jiang
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Devang M Patel
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Yuguang Ban
- Department of Public Health Sciences, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Corin R O'Shea
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Akhilesh Kumar
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Tan Yuan
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Michael D Birnbaum
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Xi Chen
- Department of Public Health Sciences, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Flavia Fontanesi
- Department of Biochemistry & Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Theodore J Lampidis
- Department of Cell Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry & Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Fangliang Zhang
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
10
|
Xu C, Li YM, Sun B, Zhong FJ, Yang LY. ATE1 Inhibits Liver Cancer Progression through RGS5-Mediated Suppression of Wnt/β-Catenin Signaling. Mol Cancer Res 2021; 19:1441-1453. [PMID: 34158395 PMCID: PMC9398136 DOI: 10.1158/1541-7786.mcr-21-0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/04/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023]
Abstract
Arginyltransferase (ATE1) plays critical roles in many biological functions including cardiovascular development, angiogenesis, adipogenesis, muscle contraction, and metastasis of cancer. However, the role of ATE1 in hepatocellular carcinoma (HCC) remains unknown. In this study, we find that ATE1 plays an essential role in growth and malignancy of liver cancer. ATE1 expression is significantly reduced in human HCC samples compared with normal liver tissue. In addition, low ATE1 expression is correlated with aggressive clinicopathologic features and is an independent poor prognostic factor for overall survival and disease-free survival of patients with HCC. Lentivirus-mediated ATE1 knockdown significantly promoted liver cancer growth, migration, and disease progression in vitro and in vivo. Opposing results were observed when ATE1 was upregulated. Mechanistically, ATE1 accelerated the degradation of β-catenin and inhibited Wnt signaling by regulating turnover of Regulator of G Protein Signaling 5 (RGS5). Loss- and gain-of-function assays confirmed that RGS5 was a key effector of ATE1-mediated regulation of Wnt signaling. Further studies indicated that RGS5 might be involved in regulating the activity of GSK3-β, a crucial component of the cytoplasmic destruction complex. Treatment with a GSK inhibitor (CHIR99021) cooperated with ablation of ATE1 or RGS5 overexpression to promote Wnt/β-catenin signaling, but overexpression of ATE1 or RGS5 knockdown did not reverse the effect of GSK inhibitor. IMPLICATIONS: ATE1 inhibits liver cancer progression by suppressing Wnt/β-catenin signaling and can serve as a potentially valuable prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Cong Xu
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Ming Li
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Sun
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang-Jing Zhong
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lian-Yue Yang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Corresponding Author: Lian-Yue Yang, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, Hunan 410008, China. Phone: 731-8432-7365; Fax: 731-8432-7618; E-mail:
| |
Collapse
|
11
|
Dai Y, Gao X. Inhibition of cancer cell-derived exosomal microRNA-183 suppresses cell growth and metastasis in prostate cancer by upregulating TPM1. Cancer Cell Int 2021; 21:145. [PMID: 33653339 PMCID: PMC7927228 DOI: 10.1186/s12935-020-01686-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Emerging evidence continues to highlight the significant role of microRNAs (miRNAs) in the regulation of cancer growth and metastasis. Herein, the current study aimed to elucidate the role of exosomal miR-183 in prostate cancer development. METHODS Initially, public microarray-based gene expression profiling of prostate cancer was employed to identify differentially expressed miRNAs. The putative target gene TPM1 of miR-183 was subsequently predicted, followed by the application of a luciferase reporter assay and examination of the expression patterns in prostate cancer patients and cell lines. The effects of miR-183 and TPM1 on processes such as cell proliferation, invasion and migration were evaluated using in vitro gain- and loss-of-function experiments. The effect of PC3 cells-derived exosomal miR-183 was validated in LNCaP cells. In vivo experiments were also performed to examine the effect of miR-183 on prostate tumor growth. RESULTS High expression of miR-183 accompanied with low expression of TPM1 was detected in prostate cancer. Our data indicated that miR-183 could target and downregulate TPM1, with the overexpression of miR-183 and exosomal miR-183 found to promote cell proliferation, migration, and invasion in prostate cancer. Furthermore, the tumor-promoting effect of exosome-mediated delivery of miR-183 was subsequently confirmed in a tumor xenograft model. CONCLUSIONS Taken together, the key findings of our study demonstrate that prostate cancer cell-derived exosomal miR-183 enhance prostate cancer cell proliferation, invasion and migration via the downregulation of TPM1, highlighting a promising therapeutic target against prostate cancer.
Collapse
Affiliation(s)
- Yanping Dai
- Department of Pathology and Pathophysiology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Center of Reproductive Medicine, Yueyang Maternity and Child Health Hospital, Yueyang, 414000, People's Republic of China
- Centre for Reproductive Research, National School of Medicine Guiyang Medical University Magic, Guiyang, 550004, China
| | - Xiaoqin Gao
- Department of Pathology and Pathophysiology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, People's Republic of China.
- Zunyi Medical and Pharmaceutical College, No. 2, North Section of Ping an Avenue, Xinpu New District, Zunyi, 563000, Guizhou, People's Republic of China.
- Centre for Reproductive Research, National School of Medicine Guiyang Medical University Magic, Guiyang, 550004, China.
| |
Collapse
|
12
|
Kalinina M, Skvortsov D, Kalmykova S, Ivanov T, Dontsova O, Pervouchine D. Multiple competing RNA structures dynamically control alternative splicing in the human ATE1 gene. Nucleic Acids Res 2021; 49:479-490. [PMID: 33330934 PMCID: PMC7797038 DOI: 10.1093/nar/gkaa1208] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/07/2020] [Accepted: 11/28/2020] [Indexed: 11/14/2022] Open
Abstract
The mammalian Ate1 gene encodes an arginyl transferase enzyme with tumor suppressor function that depends on the inclusion of one of the two mutually exclusive exons (MXE), exons 7a and 7b. We report that the molecular mechanism underlying MXE splicing in Ate1 involves five conserved regulatory intronic elements R1-R5, of which R1 and R4 compete for base pairing with R3, while R2 and R5 form an ultra-long-range RNA structure spanning 30 Kb. In minigenes, single and double mutations that disrupt base pairings in R1R3 and R3R4 lead to the loss of MXE splicing, while compensatory triple mutations that restore RNA structure revert splicing to that of the wild type. In the endogenous Ate1 pre-mRNA, blocking the competing base pairings by LNA/DNA mixmers complementary to R3 leads to the loss of MXE splicing, while the disruption of R2R5 interaction changes the ratio of MXE. That is, Ate1 splicing is controlled by two independent, dynamically interacting, and functionally distinct RNA structure modules. Exon 7a becomes more included in response to RNA Pol II slowdown, however it fails to do so when the ultra-long-range R2R5 interaction is disrupted, indicating that exon 7a/7b ratio depends on co-transcriptional RNA folding. In sum, these results demonstrate that splicing is coordinated both in time and in space over very long distances, and that the interaction of these components is mediated by RNA structure.
Collapse
Affiliation(s)
- Marina Kalinina
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow 143026, Russia
| | - Dmitry Skvortsov
- Moscow State University, Faculty of Chemistry, Moscow 119991, Russia
| | - Svetlana Kalmykova
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow 143026, Russia
| | - Timofei Ivanov
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow 143026, Russia
| | - Olga Dontsova
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow 143026, Russia
- Moscow State University, Faculty of Chemistry, Moscow 119991, Russia
| | - Dmitri D Pervouchine
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Moscow 143026, Russia
| |
Collapse
|
13
|
Jiang C, Moorthy BT, Patel DM, Kumar A, Morgan WM, Alfonso B, Huang J, Lampidis TJ, Isom DG, Barrientos A, Fontanesi F, Zhang F. Regulation of Mitochondrial Respiratory Chain Complex Levels, Organization, and Function by Arginyltransferase 1. Front Cell Dev Biol 2020; 8:603688. [PMID: 33409279 PMCID: PMC7779560 DOI: 10.3389/fcell.2020.603688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Arginyltransferase 1 (ATE1) is an evolutionary-conserved eukaryotic protein that localizes to the cytosol and nucleus. It is the only known enzyme in metazoans and fungi that catalyzes posttranslational arginylation. Lack of arginylation has been linked to an array of human disorders, including cancer, by altering the response to stress and the regulation of metabolism and apoptosis. Although mitochondria play relevant roles in these processes in health and disease, a causal relationship between ATE1 activity and mitochondrial biology has yet to be established. Here, we report a phylogenetic analysis that traces the roots of ATE1 to alpha-proteobacteria, the mitochondrion microbial ancestor. We then demonstrate that a small fraction of ATE1 localizes within mitochondria. Furthermore, the absence of ATE1 influences the levels, organization, and function of respiratory chain complexes in mouse cells. Specifically, ATE1-KO mouse embryonic fibroblasts have increased levels of respiratory supercomplexes I+III2+IVn. However, they have decreased mitochondrial respiration owing to severely lowered complex II levels, which leads to accumulation of succinate and downstream metabolic effects. Taken together, our findings establish a novel pathway for mitochondrial function regulation that might explain ATE1-dependent effects in various disease conditions, including cancer and aging, in which metabolic shifts are part of the pathogenic or deleterious underlying mechanism.
Collapse
Affiliation(s)
- Chunhua Jiang
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Balaji T Moorthy
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Devang M Patel
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Akhilesh Kumar
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - William M Morgan
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Belkis Alfonso
- Department of Human Genetics, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Jingyu Huang
- Department of Human Genetics, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Theodore J Lampidis
- Department of Cell Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Daniel G Isom
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Institute for Data Science and Computing, University of Miami, Coral Gables, FL, United States
| | - Antoni Barrientos
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Department of Biochemistry & Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Flavia Fontanesi
- Department of Biochemistry & Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Fangliang Zhang
- Department of Molecular & Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
14
|
Van V, Smith AT. ATE1-Mediated Post-Translational Arginylation Is an Essential Regulator of Eukaryotic Cellular Homeostasis. ACS Chem Biol 2020; 15:3073-3085. [PMID: 33228359 DOI: 10.1021/acschembio.0c00677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Arginylation is a protein post-translational modification catalyzed by arginyl-tRNA transferases (ATE1s), which are critical enzymes conserved across all eukaryotes. Arginylation is a key step in the Arg N-degron pathway, a hierarchical cellular signaling pathway that links the ubiquitin-dependent degradation of a protein to the identity of its N-terminal amino acid side chain. The fidelity of ATE1-catalyzed arginylation is imperative, as this post-translational modification regulates several essential biological processes such as cardiovascular maturation, chromosomal segregation, and even the stress response. While the process of ATE1-catalyzed arginylation has been studied in detail at the cellular level, much remains unknown about the structure of this important enzyme, its mechanism of action, and its regulation. In this work, we detail the current state of knowledge on ATE1-catalyzed arginylation, and we discuss both ongoing and future directions that will reveal the structural and mechanistic details of this essential eukaryotic cellular regulator.
Collapse
Affiliation(s)
- Verna Van
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T. Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
15
|
Xie P, Liu M, Chen F, Wu S, Shao T, Wang W, Xu C, Zhou H. Long Non-coding RNA AGAP2-AS1 Silencing Inhibits PDLIM5 Expression Impeding Prostate Cancer Progression via Up-Regulation of MicroRNA-195-5p. Front Genet 2020; 11:1030. [PMID: 33101368 PMCID: PMC7546420 DOI: 10.3389/fgene.2020.01030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer remains a significant cause of cancer-related deaths in male population. More recently, accumulating evidence continues to implicate long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in various types of cancers, including prostate cancer. The current study aimed to elucidate the role of lncRNA AGAP2-AS1/miR-195-5p/PDZ and LIM domain 5 (PDLIM5) in prostate cancer progression. Initially, microarray expression profiles were applied to screen differentially expressed lncRNAs/miRNAs/genes associated with prostate cancer. Dual-luciferase reporter and RNA pull-down/RIP assays were subsequently performed to explore the interactions among lncRNA AGAP2-AS1, miR-195-5p, and PDLIM5, after which their expression was detected in cancer tissues and cells. Next, gain- and loss-of-function approaches were employed to elucidate the mechanism of lncRNA AGAP2-AS1/miR-195-5p/PDLIM5 in the processes of cell proliferation, migration and invasion as well as tumor growth. LncRNA AGAP2-AS1 was found to be highly expressed in prostate cancer. Silencing of lncRNA AGAP2-AS1 contributed to the suppression of proliferation, migration and invasion of cancer cells in vitro. Besides, lncRNA AGAP2-AS1 could bind to miR-195-5p which targeted PDLIM5 and subsequently downregulated its expression, ultimately impeding the progression of prostate cancer. Additionally, lncRNA AGAP2-AS1 inhibition led to an up-regulated expression of miR-195-5p and down-regulated PDLIM5 expression, resulting in delayed tumor growth in vivo. Taken together, the key findings of our study demonstrated that lncRNA AGAP2-AS1 silencing exerted suppressive effects on the development of prostate cancer via the miR-195-5p-dependent downregulation of PDLIM5. Our findings highlighted the potential of lncRNA AGAP2-AS1 as a promising novel molecular target for prostate cancer therapy.
Collapse
Affiliation(s)
- Pingbo Xie
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Mingsheng Liu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Fen Chen
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Shaomei Wu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Tao Shao
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Wei Wang
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Chenxiang Xu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Hongqing Zhou
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| |
Collapse
|
16
|
Wiley DJ, D’Urso G, Zhang F. Posttranslational Arginylation Enzyme Arginyltransferase1 Shows Genetic Interactions With Specific Cellular Pathways in vivo. Front Physiol 2020; 11:427. [PMID: 32435206 PMCID: PMC7218141 DOI: 10.3389/fphys.2020.00427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022] Open
Abstract
Arginyltransferase1 (ATE1) is a conserved enzyme in eukaryotes mediating posttranslational arginylation, the addition of an extra arginine to an existing protein. In mammals, the dysregulations of the ATE1 gene (ate1) is shown to be involved in cardiovascular abnormalities, cancer, and aging-related diseases. Although biochemical evidence suggested that arginylation may be involved in stress response and/or protein degradation, the physiological role of ATE1 in vivo has never been systematically determined. This gap of knowledge leads to difficulties for interpreting the involvements of ATE1 in diseases pathogenesis. Since ate1 is highly conserved between human and the unicellular organism Schizosaccharomyces pombe (S. pombe), we take advantage of the gene-knockout library of S. pombe, to investigate the genetic interactions between ate1 and other genes in a systematic and unbiased manner. By this approach, we found that ate1 has a surprisingly small and focused impact size. Among the 3659 tested genes, which covers nearly 75% of the genome of S. pombe, less than 5% of them displayed significant genetic interactions with ate1. Furthermore, these ate1-interacting partners can be grouped into a few discrete clustered categories based on their functions or their physical interactions. These categories include translation/transcription regulation, biosynthesis/metabolism of biomolecules (including histidine), cell morphology and cellular dynamics, response to oxidative or metabolic stress, ribosomal structure and function, and mitochondrial function. Unexpectedly, inconsistent to popular belief, very few genes in the global ubiquitination or degradation pathways showed interactions with ate1. Our results suggested that ATE1 specifically regulates a handful of cellular processes in vivo, which will provide critical mechanistic leads for studying the involvements of ATE1 in normal physiologies as well as in diseased conditions.
Collapse
Affiliation(s)
- David J. Wiley
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Gennaro D’Urso
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
17
|
Noh KH, Jeong AJ, Lee H, Lee SH, Yi E, Chang PS, Kwak C, Ye SK. Crosstalk Between Prostate Cancer Cells and Tumor-Associated Fibroblasts Enhances the Malignancy by Inhibiting the Tumor Suppressor PLZF. Cancers (Basel) 2020; 12:cancers12051083. [PMID: 32349303 PMCID: PMC7281005 DOI: 10.3390/cancers12051083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Although prostate cancer is clinically manageable during the early stages of progression, metastatic progression severely compromises the prognosis and leads to mortality. Constitutive activation of STAT3 has been connected to prostate cancer malignancy, and abolishing the STAT3 activity may diminish tumor growth and metastasis. However, its suppressor genes and pathways have not been well established. In this study, we show that promyelocytic leukemia zinc finger (PLZF) has a putative tumor-suppressor function in prostate cancer by inhibiting phosphorylation of STAT3. Compared with a benign prostate, high-grade prostate cancer patient tissue was negatively correlated with PLZF expression. PLZF depletion accelerated proliferation and survival, migration, and invasion in human prostate cancer cells. Mechanistically, we demonstrated a novel role of PLZF as the transcriptional regulator of the tyrosine phosphatase SHP-1 that inhibits the oncogenic JAKs–STAT3 pathway. These results suggest that the collapse of PLZF expression by the CCL3 derived from fibroblasts accelerates the cell migration and invasion properties of prostate cancer cells. Our results suggest that increasing PLZF could be an attractive strategy for suppressing prostate cancer metastasis as well as for tumor growth.
Collapse
Affiliation(s)
- Kum Hee Noh
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (K.H.N.); (A.J.J.); (H.L.); (S.-H.L.); (E.Y.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ae Jin Jeong
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (K.H.N.); (A.J.J.); (H.L.); (S.-H.L.); (E.Y.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Haeri Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (K.H.N.); (A.J.J.); (H.L.); (S.-H.L.); (E.Y.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Song-Hee Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (K.H.N.); (A.J.J.); (H.L.); (S.-H.L.); (E.Y.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eunhee Yi
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (K.H.N.); (A.J.J.); (H.L.); (S.-H.L.); (E.Y.)
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea;
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul 03080, Korea;
- Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; (K.H.N.); (A.J.J.); (H.L.); (S.-H.L.); (E.Y.)
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2740-8281
| |
Collapse
|