1
|
Perotti D, Williams RD, Wegert J, Brzezinski J, Maschietto M, Ciceri S, Gisselsson D, Gadd S, Walz AL, Furtwaengler R, Drost J, Al-Saadi R, Evageliou N, Gooskens SL, Hong AL, Murphy AJ, Ortiz MV, O'Sullivan MJ, Mullen EA, van den Heuvel-Eibrink MM, Fernandez CV, Graf N, Grundy PE, Geller JI, Dome JS, Perlman EJ, Gessler M, Huff V, Pritchard-Jones K. Hallmark discoveries in the biology of Wilms tumour. Nat Rev Urol 2024; 21:158-180. [PMID: 37848532 DOI: 10.1038/s41585-023-00824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
The modern study of Wilms tumour was prompted nearly 50 years ago, when Alfred Knudson proposed the 'two-hit' model of tumour development. Since then, the efforts of researchers worldwide have substantially expanded our knowledge of Wilms tumour biology, including major advances in genetics - from cloning the first Wilms tumour gene to high-throughput studies that have revealed the genetic landscape of this tumour. These discoveries improve understanding of the embryonal origin of Wilms tumour, familial occurrences and associated syndromic conditions. Many efforts have been made to find and clinically apply prognostic biomarkers to Wilms tumour, for which outcomes are generally favourable, but treatment of some affected individuals remains challenging. Challenges are also posed by the intratumoural heterogeneity of biomarkers. Furthermore, preclinical models of Wilms tumour, from cell lines to organoid cultures, have evolved. Despite these many achievements, much still remains to be discovered: further molecular understanding of relapse in Wilms tumour and of the multiple origins of bilateral Wilms tumour are two examples of areas under active investigation. International collaboration, especially when large tumour series are required to obtain robust data, will help to answer some of the remaining unresolved questions.
Collapse
Affiliation(s)
- Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Richard D Williams
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Section of Genetics and Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
| | - Jack Brzezinski
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mariana Maschietto
- Research Center, Boldrini Children's Hospital, Campinas, São Paulo, Brazil
| | - Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - David Gisselsson
- Cancer Cell Evolution Unit, Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Skåne, Sweden
| | - Samantha Gadd
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Amy L Walz
- Division of Hematology,Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Rhoikos Furtwaengler
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, Inselspital Bern University, Bern, Switzerland
| | - Jarno Drost
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Reem Al-Saadi
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Nicholas Evageliou
- Divisions of Hematology and Oncology, Children's Hospital of Philadelphia, CHOP Specialty Care Center, Vorhees, NJ, USA
| | - Saskia L Gooskens
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael V Ortiz
- Department of Paediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maureen J O'Sullivan
- Histology Laboratory, Children's Health Ireland at Crumlin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Conrad V Fernandez
- Division of Paediatric Hematology Oncology, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Norbert Graf
- Department of Paediatric Oncology and Hematology, Saarland University Hospital, Homburg, Germany
| | - Paul E Grundy
- Department of Paediatrics Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Jeffrey S Dome
- Division of Oncology, Center for Cancer and Blood Disorders, Children's National Hospital and the Department of Paediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Elizabeth J Perlman
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, Wuerzburg, Germany
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
2
|
Petrosyan A, Villani V, Aguiari P, Thornton ME, Wang Y, Rajewski A, Zhou S, Cravedi P, Grubbs BH, De Filippo RE, Sedrakyan S, Lemley KV, Csete M, Da Sacco S, Perin L. Identification and Characterization of the Wilms Tumor Cancer Stem Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206787. [PMID: 37114795 PMCID: PMC10369255 DOI: 10.1002/advs.202206787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/24/2023] [Indexed: 06/19/2023]
Abstract
A nephrogenic progenitor cell (NP) with cancer stem cell characteristics driving Wilms tumor (WT) using spatial transcriptomics, bulk and single cell RNA sequencing, and complementary in vitro and transplantation experiments is identified and characterized. NP from WT samples with NP from the developing human kidney is compared. Cells expressing SIX2 and CITED1 fulfill cancer stem cell criteria by reliably recapitulating WT in transplantation studies. It is shown that self-renewal versus differentiation in SIX2+CITED1+ cells is regulated by the interplay between integrins ITGβ1 and ITGβ4. The spatial transcriptomic analysis defines gene expression maps of SIX2+CITED1+ cells in WT samples and identifies the interactive gene networks involved in WT development. These studies define SIX2+CITED1+ cells as the nephrogenic-like cancer stem cells of WT and points to the renal developmental transcriptome changes as a possible driver in regulating WT formation and progression.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Valentina Villani
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
| | - Paola Aguiari
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- David Geffen School of Medicine at UCLA - VA Healthcare System, Los Angeles, CA, 90095, USA
| | - Matthew E Thornton
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yizhou Wang
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Alex Rajewski
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Shengmei Zhou
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Paolo Cravedi
- Department of Medicine, Division of Nephrology and Translational Transplant Research Center, Recanati Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brendan H Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Roger E De Filippo
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sargis Sedrakyan
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kevin V Lemley
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Children's Hospital Los Angeles, Division of Nephrology, Department of Pediatrics, University of Southern California, Los Angeles, CA, 90027, USA
| | - Marie Csete
- Department of Anesthesiology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Stefano Da Sacco
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Laura Perin
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
3
|
Jansson C, Mengelbier LH. Retinoic acid promotes differentiation of WiT49- but not of CCG99-11 Wilms tumour cells. Cancer Rep (Hoboken) 2023:e1819. [PMID: 37186071 DOI: 10.1002/cnr2.1819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Most children with Wilms tumour are successfully treated with multidrug chemotherapy and surgery. These treatments cause severe side effects for the patients, an issue that needs to be addressed by exploring other treatment options with less or no side effects. One option is to complement current therapies with agents that could potentially induce tumour cell differentiation, for example retinoic acid (RA). AIMS To facilitate quick assessment of an agent's effect on Wilms tumour differentiation by a rapid in vitro model system. METHODS AND RESULTS Here WiT49 and CCG99-11 Wilms tumour cells were treated with 10 μM RA for 72 h or 9 days. Cultured cells were scraped off from Petri dishes, pelleted and embedded in paraffin in the same way as clinical tumour specimens are preserved. Cell morphology and differentiation were evaluated by analyses of haematoxylin eosin (H&E) and immunohistochemical stainings. Based on H&E, WT1 and CKAE1/3 stainings, RA treatment induced further epithelial differentiation of WiT49 cells, whereas there was no sign of induced maturation in CCG99-11 cells. Ki67 staining showed that RA inhibited cell proliferation in both cell lines. CONCLUSIONS Our study shows that in vitro culturing of WiT49 and CCG99-11 cells, followed by pelleting and paraffin embedding of cell pellets, could aid in a quick evaluation of potential differentiating agents against Wilms tumour. In addition, our results strengthen previous results that retinoic acid could be a potential complement to regular Wilms tumour treatment.
Collapse
Affiliation(s)
- Caroline Jansson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Sweden
| | | |
Collapse
|
4
|
Wojcik HM, Lovvorn HN, Hollingshead M, Pierce J, Stotler H, Murphy AJ, Borgel S, Phelps HM, Correa H, Perantoni AO. Exploiting embryonic niche conditions to grow Wilms tumor blastema in culture. Front Oncol 2023; 13:1091274. [PMID: 37007076 PMCID: PMC10061139 DOI: 10.3389/fonc.2023.1091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionWilms Tumor (WT), or nephroblastoma, is the most common pediatric kidney cancer. Most WTs display a “favorable” triphasic histology, in which the tumor is comprised of blastemal, stromal, and epithelial cell types. Blastemal predominance after neoadjuvant chemotherapy or diffuse anaplasia (“unfavorable” histology; 5-8%) portend a worse prognosis. Blastema likely provide the putative cancer stem cells (CSCs), which retain molecular and histologic features characteristic of nephron progenitor cells (NPCs), within WTs. NPCs arise in the metanephric mesenchyme (MM) and populate the cap mesenchyme (CM) in the developing kidney. WT blastemal cells, like NPCs, similarly express markers, SIX2 and CITED1. Tumor xenotransplantation is currently the only dependable method to propagate tumor tissue for research or therapeutic screening, since efforts to culture tumors in vitro as monolayers have invariably failed. Therefore, a critical need exists to propagate WT stem cells rapidly and efficiently for high-throughput, real-time drug screening.MethodsPreviously, our lab developed niche conditions that support the propagation of murine NPCs in culture. Applying similar conditions to WTs, we assessed our ability to maintain key NPC "stemness" markers, SIX2, NCAM, and YAP1, and CSC marker ALDHI in cells from five distinct untreated patient tumors.ResultsAccordingly, our culture conditions maintained the expression of these markers in cultured WT cells through multiple passages of rapidly dividing cells.DiscussionThese findings suggest that our culture conditions sustain the WT blastemal population, as previously shown for normal NPCs. As a result, we have developed new WT cell lines and a multi-passage in vitro model for studying the blastemal lineage/CSCs in WTs. Furthermore, this system supports growth of heterogeneous WT cells, upon which potential drug therapies could be tested for efficacy and resistance.
Collapse
Affiliation(s)
- Heather M. Wojcik
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, United States
| | - Harold N. Lovvorn
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Melinda Hollingshead
- Biological Testing Branch/Developmental Therapeutics Program, National Cancer Institute, Frederick, MD, United States
| | - Janene Pierce
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Howard Stotler
- Leidos Biomedical Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Andrew J. Murphy
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Suzanne Borgel
- Leidos Biomedical Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Hannah M. Phelps
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Hernan Correa
- Division of Pediatric Pathology, Monroe Carell Jr. Children’s Hospital at Vanderbilt University, Nashville, TN, United States
| | - Alan O. Perantoni
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, United States
- *Correspondence: Alan O. Perantoni,
| |
Collapse
|
5
|
Pode-Shakked N, Devarajan P. Human Stem Cell and Organoid Models to Advance Acute Kidney Injury Diagnostics and Therapeutics. Int J Mol Sci 2022; 23:ijms23137211. [PMID: 35806216 PMCID: PMC9266524 DOI: 10.3390/ijms23137211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury (AKI) is an increasingly common problem afflicting all ages, occurring in over 20% of non-critically ill hospitalized patients and >30% of children and >50% of adults in critical care units. AKI is associated with serious short-term and long-term consequences, and current therapeutic options are unsatisfactory. Large gaps remain in our understanding of human AKI pathobiology, which have hindered the discovery of novel diagnostics and therapeutics. Although animal models of AKI have been extensively studied, these differ significantly from human AKI in terms of molecular and cellular responses. In addition, animal models suffer from interspecies differences, high costs and ethical considerations. Static two-dimensional cell culture models of AKI also have limited utility since they have focused almost exclusively on hypoxic or cytotoxic injury to proximal tubules alone. An optimal AKI model would encompass several of the diverse specific cell types in the kidney that could be targets of injury. Second, it would resemble the human physiological milieu as closely as possible. Third, it would yield sensitive and measurable readouts that are directly applicable to the human condition. In this regard, the past two decades have seen a dramatic shift towards newer personalized human-based models to study human AKI. In this review, we provide recent developments using human stem cells, organoids, and in silico approaches to advance personalized AKI diagnostics and therapeutics.
Collapse
Affiliation(s)
- Naomi Pode-Shakked
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel;
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
6
|
Jablonowski CM, Gil HJ, Pinto EM, Pichavaram P, Fleming AM, Clay MR, Hu D, Morton CL, Pruett-Miller SM, Hansen BS, Chen X, Jones KMD, Liu Y, Ma X, Yang J, Davidoff AM, Zambetti GP, Murphy AJ. TERT Expression in Wilms Tumor Is Regulated by Promoter Mutation or Hypermethylation, WT1, and N-MYC. Cancers (Basel) 2022; 14:cancers14071655. [PMID: 35406427 PMCID: PMC8996936 DOI: 10.3390/cancers14071655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The telomerase enzyme adds repetitive genetic sequences to the ends of chromosomes called telomeres to prevent cellular senescence. Gain of telomerase function is one of the hallmarks of human cancer. The telomerase protein is coded by the gene TERT and increased TERT RNA levels have been associated with disease relapse in Wilms tumor, the most common kidney cancer of childhood. This study aimed to determine the mechanisms of increased TERT expression in Wilms tumor. This study found mutations in the TERT promoter, increased methylation of the TERT promoter, and genomic copy number amplifications of TERT as potential mechanisms of TERT activation. Conversely, this study found that inactivating WT1 mutation was associated with low TERT RNA levels and telomerase activity. N-MYC overexpression in Wilms tumor cells resulted in increased TERT promoter activity and TERT transcription. TERT transcription is associated with molecular and histologic subgroups in Wilms tumor and telomere-targeted therapies warrant future investigation. Abstract Increased TERT mRNA is associated with disease relapse in favorable histology Wilms tumor (WT). This study sought to understand the mechanism of increased TERT expression by determining the association between TERT and WT1 and N-MYC, two proteins important in Wilms tumor pathogenesis that have been shown to regulate TERT expression. Three out of 45 (6.7%) WTs and the corresponding patient-derived xenografts harbored canonical gain-of-function mutations in the TERT promoter. This study identified near ubiquitous hypermethylation of the TERT promoter region in WT compared to normal kidney. WTs with biallelic inactivating mutations in WT1 (7/45, 15.6%) were found to have lower TERT expression by RNA-seq and qRT-PCR and lower telomerase activity determined by the telomerase repeat amplification protocol. Anaplastic histology and increased percentage of blastema were positively correlated with higher TERT expression and telomerase activity. In vitro shRNA knockdown of WT1 resulted in decreased expression of TERT, reduced colony formation, and decreased proliferation of WiT49, an anaplastic WT cell line with wild-type WT1. CRISPR-Cas9-mediated knockout of WT1 resulted in decreased expression of telomere-related gene pathways. However, an inducible Wt1-knockout mouse model showed no relationship between Wt1 knockout and Tert expression in normal murine nephrogenesis, suggesting that WT1 and TERT are coupled in transformed cells but not in normal kidney tissues. N-MYC overexpression resulted in increased TERT promoter activity and TERT transcription. Thus, multiple mechanisms of TERT activation are involved in WT and are associated with anaplastic histology and increased blastema. This study is novel because it identifies potential mechanisms of TERT activation in Wilms tumor that could be of therapeutic interests.
Collapse
Affiliation(s)
- Carolyn M. Jablonowski
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Hyea Jin Gil
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Emilia M. Pinto
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (E.M.P.); (G.P.Z.)
| | - Prahalathan Pichavaram
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Andrew M. Fleming
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Michael R. Clay
- Department of Pathology, University of Colorado Anschutz, Aurora, CO 80045, USA;
| | - Dongli Hu
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Christopher L. Morton
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.M.P.-M.); (B.S.H.)
| | - Baranda S. Hansen
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.M.P.-M.); (B.S.H.)
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (X.C.); (K.M.D.J.); (Y.L.); (X.M.)
| | - Karissa M. Dieseldorff Jones
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (X.C.); (K.M.D.J.); (Y.L.); (X.M.)
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (X.C.); (K.M.D.J.); (Y.L.); (X.M.)
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (X.C.); (K.M.D.J.); (Y.L.); (X.M.)
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38105, USA
| | - Gerard P. Zambetti
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (E.M.P.); (G.P.Z.)
| | - Andrew J. Murphy
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38105, USA
- Correspondence:
| |
Collapse
|
7
|
Graf N, Bergeron C, Brok J, de Camargo B, Chowdhury T, Furtwängler R, Gessler M, Godzinski J, Pritchard-Jones K, Ramirez-Villar GL, Rübe C, Sandstedt B, Schenk JP, Spreafico F, Sudour-Bonnange H, van Tinteren H, Verschuur A, Vujanic G, van den Heuvel-Eibrink MM. Fifty years of clinical and research studies for childhood renal tumors within the International Society of Pediatric Oncology (SIOP). Ann Oncol 2021; 32:1327-1331. [PMID: 34416363 DOI: 10.1016/j.annonc.2021.08.1749] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/08/2021] [Indexed: 01/01/2023] Open
Affiliation(s)
- N Graf
- Department of Pediatric Oncology and Hematology, Saarland University, Homburg, Germany.
| | - C Bergeron
- Department of Paediatric Haemato-Oncology, Centre Léon Bérard, Lyon, France
| | - J Brok
- Department of Pediatric Oncology and Hematology, Rigshospitalet, Copenhagen, Denmark
| | - B de Camargo
- Research Center, Instituto Nacional do Cancer, Rio de Janeiro, Brazil
| | - T Chowdhury
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - R Furtwängler
- Department of Pediatric Oncology and Hematology, Saarland University, Homburg, Germany
| | - M Gessler
- Theodor-Boveri-Institute/Biocenter and Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - J Godzinski
- Department of Pediatric Surgery, Marciniak Hospital, Fieldorfa 2, Poland; Department of Paediatric Traumatology and Emergency Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - K Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, University College London, London, UK
| | - G L Ramirez-Villar
- Department of Paediatric Oncology, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - C Rübe
- Department of Radiation Oncology, Saarland University, Homburg, Germany
| | - B Sandstedt
- Childhood Cancer Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - J-P Schenk
- Pediatric Radiology Section, Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - F Spreafico
- Department of Medical Oncology and Hematology, Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - H Sudour-Bonnange
- Centre Oscar Lambret, Department of Children and AJA Oncology, Lille, France
| | - H van Tinteren
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - A Verschuur
- Department of Pediatric Oncology, Hôpital d'Enfants de la Timone, Marseille, France
| | - G Vujanic
- Department of Pathology, Sidra Medicine and Weill Cornell Medicine - Qatar, Doha, Qatar
| | | |
Collapse
|
8
|
Jiménez Martín O, Schlosser A, Furtwängler R, Wegert J, Gessler M. MYCN and MAX alterations in Wilms tumor and identification of novel N-MYC interaction partners as biomarker candidates. Cancer Cell Int 2021; 21:555. [PMID: 34689785 PMCID: PMC8543820 DOI: 10.1186/s12935-021-02259-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wilms tumor (WT) is the most common renal tumor in childhood. Among others, MYCN copy number gain and MYCN P44L and MAX R60Q mutations have been identified in WT. MYCN encodes a transcription factor that requires dimerization with MAX to activate transcription of numerous target genes. MYCN gain has been associated with adverse prognosis in different childhood tumors including WT. The MYCN P44L and MAX R60Q mutations, located in either the transactivating or basic helix-loop-helix domain, respectively, are predicted to be damaging by different pathogenicity prediction tools, but the functional consequences remain to be characterized. METHODS We screened a large cohort of unselected WTs for MYCN and MAX alterations. Wild-type and mutant protein function were characterized biochemically, and we analyzed the N-MYC protein interactome by mass spectrometric analysis of N-MYC containing protein complexes. RESULTS Mutation screening revealed mutation frequencies of 3% for MYCN P44L and 0.9% for MAX R60Q that are associated with a higher risk of relapse. Biochemical characterization identified a reduced transcriptional activation potential for MAX R60Q, while the MYCN P44L mutation did not change activation potential or protein stability. The protein interactome of N-MYC-P44L was likewise not altered as shown by mass spectrometric analyses of purified N-MYC complexes. Nevertheless, we could identify a number of novel N-MYC partner proteins, e.g. PEG10, YEATS2, FOXK1, CBLL1 and MCRS1, whose expression is correlated with MYCN in WT samples and several of these are known for their own oncogenic potential. CONCLUSIONS The strongly elevated risk of relapse associated with mutant MYCN and MAX or elevated MYCN expression corroborates their role in WT oncogenesis. Together with the newly identified co-expressed interactors they expand the range of potential biomarkers for WT stratification and targeting, especially for high-risk WT.
Collapse
Affiliation(s)
- Ovidio Jiménez Martín
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, 97074, Wuerzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Wuerzburg University, 97078, Wuerzburg, Germany
| | - Rhoikos Furtwängler
- Department of Pediatric Oncology Und Hematology, Saarland University Hospital, 66421, Homburg, Saar, Germany
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, 97074, Wuerzburg, Germany
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, 97074, Wuerzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Wuerzburg University, 97078, Wuerzburg, Germany.
| |
Collapse
|
9
|
Spreafico F, Fernandez CV, Brok J, Nakata K, Vujanic G, Geller JI, Gessler M, Maschietto M, Behjati S, Polanco A, Paintsil V, Luna-Fineman S, Pritchard-Jones K. Wilms tumour. Nat Rev Dis Primers 2021; 7:75. [PMID: 34650095 DOI: 10.1038/s41572-021-00308-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Wilms tumour (WT) is a childhood embryonal tumour that is paradigmatic of the intersection between disrupted organogenesis and tumorigenesis. Many WT genes play a critical (non-redundant) role in early nephrogenesis. Improving patient outcomes requires advances in understanding and targeting of the multiple genes and cellular control pathways now identified as active in WT development. Decades of clinical and basic research have helped to gradually optimize clinical care. Curative therapy is achievable in 90% of affected children, even those with disseminated disease, yet survival disparities within and between countries exist and deserve commitment to change. Updated epidemiological studies have also provided novel insights into global incidence variations. Introduction of biology-driven approaches to risk stratification and new drug development has been slower in WT than in other childhood tumours. Current prognostic classification for children with WT is grounded in clinical and pathological findings and in dedicated protocols on molecular alterations. Treatment includes conventional cytotoxic chemotherapy and surgery, and radiation therapy in some cases. Advanced imaging to capture tumour composition, optimizing irradiation techniques to reduce target volumes, and evaluation of newer surgical procedures are key areas for future research.
Collapse
Affiliation(s)
- Filippo Spreafico
- Department of Medical Oncology and Hematology, Paediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Conrad V Fernandez
- Department of Paediatrics, IWK Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jesper Brok
- Department of Paediatric Haematology and Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Kayo Nakata
- Cancer Control Center, Osaka International Cancer Institute, Osaka, Japan
| | | | - James I Geller
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Cincinnati, OH, USA
| | - Manfred Gessler
- Theodor-Boveri-Institute, Developmental Biochemistry, and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Mariana Maschietto
- Research Center, Boldrini Children's Hospital, Genetics and Molecular Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Angela Polanco
- National Cancer Research Institute Children's Group Consumer Representative, London, UK
| | - Vivian Paintsil
- Department of Child Health, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sandra Luna-Fineman
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Paediatrics, University of Colorado, Aurora, CO, USA
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
10
|
Waehle V, Ungricht R, Hoppe PS, Betschinger J. The tumor suppressor WT1 drives progenitor cell progression and epithelialization to prevent Wilms tumorigenesis in human kidney organoids. Stem Cell Reports 2021; 16:2107-2117. [PMID: 34450039 PMCID: PMC8452534 DOI: 10.1016/j.stemcr.2021.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/04/2022] Open
Abstract
Wilms tumor is the most widespread kidney cancer in children and frequently associated with homozygous loss of the tumor suppressor WT1. Pediatric tumorigenesis is largely inaccessible in humans. Here, we develop a human kidney organoid model for Wilms tumor formation and show that deletion of WT1 during organoid development induces overgrowth of kidney progenitor cells at the expense of differentiating glomeruli and tubules. Functional and gene expression analyses demonstrate that absence of WT1 halts progenitor cell progression at a pre-epithelialized cell state and recapitulates the transcriptional changes detected in a subgroup of Wilms tumor patients with ectopic myogenesis. By "transplanting" WT1 mutant cells into wild-type kidney organoids, we find that their propagation requires an untransformed microenvironment. This work defines the role of WT1 in kidney progenitor cell progression and tumor suppression, and establishes human kidney organoids as a phenotypic model for pediatric tumorigenesis.
Collapse
Affiliation(s)
- Verena Waehle
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4003 Basel, Switzerland
| | - Rosemarie Ungricht
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Philipp S Hoppe
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Joerg Betschinger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
11
|
Dhamecha D, Le D, Chakravarty T, Perera K, Dutta A, Menon JU. Fabrication of PNIPAm-based thermoresponsive hydrogel microwell arrays for tumor spheroid formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112100. [PMID: 33965110 PMCID: PMC8110948 DOI: 10.1016/j.msec.2021.112100] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Complex three-dimensional (3D) cell cultures are being increasingly implemented in biomedical research as they provide important insights into complex cancer biology, and cell-cell and cell-matrix interactions in the tumor microenvironment. However, most methods used today for 3D cell culture are limited by high cost, the need for specialized skills, low throughput and the use of unnatural culture environments. We report the development of a unique biomimetic hydrogel microwell array platform for the generation and stress-free isolation of cancer spheroids. The poly N-isopropylacrylamide-based hydrogel microwell array (PHMA) has thermoresponsive properties allowing for the attachment and growth of cell aggregates/ spheroids at 37 °C, and their easy isolation at room temperature (RT). The reversible phase transition of the microwell arrays at 35 °C was confirmed visually and by differential scanning calorimetry. Swelling/ shrinking studies and EVOS imaging established that the microwell arrays are hydrophilic and swollen at temperatures <35 °C, while they shrink and are hydrophobic at temperatures >35 °C. Spheroid development within the PHMA was optimized for seeding density, incubation time and cell viability. Spheroids of A549, HeLa and MG-63 cancer cell lines, and human lung fibroblast (HLF) cell line generated within the PHMAs had relatively spherical morphology with hypoxic cores. Finally, using MG-63 cell spheroids as representative models, a proof-of-concept drug response study using doxorubicin hydrochloride was conducted. Overall, we demonstrate that the PHMAs are an innovative alternative to currently used 3D cell culture techniques, for the high-throughput generation of cell spheroids for disease modeling and drug screening applications.
Collapse
Affiliation(s)
- Dinesh Dhamecha
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Duong Le
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Tomali Chakravarty
- Department of Cell and Molecular Biology, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Kalindu Perera
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Arnob Dutta
- Department of Cell and Molecular Biology, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Pediatric renal tumors account for 7% of new cancer diagnoses in children. Here, we will review results from recently completed clinical trials informing the current standard of care and discuss targeted and immune therapies being explored for the treatment of high risk or relapsed/refractory pediatric renal malignancies. RECENT FINDINGS Cooperative group trials have continued to make improvements in the care of children with pediatric tumors. In particular, trials that standardize treatment of rare cancers (e.g., bilateral Wilms tumor) have improved outcomes significantly. We have seen improvements in event free and overall survival in recently completed clinical trials for many pediatric renal tumors. Still, there are subsets of rarer cancers where outcomes remain poor and new therapeutic strategies are needed. Future trials aim to balance treatment toxicity with treatment efficacy for those with excellent outcomes while identifying novel therapeutics for those with poor outcomes.
Collapse
Affiliation(s)
- Juhi Jain
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA.,Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.,Emory Children's Center, 2015 Uppergate Drive NE , 400, Atlanta, GA, 30322, USA
| | - Kathryn S Sutton
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA.,Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.,Emory Children's Center, 2015 Uppergate Drive NE, 434B, Atlanta, GA, 30322, USA
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA. .,Winship Cancer Institute, Atlanta, GA, USA. .,Health Sciences Research Building, 1760 Haygood Drive NE, E-370, Atlanta, GA, 30322, USA.
| |
Collapse
|
13
|
Ooms AHAG, Calandrini C, de Krijger RR, Drost J. Organoid models of childhood kidney tumours. Nat Rev Urol 2020; 17:311-313. [PMID: 32242130 DOI: 10.1038/s41585-020-0315-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ariadne H A G Ooms
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Camilla Calandrini
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Pathology, University Medical Center, Utrecht, Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands. .,Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.
| |
Collapse
|
14
|
Stone L. New tools for Wilms tumour research. Nat Rev Urol 2019; 16:694. [PMID: 31641293 DOI: 10.1038/s41585-019-0252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|