1
|
Wojtukiewicz MZ, Mysliwiec M, Tokajuk A, Kruszewska J, Politynska B, Jamroze A, Wojtukiewicz AM, Tang DG, Honn KV. Tissue factor pathway inhibitor-2 (TFPI-2)-an underappreciated partaker in cancer and metastasis. Cancer Metastasis Rev 2024; 43:1185-1204. [PMID: 39153052 PMCID: PMC11554837 DOI: 10.1007/s10555-024-10205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
The coagulation system is known to play an important role in cancer development and metastasis, but the precise mechanisms by which it does so remain incompletely understood. With this in mind, we provide an updated overview of the effects of TFPI-2, a protease inhibitor, on cancer development and metastasis. TFPI-2 interacts with the thrombin cascade and also employs other mechanisms to suppress cancer growth and dissemination, which include extracellular matrix stabilization, promotion of caspase-mediated cell apoptosis, inhibition of angiogenesis and transduction of intracellular signals. Down-regulation of TFPI-2 expression is well documented in numerous types of neoplasms, mainly via promoter methylation. However, the exact role of TFPI-2 in cancer progression and possible approaches to up-regulate TFPI-2 expression warrant further studies. Strategies to reactivate TFPI-2 may represent a promising direction for future anticancer studies and therapy development.
Collapse
Affiliation(s)
- Marek Z Wojtukiewicz
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa, 15-027, Bialystok, Poland.
- Department of Clinical Oncology, Comprehensive Cancer Center of Bialystok, 12 Ogrodowa, 15-027, Bialystok, Poland.
| | - Marta Mysliwiec
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa, 15-027, Bialystok, Poland
| | - Anna Tokajuk
- Department of Clinical Oncology, Comprehensive Cancer Center of Bialystok, 12 Ogrodowa, 15-027, Bialystok, Poland
| | - Joanna Kruszewska
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa, 15-027, Bialystok, Poland
| | - Barbara Politynska
- Department of Psychology and Philosophy, Medical University of Bialystok, 37 Szpitalna, 15-295, Bialystok, Poland
- Robinson College, University of Cambridge, Grange Road, Cambridge, CB3 9AN, UK
| | - Anmbreen Jamroze
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Anna M Wojtukiewicz
- Department of Psychology and Philosophy, Medical University of Bialystok, 37 Szpitalna, 15-295, Bialystok, Poland
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Kenneth V Honn
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Wayne State University, 540 East Canfield Avenue, Detroit, MI, 48201, USA
- Karmanos Cancer Institute, 4100 John R St, Detroit, MI, 48201, USA
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| |
Collapse
|
2
|
Wang C, Tang Y, Zhang S, Li M, Li Q, Xiao M, Yang L, Wang Y. Histone MARylation regulates lipid metabolism in colorectal cancer by promoting IGFBP1 methylation. Exp Cell Res 2024; 443:114308. [PMID: 39490887 DOI: 10.1016/j.yexcr.2024.114308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
In the global health community, colorectal cancer (CRC) is a major concern, with a high rate of incidence. Mono-ADP-ribosylation (MARylation) is a type of epigenetics and recognized as one of the causes of CRC development and progression. Although the modification level and target proteins in CRC remain unclear, it has been found that MARylation of arginine-117 of histone 3 (H3R117) promotes the proliferation, upregulates methylation of tumor suppressor gene, and is tightly associated with the metabolic processes in LoVo cells. Lipid metabolism disorder is involved in the development of CRC at the early stage. Our study revealed that MARylation of H3R117 of the LoVo cells modulated lipid metabolism, increased cholesterol synthesis, promoted lipid raft (LR) protein IGF-1R distribution, and inhibited cell apoptosis through IGFBP1. In addition, bioinformatics analyses revealed that IGFBP1 promoter was hypermethylated in CRC when compared to that in normal tissues. Moreover, H3R117 MARylation upregulated the methylation of IGFBP1 promoter through histone H3 citrullination (H3cit) by increasing the H3K9me2, heterochromatin protein1 (HP1), and DNA methyltransferase 1 (DNMT1) enrichment of IGFBP1 promoter. Accordingly, IGFBP1 may function as a tumor suppressor gene, while H3R117 MARylation may promote CRC development. Our study findings enrich the available data on epigenetics of CRC and provide a new idea and experimental basis for H3R117 MARylation as a target in CRC treatment.
Collapse
Affiliation(s)
- Chuanling Wang
- Department of Pathophysiology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Yi Tang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Clinical Pathololgy Laboratory of Pathology Diagnostic Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - ShuXian Zhang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Clinical Pathololgy Laboratory of Pathology Diagnostic Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ming Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Clinical Pathololgy Laboratory of Pathology Diagnostic Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - QingShu Li
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Clinical Pathololgy Laboratory of Pathology Diagnostic Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ming Xiao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Clinical Pathololgy Laboratory of Pathology Diagnostic Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lian Yang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Clinical Pathololgy Laboratory of Pathology Diagnostic Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - YaLan Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Clinical Pathololgy Laboratory of Pathology Diagnostic Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
3
|
Özdemir C, Purkey LR, Sanchez A, Miller KM. PARticular MARks: Histone ADP-ribosylation and the DNA damage response. DNA Repair (Amst) 2024; 140:103711. [PMID: 38924925 DOI: 10.1016/j.dnarep.2024.103711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Cellular and molecular responses to DNA damage are highly orchestrated and dynamic, acting to preserve the maintenance and integrity of the genome. Histone proteins bind DNA and organize the genome into chromatin. Post-translational modifications of histones have been shown to play an essential role in orchestrating the chromatin response to DNA damage by regulating the DNA damage response pathway. Among the histone modifications that contribute to this intricate network, histone ADP-ribosylation (ADPr) is emerging as a pivotal component of chromatin-based DNA damage response (DDR) pathways. In this review, we survey how histone ADPr is regulated to promote the DDR and how it impacts chromatin and other histone marks. Recent advancements have revealed histone ADPr effects on chromatin structure and the regulation of DNA repair factor recruitment to DNA lesions. Additionally, we highlight advancements in technology that have enabled the identification and functional validation of histone ADPr in cells and in response to DNA damage. Given the involvement of DNA damage and epigenetic regulation in human diseases including cancer, these findings have clinical implications for histone ADPr, which are also discussed. Overall, this review covers the involvement of histone ADPr in the DDR and highlights potential future investigations aimed at identifying mechanisms governed by histone ADPr that participate in the DDR, human diseases, and their treatments.
Collapse
Affiliation(s)
- Cem Özdemir
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Laura R Purkey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
4
|
Guo S, Wan Q, Xu M, Chen M, Chen Z. Transcriptome analysis of host anti-Aeromonas hydrophila infection revealed the pathogenicity of A. hydrophila to American eels (Anguilla rostrata). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109504. [PMID: 38508539 DOI: 10.1016/j.fsi.2024.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Aeromonas hydrophila is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-A. hydrophila infection remains uncertain. In this study, LD50 of A. hydrophila to American eels was determined and bacterial load in the liver and kidney of eels was assessed post 2.56 doses of LD50 of A. hydrophila infection. The results showed that the LD50 of A. hydrophila to American eels was determined to be 3.9 × 105 cfu/g body weight (7.8 × 106 cfu/fish), and the bacterial load peaked at 36 h post the infection (hpi) in the liver. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes. Additionally, the results of qRT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 10 hub DEGs and 7 encoded proteins play essential role to the anti-A. hydrophila infection in American eels. Pathogenicity of A. hydrophila to American eels and RNA-seq of host anti-A. hydrophila infection were firstly reported in this study, shedding new light on our understanding of the A. hydrophila pathogenesis and the host immune response to the A. hydrophila infection strategies in gene transcript.
Collapse
Affiliation(s)
- Songlin Guo
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| | - Qijuan Wan
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Ming Xu
- Fisheries College, Jimei University, China
| | - Minxia Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Zihao Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| |
Collapse
|
5
|
Wan Q, Zhai S, Chen M, Xu M, Guo S. Δfur mutant as a potential live attenuated vaccine (LAV) candidate protects American eels (Anguilla rostrata) from Vibrio harveyi infection. Microb Pathog 2024; 189:106591. [PMID: 38401591 DOI: 10.1016/j.micpath.2024.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The eel farming industry is highly susceptible to Vibriosis. Although various types of vaccines against Vibriosis have been investigated, there is limited research on decreasing the virulence of Vibrions through gene knockout and utilizing it as live attenuated vaccines (LAV). In this study, we aim to develop a LAV candidate against Vibrio harveyi infection in American eels (Anguilla rostrata) using a ferric uptake regulator (fur) gene mutant strain of V. harveyi (Δfur mutant). After the eels were administrated with the Δfur mutant at the dose of 4 × 102 cfu/g body weight, the phagocytic activity of the leucocytes, plasma IgM antibody titers, activity of lysozyme and Superoxide Dismutase (SOD) enzyme, and gene expression levels of 18 immune related proteins were detected to evaluate the protection effect of the LAV. Preliminary findings suggest that the LAV achieved over 60% relative percent survival (RPS) after the American eels were challenged by a wild-type strain of V. harveyi infection on 28 and 42 days post the immunization (dpi). The protection was mainly attributed to increased plasma IgM antibody titers, higher levels of lysozyme, enhanced activity of SOD and some regulated genes encoded immune related proteins. Together, the Δfur mutant strain of V. harveyi, as a novel LAV vaccine, demonstrates promising protective effects against V. harveyi infection in American eels, thus presenting a potential candidate vaccine for fish farming.
Collapse
Affiliation(s)
- Qijuan Wan
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Shaowei Zhai
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Minxia Chen
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Ming Xu
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Songlin Guo
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| |
Collapse
|
6
|
Chen M, Wan Q, Xu M, Chen Z, Guo S. Transcriptome Analysis of Host Anti-Vibrio harveyi Infection Revealed the Pathogenicity of V. harveyi to American Eel (Anguilla rostrata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:306-323. [PMID: 38367180 DOI: 10.1007/s10126-024-10298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Vibrio harveyi, a recently discovered pathogenic bacterium isolated from American eels (Anguilla rostrata), poses uncertainties regarding its pathogenesis in American eel and the molecular mechanisms underlying host defense against V. harveyi infection. This study aimed to determine the LD50 of V. harveyi in American eel and assess the bacterial load in the liver, spleen, and kidney post-infection with the LD50 dose. The results showed that the LD50 of V. harveyi via intraperitoneal injection in American eels over a 14d period was determined to be 1.24 × 103 cfu/g body weight (6.2 × 104 cfu/fish). The peak bacterial load occurred at 36 h post-infection (hpi) in all three organs examined. Histopathology analysis revealed hepatic vein congestion and thrombi, tubular vacuolar degeneration, and splenic bleeding. Moreover, quantitative reverse transcription polymerase chain reaction (qRT-PCR) results indicated significant up or downregulation of 18 host immune- or anti-infection-related genes post 12 to 60 hpi following the infection. Additionally, RNA sequencing (RNA-seq) unveiled 7 hub differentially expressed genes (DEGs) and 11 encoded proteins play crucial roles in the anti-V. harveyi response in American eels. This study firstly represents the comprehensive report on the pathogenicity of V. harveyi to American eels and RNA-seq of host's response to V. harveyi infection. These findings provide valuable insights into V. harveyi pathogenesis and the strategies employed by the host's immune system at the transcriptomic level to combat V. harveyi infection.
Collapse
Affiliation(s)
- Minxia Chen
- Fisheries College, Jimei University, Xiamen, 361021, China
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Qijuan Wan
- Fisheries College, Jimei University, Xiamen, 361021, China
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Ming Xu
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Zihao Chen
- Fisheries College, Jimei University, Xiamen, 361021, China
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China
| | - Songlin Guo
- Fisheries College, Jimei University, Xiamen, 361021, China.
- Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China.
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China.
| |
Collapse
|
7
|
Xu M, Wang Y, Wan Q, Chen M, Guo S. RNA-seq analysis revealed the pathogenicity of Vibrio vulnificus to American eel (Anguilla rostrata) and the strategy of host anti-V. vulnificus infection. Microb Pathog 2024; 186:106498. [PMID: 38097116 DOI: 10.1016/j.micpath.2023.106498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Vibrio vulnificus is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-V. vulnificus infection remains uncertain. In this study, American eels were infected with different dose of V. vulnificus to determine the LD50. Then, bacterial load in the liver and kidney histopathology were assessed post the LD50 of V. vulnificus infection. Additionally, gene expressions of 18 immune related genes in the liver, spleen and kidney were detected. Furthermore, transcriptome sequencing and enrichment of differentially expressed genes (DEGs) were analyzed in the eel spleens between pre-infection (Con_0), post-36 h (Vv_36), and post-60 h (Vv_60) infection. The results showed that LD50 of V. vulnificus to American eels was determined to be 5.0 × 105 cfu/g body weight, and the bacterial load peaked at 24 and 12 h post the infection (hpi) in the kidney and liver, respectively. The histopathology was highlighted by necrotic hepatocytes and splenic cells, congestion blood vessels in liver and spleen, atrophied glomeruli and vacuolization of renal tubular epithelial cells. The results of RT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated expression post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 16 DEGs play essential role to the immunosuppression in American eels, and the protein-protein interactions shed light on the widespread upregulation GEGs related to metabolism and immune response maintained the host cell homeostasis post the V. vulnificus infection, shedding new light on our understanding of the V. vulnificus pathogenesis towards understudied American eel and the host anti-V. vulnificus infection strategies in gene transcript.
Collapse
Affiliation(s)
- Ming Xu
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Yue Wang
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Qijuan Wan
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Minxia Chen
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Songlin Guo
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PRC, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| |
Collapse
|
8
|
Wang Y, Zhai S, Wan Q, Xu M, Chen M, Guo S. Pathogenicity of Edwardsiella anguillarum to American eels (Anguilla rostrata) and RNA-seq analysis of host immune response to the E. anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109042. [PMID: 37657556 DOI: 10.1016/j.fsi.2023.109042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Edwardsiella anguillarum is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-E. anguillarum infection remains uncertain. In this study, LD50 of E. anguillarum to American eels was determined and bacterial load in the liver and kidney of eels was assessed post the LD50 of E. anguillarum infection. The results showed that LD50 of E. anguillarum to American eels was determined to be 2.5 × 105 cfu/g body weight, and the bacterial load peaked at 36 and 72 h post the infection (hpi) in the kidney and liver, respectively. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes, as well as ultrastructural pathology in the kidney were charactered by acute nephritis, showing necrosis of the renal tubular epithelial cells, glomerular capillaries dilate, mitochondria swelling and ribosomes separate from the endoplasmic reticulum. Furthermore, the results of qRT-PCR revealed that 12 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 6 hub DEGs play essential role to the anti-E. anguillarum infection in American eels. Pathogenicity of E. anguillarum to American eels and hub genes related host anti- E. anguillarum infection were firstly reported in this study, shedding new light on our understanding of the E. anguillarum pathogenesis and the host immune response to the E. anguillarum infection strategies in gene transcript.
Collapse
Affiliation(s)
- Yue Wang
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Shaowei Zhai
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Qijuan Wan
- Fisheries College, Jimei University, China
| | - Ming Xu
- Fisheries College, Jimei University, China
| | - Minxia Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Songlin Guo
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China.
| |
Collapse
|
9
|
Ye C, Zhu S, Gao Y, Huang Y. Landscape of sialylation patterns identify biomarkers for diagnosis and prediction of response to anti-TNF therapy in crohn's disease. Front Genet 2022; 13:1065297. [PMID: 36452157 PMCID: PMC9702336 DOI: 10.3389/fgene.2022.1065297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 07/22/2023] Open
Abstract
Crohn's disease (CD), a subtype of inflammatory bowel disease (IBD), causes chronic gastrointestinal tract inflammation. Thirty percent of patients do not respond to anti-tumor necrosis factor (TNF) therapy. Sialylation is involved in the pathogenesis of IBD. We aimed to identify potential biomarkers for diagnosing CD and predicting anti-TNF medication outcomes in CD. Three potential biomarkers (SERPINB2, TFPI2, and SLC9B2) were screened using bioinformatics analysis and machine learning based on sialylation-related genes. Moreover, the combined model of SERPINB2, TFPI2, and SLC9B2 showed excellent diagnostic value in both the training and validation cohorts. Importantly, a Sial-score was constructed based on the expression of SERPINB2, TFPI2, and SLC9B2. The Sial-low group showed a lower level of immune infiltration than the Sial-high group. Anti-TNF therapy was effective for 94.4% of patients in the Sial-low group but only 15.8% in the Sial-high group. The Sial-score had an outstanding ability to predict and distinguish between responders and non-responders. Our comprehensive analysis indicates that SERPINB2, TFPI2, and SLC9B2 play essential roles in pathogenesis and anti-TNF therapy resistance in CD. Furthermore, it may provide novel concepts for customizing treatment for individual patients with CD.
Collapse
Affiliation(s)
- Chenglin Ye
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sizhe Zhu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yabing Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Keating ST, El-Osta A. Metaboloepigenetics in cancer, immunity and cardiovascular disease. Cardiovasc Res 2022; 119:357-370. [PMID: 35389425 PMCID: PMC10064843 DOI: 10.1093/cvr/cvac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/12/2022] [Accepted: 02/02/2022] [Indexed: 11/14/2022] Open
Abstract
The influence of cellular metabolism on epigenetic pathways are well documented but misunderstood. Scientists have long known of the metabolic impact on epigenetic determinants. More often than not, that title role for DNA methylation was portrayed by the metabolite SAM or S-adenosylmethionine. Technically speaking there are many other metabolites that drive epigenetic processes that instruct seemingly distant - yet highly connect pathways - and none more so than our understanding of the cancer epigenome. Recent studies have shown that available energy link the extracellular environment to influence cellular responses. This focused review examines the recent interest in epigenomics and casts cancer, metabolism and immunity in unfamiliar roles - cooperating. There are not only language lessons from cancer research, we have come round to appreciate that reaching into areas previously thought of as too distinct are also object lessons in understanding health and disease. The Warburg effect is one such signature of how glycolysis influences metabolic shift during oncogenesis. That shift in metabolism - now recognised as central to proliferation in cancer biology - influence core enzymes that not only control gene expression but are also central to replication, condensation and the repair of nucleic acid. These nuclear processes rely on metabolism and with glucose at center stage the role of respiration and oxidative metabolism are now synonymous with the mitochondria as the powerhouses of metaboloepigenetics. The emerging evidence for metaboloepigenetics in trained innate immunity has revealed recognisable signalling pathways with antecedent extracellular stimulation. With due consideration to immunometabolism we discuss the striking signalling similarities influencing these core pathways. The immunometabolic-epigenetic axis in cardiovascular disease has deeply etched connections with inflammation and we examine the chromatin template as a carrier of epigenetic indices that determine the expression of genes influencing atherosclerosis and vascular complications of diabetes.
Collapse
Affiliation(s)
- Samuel T Keating
- Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Assam El-Osta
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia.,Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR.,Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong SAR.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR.,University College Copenhagen, Faculty of Health, Department of Technology, Biomedical Laboratory Science, Copenhagen, Denmark
| |
Collapse
|
11
|
Zha JJ, Tang Y, Wang YL. Role of mono-ADP-ribosylation histone modification (Review). Exp Ther Med 2021; 21:577. [PMID: 33850549 PMCID: PMC8027728 DOI: 10.3892/etm.2021.10009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The current knowledge regarding ADP-ribosylation modifications of histones, particularly mono-ADP-ribosylation modifications, is limited. However, recent studies have identified an increasing number of mono-ADP-ribosyltransferases and the role of mono-ADP-ribosylation has become a hot research topic. In particular, histones that are substrates of several mono-ADP-ribosyltransferases and mono-ADP-ribosylated histones were indicated to be involved in numerous physiological or pathological processes. Compared to poly-ADP-ribosylation histone modification, the use of mono-ADP-ribosylation histone modification is restricted by the limited methods for research into its function in physiological or pathological processes. The aim of the present review was to discuss the details regarding mono-ADP-ribosylation modification of histones and the currently known functions thereof, such as cell physiological and pathological processes, including tumorigenesis.
Collapse
Affiliation(s)
- Jing-Jing Zha
- Pathological Department, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yi Tang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ya-Lan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
12
|
Wang CL, Tang Y, Li M, Xiao M, Li QS, Yang L, Li X, Yin L, Wang YL. Analysis of Mono-ADP-Ribosylation Levels in Human Colorectal Cancer. Cancer Manag Res 2021; 13:2401-2409. [PMID: 33737837 PMCID: PMC7965690 DOI: 10.2147/cmar.s303064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Colorectal cancer remains a major public health problem with high morbidity and mortality rates. In the search for the mechanisms of colorectal cancer occurrence and development, increasing attention has been focused on epigenetics. The overall level of Mono-ADP-ribosylation, an epigenetic, has not been investigated now. The aim of our study was to analysis of the overall level of mono-ADP-ribosylation in colorectal cancer. METHODS Immunohistochemistry was used to investigate the level of mono-ADP-ribosylation in colorectal cancer and normal colorectal adjacent tissue from 64 CRC patients. The data of patient demographic, clinical and pathological characteristics were acquired and analyzed. RESULTS Mono-ADP-ribosylation was present in both colorectal adenocarcinoma and normal colorectal tissue. The overall level of mono-ADP-ribosylation in colorectal cancer was significantly higher than that in normal colorectal adjacent tissue. In the nucleus, the majority of samples in the high-level group were colorectal adenocarcinoma (55/64), but the opposite was true for normal colorectal tissues (7/32). In particular, increases in the level of mono-ADP-ribosylation in the cytoplasm of colorectal cancer cells was associated with a greater invasion depth of the tumor. CONCLUSION The increased level of mono-ADP-ribosylation in colorectal cancer enhances tumor invasion, which suggests that mono-ADP-ribosylation is involved in the development of colorectal cancer and may become a new direction to solve the problem of colorectal cancer.
Collapse
Affiliation(s)
- Chuan-Ling Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yi Tang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ming Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ming Xiao
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Qing-Shu Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Lian Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Xian Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ling Yin
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ya-Lan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
13
|
Bao Z, Zheng Q, Li L. Oncogenic roles and mechanisms of lncRNA AGAP2-AS1 in human solid tumors. Am J Transl Res 2021; 13:757-769. [PMID: 33594324 PMCID: PMC7868831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Cancer remains the second leading life-threatening disease worldwide. Increasing evidence indicates that long non-coding RNAs (lncRNAs) play an important role in multiple physiological and pathological processes, including gene amplification, mutation, rearrangement, and overexpression regulations. In this review, we comprehensively summarize the current knowledge of lncRNA AGAP2-AS1 from a cancer perspective. As a member of the lncRNA family, lncRNA AGAP2-AS1 is upregulated in solid tumor malignancies, functions as an oncogene, and plays a key role in tumorigenesis and tumor progression. AGAP2-AS1 expression is significantly increased in clinical cancer tissue samples, cell lines, and in vivo, and is closely related to an unfavorable prognosis in several cancers. Upregulated lncRNA AGAP2-AS1 binds with microRNAs (miRNAs) and promotes activation of downstream genes. This aberrant regulation induces carcinogenesis and tumorigenesis. Here we provide a comprehensive overview of AGAP2-AS1 in cancer progression that leads to an improved understanding of the effects of AGAP2-AS1 on early detection and therapeutic approaches. This information is essential for the future development of lncRNA AGAP2-AS1 as a potential therapy against these devastating cancers.
Collapse
Affiliation(s)
- Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, China
| |
Collapse
|
14
|
Zhang C, Chen X, Wang JK, Li Y, Cui SJ, Wang Z, Luo T. Phenotypic Switching of Atherosclerotic Smooth Muscle Cells is Regulated by Activated PARP1-Dependent TET1 Expression. J Atheroscler Thromb 2020; 28:716-729. [PMID: 32981917 PMCID: PMC8265424 DOI: 10.5551/jat.55343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim:
During the development of atherosclerosis, the vascular smooth muscle cells (SMCs) undergo phenotypic switching from contractile phenotype to synthetic phenotype. This study aimed at examining the role of DNA modification mediated by the oxidative stress dependent ten eleven translocation enzymes (TETs) expression at early stage of phenotypic switching.
Methods:
Based on the
in vitro
SMCs calcification model, DNA damage, phenotypic switching and 5-hydroxymethylcytosine (5hmC) were examined by comet assay, alkaline DNA unwinding assay, immunofluorescence staining, Dot blotting and Western blotting. Then Western blotting and qRT-PCR were performed to analyze the TETs expression and the relationship between the activity of poly(ADP-ribose) polymerase 1 (PARP1) and TETs expression. We further alter 5hmC modification by inhibition of TET1 or PARP1 to rescue the phenotypic switching of SMCs using immunofluorescence staining, Dot blotting and qRT-PCR. We performed immunochemistry staining to examine the activated PARP1-TET1 pathway
in vivo
.
Results:
The phenotypic switching was observed in the SMCs cultured with calcification medium as the expression of the cell markers of contractile SMCs decreased and cell proliferation increased. In contrast, PAR and 5hmC were markedly increased in SMCs with calcification due to DNA damage. Our study further demonstrated that oxidative stress-activated PARP1, promotes TET1 expression and 5hmC increase during the phenotypic switching. Inhibition of TET1 or PARP1 can rescue the phenotypic switching of SMCs with calcification.
Conclusion:
Our study demonstrated the important role of PARylation dependent 5hmC, in SMCs phenotypic switching. It raises the possibility to target TET1 and PARP1 for atherosclerosis treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University
| | - Xin Chen
- Department of General Surgery, Xuanwu Hospital, Capital Medical University
| | - Ju-Kun Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University
| | - Yu Li
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University
| | - Shi-Jun Cui
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University
| | - Zhonggao Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University.,Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University
| | - Tao Luo
- Department of General Surgery, Xuanwu Hospital, Capital Medical University
| |
Collapse
|
15
|
Zhang NN, Lin T, Xiao M, Li QS, Li X, Yang L, Wang CL, Wang YL. Transcriptome sequencing analysis of mono‑ADP‑ribosylation in colorectal cancer cells. Oncol Rep 2020; 43:1413-1428. [PMID: 32323815 PMCID: PMC7107792 DOI: 10.3892/or.2020.7516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a global health concern. The role of epigenetics in tumors has garnered increasing interest. ADP ribosylation is an epigenetic modification that is associated with a variety of biological functions and diseases, and its association with tumor development and progression has been hypothesized. However, due to the limitations of available techniques and methods, ADP ribosylation of specific sites is difficult to determine. In previous studies, it was shown that arginine-117 of histone 3 (H3R117) in Lovo cells can be modified by mono-ADP-ribosylation. This site was mutated and Lovo cells overexpressing this mutant construct were established. In the present study, the expression of differentially expressed genes (DEGs) between untransfected Lovo cells and H3R117A Lovo cells was analyzed. A total of 58,174 DEGs were identified, of which 2,324 were significantly differentially expressed (q-value <0.05; fold change >2). Functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment was used to analyze the functions and possible roles of the DEGs. The DEGs were enriched in pathways associated with metabolic process, catalytic activity, organelle and chromatin structure, and dynamics. Through this comprehensive and systematic analysis, the role of mono-ADP-ribosylation in CRC was examined, providing a foundation for future studies.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting Lin
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ming Xiao
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qing-Shu Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xian Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lian Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chuan-Ling Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ya-Lan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|