1
|
Zhang Z, Li P, Yang X, Yin J, He J, Hu Y, Liu P. Identifying Subgroups with Rapid Tumor Growth Rate in Adult Pituitary Neuroendocrine Tumors: A Comprehensive Analysis of Clinical and Imaging Features. World Neurosurg 2024; 194:123520. [PMID: 39608491 DOI: 10.1016/j.wneu.2024.11.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVE To comprehensively investigate the clinical and imaging features associated with the tumor growth rate (TGR) of pituitary neuroendocrine tumors (PitNETs). METHODS The tumor volume was assessed using magnetic resonance imaging. The potential growth-related parameters were compared among different TGR subgroups. Logistic regression analysis and receiver operating characteristic curves were used to identify risk factors and evaluate their diagnostic accuracy for rapid TGR, respectively. RESULTS The study included 81 patients with PitNETs who met the inclusion criteria. Receiver operating characteristic curves were used to determine the optimal cut-off values for age and tumor volume at initial diagnosis. The factors significantly associated with rapid TGR were age <55 years, T2 heterogeneity, and Knosp grade ≥3 (P < 0.05). No significant differences were found among other clinical and imaging subgroups. Multivariate regression analysis confirmed that these factors increased the risk of rapid TGR (P < 0.05). The area under the curve for predicting rapid TGR using age <55 years, T2 heterogeneity, Knosp grade ≥3, and a combined model of these factors were 0.677 (95% confidence interval [CI], 0.564-0.777), 0.705 (95% CI, 0.593-0.801), 0.680 (95% CI, 0.567-0.780), and 0.834 (95% CI, 0.735-0908), respectively. Additionally, the expression of cell lineage-specific transcription factors and Ki-67 exhibited a significant correlation with age <55 years and T2 heterogeneity; however, no association was observed with Knosp grade. CONCLUSIONS The TGR of PitNETs is associated with age, T2 heterogeneity, and Knosp grade. Integrating these factors improves the accuracy of prediction for TGR. Therefore, understanding the TGR in PitNETs can provide valuable evidence for tailoring individualized treatment strategies for patients.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Peng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaojie Yang
- Beijing Anding Hospital Capital Medical University, Key Laboratory for Diagnosis and Treatment of Mental Disorders, National Clinical Research Center for Mental Disorders, Beijing, China
| | - Jie Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, Jiangsu Province, China
| | - Junhua He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Tongde Hospital, Hangzhou, Zhejiang Province, China
| | - Yanan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Neural Reconstruction, Beijing Neurosurgery Institute, Beijing, China.
| |
Collapse
|
2
|
Ye J, Lin Y, Liao Z, Gao X, Lu C, Lu L, Huang J, Huang X, Huang S, Yu H, Bai T, Chen J, Wang X, Xie M, Luo M, Zhang J, Wu F, Wu G, Ma L, Xiang B, Li L, Li Y, Luo X, Liang R. Single cell-spatial transcriptomics and bulk multi-omics analysis of heterogeneity and ecosystems in hepatocellular carcinoma. NPJ Precis Oncol 2024; 8:262. [PMID: 39548284 PMCID: PMC11568154 DOI: 10.1038/s41698-024-00752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
This study profiled global single cell-spatial-bulk transcriptome landscapes of hepatocellular carcinoma (HCC) ecosystem from six HCC cases and a non-carcinoma liver control donor. We discovered that intratumoral heterogeneity mainly derived from HCC cells diversity and pervaded the genome-transcriptome-proteome-metabolome network. HCC cells are the core driving force of taming tumor-associated macrophages (TAMs) with pro-tumorigenic phenotypes for favor its dominant growth. Remarkably, M1-types TAMs had been characterized by disturbance of metabolism, poor antigen-presentation and immune-killing abilities. Besides, we found simultaneous cirrhotic and HCC lesions in an individual patient shared common origin and displayed parallel clone evolution via driving disparate immune reprograms for better environmental adaptation. Moreover, endothelial cells exhibited phenotypically conserved but executed differential functions in a space-dependent manner. Further, the spatiotemporal traits of rapid recurrence niche genes were identified and validated by immunohistochemistry. Our data unravels the great significance of HCC cells in shaping vibrant tumor ecosystems corresponding to clinical scenarios.
Collapse
Affiliation(s)
- Jiazhou Ye
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Lin
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhiling Liao
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xing Gao
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Cheng Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lu Lu
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Julu Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xi Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shilin Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hongping Yu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tao Bai
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mingzhi Xie
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min Luo
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinyan Zhang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Feixiang Wu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guobin Wu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liang Ma
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongqiang Li
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoling Luo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China.
| | - Rong Liang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China.
| |
Collapse
|
3
|
Akbulut S, Kucukakcali Z, Sahin TT, Colak C, Yilmaz S. Role of Epigenetic Factors in Determining the Biological Behavior and Prognosis of Hepatocellular Carcinoma. Diagnostics (Basel) 2024; 14:1925. [PMID: 39272711 PMCID: PMC11394249 DOI: 10.3390/diagnostics14171925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND The current study's objective is to evaluate the molecular genetic mechanisms influencing the biological behavior of hepatocellular carcinoma (HCC) by analyzing the transcriptomic and epigenetic signatures of the tumors. METHODS Transcriptomic data were downloaded from the NCBI GEO database. We investigated the expression differences between the GSE46444 (48 cirrhotic tissues versus 88 HCC tissues) and GSE63898 (168 cirrhotic tissues versus 228 HCC tissues) data sets using GEO2R. Differentially expressed genes were evaluated using GO and KEGG metabolic pathway analysis websites. Whole genome bisulfite sequencing (WGBS) and Methylated DNA Immunoprecipitation Sequencing (MeDIP-Seq) data sets (26 HCC tissues versus 26 adjacent non-tumoral tissues) were also downloaded from the NCBI SRA database. These data sets were analyzed using Bismark and QSEA, respectively. The methylation differences between the groups were assessed using functional enrichment analysis. RESULTS In the GSE46444 data set, 80 genes were upregulated, and 315 genes were downregulated in the tumor tissue (HCC tissue) compared to the non-tumor cirrhotic tissue. In the GSE63898 data set, 1261 genes were upregulated, and 458 genes were downregulated in the cirrhotic tissue compared to the tumor tissues. WGBS revealed that 20 protein-coding loci were hypermethylated. while the hypomethylated regions were non-protein-coding. The methylated residues of the tumor tissue, non-tumorous cirrhotic tissue, and healthy tissue were comparable. MeDIP-Seq, conducted on tumoral and non-tumoral tissues, identified hypermethylated or hypomethylated areas as protein-coding regions. The functional enrichment analysis indicated that these genes were related to pathways including peroxisome, focal adhesion, mTOR, RAP1, Phospholipase D, Ras, and PI3K/AKT signal transduction. CONCLUSIONS The investigation of transcriptomic and epigenetic mechanisms identified several genes significant in the biological behavior of HCC. These genes present potential targets for the development of targeted therapy.
Collapse
Affiliation(s)
- Sami Akbulut
- Liver Transplant Institute and Department of Surgery, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Zeynep Kucukakcali
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Tevfik Tolga Sahin
- Liver Transplant Institute and Department of Surgery, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Sezai Yilmaz
- Liver Transplant Institute and Department of Surgery, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| |
Collapse
|
4
|
Zeng X, An R, Guo R, Li H. Hypermethylated RASAL1's promotive role in chemoresistance and tumorigenesis of choriocarcinoma was regulated by TET2 but not DNMTs. BMC Cancer 2024; 24:977. [PMID: 39118077 PMCID: PMC11312928 DOI: 10.1186/s12885-024-12758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Patients with choriocarcinoma (CC) accompanying chemoresistance conventionally present a poor prognosis. Whether ras protein activator like-1 (RASAL1) functions as a tumor promoter or suppressor depends on tumor types. However, the role of RASAL1 in process of chemoresistance of CC and underlying molecular mechanism remain elusive. METHODS The expression pattern of RASAL1 in CC cells and tissues was measured using Western blotting, immunohistochemistry and qRT-PCR. Cell viability and proliferative ability were assessed by MTT assay, Tunnel assay and flow cytometric analysis. Additionally, the stemness was evaluated by the colony formation and tumor sphere formation. Methotrexate (MTX) was applied to exam the chemosensitivity of CC cells. RESULTS The expression of RASAL1 was reduced both at the protein and mRNA levels in CC tissues and cells compared to hydatidiform mole (HM) and invasive mole (IM). Loss of RASAL1 was attributed to its promoter hypermethylation and could be restored by 5-Aza. Knock-down of RASAL1 promoted the viability, proliferative potential, stemness and EMT phenotype of JEG-3 cells. However, induced overexpression of RASAL1 by 5-Aza significantly prohibited cell proliferation and stemness potential of the JAR cell. Additionally, the xenograft model indicated that knockdown of RASAL1 led to a remarkable increase of tumor volume and weight in comparison with its counterpart. Moreover, the stimulatory activity brought by decrease of RASAL1 could be deprived by β-catenin inhibitor XAV 939, yet the suppressive activity resulted from its promoter demethylation could be rescued by β-catenin activator BML-284, indicating that function of RASAL1 depends on β-catenin. Besides, the co-immunoprecipitation assay confirmed the physical binding between RASAL1 and β-catenin. Further investigations showed hypermethylated RASAL1 was regulated by TET2 but not DNMTs. CONCLUSION Taken together, the present data elucidated that reduced RASAL1 through its promoter hypermethylation regulated by TET2 promoted the tumorigenicity and chemoresistance of CC via modulating β-catenin both in vitro and in vivo.
Collapse
Affiliation(s)
- Xianling Zeng
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, Henan, 450052, China.
| | - Ruifang An
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, Henan, 450052, China
| | - Han Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| |
Collapse
|
5
|
Xu YS, Xiang J, Lin SJ. Functional role of P2X7 purinergic receptor in cancer and cancer-related pain. Purinergic Signal 2024:10.1007/s11302-024-10019-w. [PMID: 38771429 DOI: 10.1007/s11302-024-10019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Numerous studies have revealed that the ATP-gated ion channel purinergic 2X7 receptor (P2X7R) plays an important role in tumor progression and the pathogenesis of cancer pain. P2X7R requires activation by extracellular ATP to perform its regulatory role functions. During tumor development or cancer-induced pain, ATP is released from tumor cells or other cells in the tumor microenvironment (such as tumor-associated immune cells), which activates P2X7R, opens ion channels on the cell membrane, affects intracellular molecular metabolism, and regulates the activity of tumor cells. Furthermore, peripheral organs and receptors can be damaged during tumor progression, and P2X7R expression in nerve cells (such as microglia) is significantly upregulated, enhancing sensory afferent information, sensitizing the central nervous system, and inducing or exacerbating pain. These findings reveal that the ATP-P2X7R signaling axis plays a key regulatory role in the pathogenesis of tumors and cancer pain and also has a therapeutic role. Accordingly, in this study, we explored the role of P2X7R in tumors and cancer pain, discussed the pharmacological properties of inhibiting P2X7R activity (such as the use of antagonists) or blocking its expression in the treatment of tumor and cancer pain, and provided an important evidence for the treatment of both in the future.
Collapse
Affiliation(s)
- Yong-Sheng Xu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China
| | - Jun Xiang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China
| | - Si-Jian Lin
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China.
| |
Collapse
|
6
|
Sharma NK, Bahot A, Sekar G, Bansode M, Khunteta K, Sonar PV, Hebale A, Salokhe V, Sinha BK. Understanding Cancer's Defense against Topoisomerase-Active Drugs: A Comprehensive Review. Cancers (Basel) 2024; 16:680. [PMID: 38398072 PMCID: PMC10886629 DOI: 10.3390/cancers16040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the emergence of cancer drug resistance has been one of the crucial tumor hallmarks that are supported by the level of genetic heterogeneity and complexities at cellular levels. Oxidative stress, immune evasion, metabolic reprogramming, overexpression of ABC transporters, and stemness are among the several key contributing molecular and cellular response mechanisms. Topo-active drugs, e.g., doxorubicin and topotecan, are clinically active and are utilized extensively against a wide variety of human tumors and often result in the development of resistance and failure to therapy. Thus, there is an urgent need for an incremental and comprehensive understanding of mechanisms of cancer drug resistance specifically in the context of topo-active drugs. This review delves into the intricate mechanistic aspects of these intracellular and extracellular topo-active drug resistance mechanisms and explores the use of potential combinatorial approaches by utilizing various topo-active drugs and inhibitors of pathways involved in drug resistance. We believe that this review will help guide basic scientists, pre-clinicians, clinicians, and policymakers toward holistic and interdisciplinary strategies that transcend resistance, renewing optimism in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Anjali Bahot
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Gopinath Sekar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Mahima Bansode
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Kratika Khunteta
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Priyanka Vijay Sonar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Ameya Hebale
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Vaishnavi Salokhe
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Birandra Kumar Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
7
|
Wang W, Zhou Y, Li W, Quan C, Li Y. Claudins and hepatocellular carcinoma. Biomed Pharmacother 2024; 171:116109. [PMID: 38185042 DOI: 10.1016/j.biopha.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has a high incidence and dismal prognosis, making it a significant global health burden. To change this, the development of new therapeutic strategies is imminent. The claudin (CLDN) family, as key components of tight junctions (TJs), plays an important role in the initiation and development of cancer. Dysregulated expression of CLDNs leads to loss of intercellular adhesion and aberrant cell signaling, which are closely related to cancer cell invasion, migration, and epithelial-mesenchymal transition (EMT). CLDN1, CLDN3, CLDN4, CLDN5, CLDN6, CLDN7, CLDN9, CLDN10, CLDN11, CLDN14, and CLDN17 are aberrantly expressed in HCC, which drives the progression of the disease. Consequently, they have tremendous potential as prognostic indicators and therapeutic targets. This article summarizes the aberrant expression, molecular mechanisms, and clinical application studies of different subtypes of CLDNs in HCC, with a particular emphasis on CLDN1.
Collapse
Affiliation(s)
- Wentao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The Second Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Yi Zhou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China; The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, China.
| |
Collapse
|
8
|
Tu SM, Aydin AM, Maraboyina S, Chen Z, Singh S, Gokden N, Langford T. Stem Cell Origin of Cancer: Clinical Implications for Cancer Immunity and Immunotherapy. Cancers (Basel) 2023; 15:5385. [PMID: 38001645 PMCID: PMC10670143 DOI: 10.3390/cancers15225385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
A simple way to understand the immune system is to separate the self from non-self. If it is self, the immune system tolerates and spares. If it is non-self, the immune system attacks and destroys. Consequently, if cancer has a stem cell origin and is a stem cell disease, we have a serious problem and a major dilemma with immunotherapy. Because many refractory cancers are more self than non-self, immunotherapy may become an uphill battle and pyrrhic victory in cancer care. In this article, we elucidate cancer immunity. We demonstrate for whom, with what, as well as when and how to apply immunotherapy in cancer care. We illustrate that a stem cell theory of cancer affects our perspectives and narratives of cancer. Without a pertinent theory about cancer's origin and nature, we may unwittingly perform misdirected cancer research and prescribe misguided cancer treatments. In the ongoing saga of immunotherapy, we are at a critical juncture. Because of the allure and promises of immunotherapy, we will be treating more patients not immediately threatened by their cancer. They may have more to lose than to gain, if we have a misconception and if we are on a wrong mission with immunotherapy. According to the stem cell theory of cancer, we should be careful with immunotherapy. When we do not know or realize that cancer originates from a stem cell and has stem-ness capabilities, we may cause more harm than good in some patients and fail to separate the truth from the myth about immunotherapy in cancer care.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (Z.C.); (S.S.)
| | - Ahmet Murat Aydin
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.M.A.); (T.L.)
| | - Sanjay Maraboyina
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Zhongning Chen
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (Z.C.); (S.S.)
| | - Sunny Singh
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (Z.C.); (S.S.)
| | - Neriman Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Timothy Langford
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.M.A.); (T.L.)
| |
Collapse
|
9
|
Mariant CL, Bacola G, Van Landeghem L. Mini-Review: Enteric glia of the tumor microenvironment: An affair of corruption. Neurosci Lett 2023; 814:137416. [PMID: 37572875 PMCID: PMC10967235 DOI: 10.1016/j.neulet.2023.137416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/07/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The tumor microenvironment corresponds to a complex mixture of bioactive products released by local and recruited cells whose normal functions have been "corrupted" by cues originating from the tumor, mostly to favor cancer growth, dissemination and resistance to therapies. While the immune and the mesenchymal cellular components of the tumor microenvironment in colon cancer have been under intense scrutiny over the last two decades, the influence of the resident neural cells of the gut on colon carcinogenesis has only very recently begun to draw attention. The vast majority of the resident neural cells of the gastrointestinal tract belong to the enteric nervous system and correspond to enteric neurons and enteric glial cells, both of which have been understudied in the context of colon cancer development and progression. In this review, we especially discuss available evidence on enteric glia impact on colon carcinogenesis. To highlight "corrupted" functioning in enteric glial cells of the tumor microenvironment and its repercussion on tumorigenesis, we first review the main regulatory effects of enteric glial cells on the intestinal epithelium in homeostatic conditions and we next present current knowledge on enteric glia influence on colon tumorigenesis. We particularly examine how enteric glial cell heterogeneity and plasticity require further appreciation to better understand the distinct regulatory interactions enteric glial cell subtypes engage with the various cell types of the tumor, and to identify novel biological targets to block enteric glia pro-carcinogenic signaling.
Collapse
Affiliation(s)
- Chloe L Mariant
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - Gregory Bacola
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
10
|
Tavares Tamborindeguy M, Lorenzatto PF, Lamers ML, Lenz G. Asymmetric mitosis contributes to different migratory performance in sister cells. Exp Cell Res 2023:113715. [PMID: 37429373 DOI: 10.1016/j.yexcr.2023.113715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
In cancer, cell migration contributes to the spread of tumor cells resulting in metastasis. Heterogeneity in the migration capacity can produce individual cells with heightened capacity leading to invasion and metastasis. Our hypothesis is that cell migration characteristics can divide asymmetrically in mitosis, allowing a subset of cells to have a larger contribution to invasion and metastasis. Therefore, our aim is to elucidate whether sister cells have different migratory capacity and analyze if this difference is defined by mitosis. Through time-lapse videos, we analyzed migration speed, directionality, maximum displacement of each trajectory, and velocity as well as cell area and polarity and then compared the values between mother-daughter cells and between sister cells of three tumor cell lines (A172, MCF7, SCC25) and two normal cell lines (MRC5 and CHO·K1 cells). We observed that daughter cells had a different migratory phenotype compared to their mothers, and one single mitosis is enough for the sisters behave like nonrelated cells. However, mitosis did not influence cell area and polarity dynamics. These findings indicates that migration performance is not heritable, and that asymmetric cell division might have an important impact on cancer invasion and metastasis, by producing cells with different migratory capacity.
Collapse
Affiliation(s)
- Maurício Tavares Tamborindeguy
- Departamento de Biofísica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil; Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Paola Farias Lorenzatto
- Departamento de Biofísica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil; Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Marcelo Lazzaron Lamers
- Departamento de Ciencias Morfológicas, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guido Lenz
- Departamento de Biofísica, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil; Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
11
|
Long F, Ma H, Hao Y, Tian L, Li Y, Li B, Chen J, Tang Y, Li J, Deng L, Xie G, Liu M. A novel exosome-derived prognostic signature and risk stratification for breast cancer based on multi-omics and systematic biological heterogeneity. Comput Struct Biotechnol J 2023; 21:3010-3023. [PMID: 37273850 PMCID: PMC10232662 DOI: 10.1016/j.csbj.2023.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/29/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Tumor heterogeneity remains a major challenge for disease subtyping, risk stratification, and accurate clinical management. Exosome-based liquid biopsy can effectively overcome the limitations of tissue biopsy, achieving minimal invasion, multi-point dynamic monitoring, and good prognosis assessment, and has broad clinical prospects. However, there is still lacking comprehensive analysis of tumor-derived exosome (TDE)-based stratification of risk patients and prognostic assessment for breast cancer with systematic dissection of biological heterogeneity. In this study, the robust corroborative analysis for biomarker discovery (RCABD) strategy was used for the identification of exosome molecules, differential expression verification, risk prediction modeling, heterogenous dissection with multi-ome (6101 molecules), our ExoBCD database (306 molecules), and 53 independent studies (481 molecules). Our results showed that a 10-molecule exosome-derived signature (exoSIG) could successfully fulfill breast cancer risk stratification, making it a novel and accurate exosome prognostic indicator (Cox P = 9.9E-04, HR = 3.3, 95% CI 1.6-6.8). Interestingly, HLA-DQB2 and COL17A1, closely related to tumor metastasis, achieved high performance in prognosis prediction (86.35% contribution) and accuracy (Log-rank P = 0.028, AUC = 85.42%). With the combined information of patient age and tumor stage, they formed a bimolecular risk signature (Clinmin-exoSIG) and a convenient nomogram as operable tools for clinical applications. In conclusion, as an extension of ExoBCD, this study conducted systematic analyses to identify prognostic multi-molecular panel and risk signature, stratify patients and dissect biological heterogeneity based on breast cancer exosomes from a multi-omics perspective. Our results provide an important reference for in-depth exploration of the "biological heterogeneity - risk stratification - prognosis prediction".
Collapse
Affiliation(s)
- Fei Long
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Haodong Ma
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Luyao Tian
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yinghong Li
- Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Juan Chen
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Ying Tang
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Li
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Lili Deng
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Mingwei Liu
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
12
|
Nagaraju GP, Farran B, Luong T, El-Rayes BF. Understanding the molecular mechanisms that regulate pancreatic cancer stem cell formation, stemness and chemoresistance: A brief overview. Semin Cancer Biol 2023; 88:67-80. [PMID: 36535506 DOI: 10.1016/j.semcancer.2022.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Pancreatic cancer is one of the most aggressive cancers worldwide due to the resistances to conventional therapies and early metastasis. Recent research has shown that cancer stem cell populations modulate invasiveness, recurrence, and drug resistance in various cancers, including pancreatic cancer. Pancreatic cancer stem cells (PaCSCs) are characterized by their high plasticity and self-renewal capacities that endow them with unique metabolic, metastatic, and chemoresistant properties. Understanding the exact molecular and signaling mechanisms that underlay malignant processes in PaCSCs is instrumental for developing novel therapeutic modalities that overcome the limitations of current therapeutic regimens. In this paper, we provide an updated review of the latest research in the field and summarize the current knowledge of PaCSCs characteristics, cellular metabolism, stemness, and drug resistance. We explore how the crosstalk between the TME and PaCSCs influences stemness. We also highlight some of the key signalling pathways involved in PaCSCs stemness and drug evasion. The aim of this review is to explore how PaCSCs develop, maintain their properties, and drive tumor relapse in PC. The last section explores some of the latest therapeutic strategies aimed at targeting PaCSCs.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tha Luong
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| |
Collapse
|
13
|
CDX2 as a Predictive Biomarker Involved in Immunotherapy Response Suppresses Metastasis through EMT in Colorectal Cancer. DISEASE MARKERS 2022; 2022:9025668. [PMID: 36277982 PMCID: PMC9582897 DOI: 10.1155/2022/9025668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022]
Abstract
Background Studies have confirmed that Caudal Type Homeobox 2 (CDX2) plays a tumor suppressor role in colorectal cancer (CRC) and as a prognostic and predictive marker for colorectal cancer. The epithelial to mesenchymal transition (EMT) is a transdifferentiation process, providing migratory and invasive properties to cancer cells during tumor progression. However, the role of CDX2 during the activation of EMT in CRC maintains controversial. Aim To investigate whether CDX2 is associated with EMT in CRC. Methods Forty-six CRC patients were included in the study. Expressions of CDX2, E-cadherin, and N-cadherin in all CRC patients were detected by IHC. ROC assays were applied to detect cut-off points for IHC scores to distinguish high and low expressions of CDX2 in 46 CRC samples. The prognostic value of CDX2 was statistically analyzed. MTT, Western blot, invasion, and migration assays in vitro were employed to explore the function of CDX2. Results We observed that high expressions of CDX2 and E-cadherin as well as low expressions of N-cadherin were significantly correlated with favorable prognosis. The levels of CDX2 protein exhibited a positive associated with E-cadherin while negative correlation with N-cadherin. Then, the low expression of CDX2 and high expression of CA199 in combination are positively related with poor prognosis. Overexpression of CDX2 reduced expression of MMP-2 and diminished cell proliferation, invasion, and migration, while knockdown CDX2 enhanced MMP-2 expression and increased cell proliferation, invasion, and migration in HCT-116 cells. CDX2 was correlated with expression of EMT markers. Overexpression of CDX2 suppressed the EMT markers indicating that CDX2 suppresses CRC cell viability, invasion, and metastasis through inhibiting EMT. Finally, we found that the expression of CDX2 was negatively associated with Th1 cells, macrophages, Th2 cells, cytotoxic cells, T cells, and T helper cells. Conclusions These results indicated CDX2 as prognostic biomarkers involved in immunotherapy response for CRC. CDX2 loss promotes metastasis in CRC through a CDX2-dependent mechanism.
Collapse
|
14
|
García‐Rocha R, Monroy‐García A, Carrera‐Martínez M, Hernández‐Montes J, Don‐López CA, Weiss‐Steider B, Monroy‐Mora KA, Ponce‐Chavero MDLÁ, Montesinos‐Montesinos JJ, Escobar‐Sánchez ML, Castillo GM, Chacón‐Salinas R, Vallejo‐Castillo L, Pérez‐Tapia SM, Mora‐García MDL. Evidence that cervical cancer cells cultured as tumorspheres maintain high CD73 expression and increase their protumor characteristics through TGF-β production. Cell Biochem Funct 2022; 40:760-772. [PMID: 36070413 PMCID: PMC9825969 DOI: 10.1002/cbf.3742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023]
Abstract
Recently, a link between the biological activity of CD73 and tumorigenicity in solid tumors has been proposed. We previously reported that the generation of adenosine (Ado) by the activity of CD73 in cervical cancer (CC) cells induces transforming growth factor-beta 1 (TGF-β1) production to maintain CD73 expression. In the present study, we analyzed the participation of TGF-β1 in CD73 expression and the development of protumoral characteristics in CaSki CC cells cultured as tumorspheres (CaSki-T) and in monolayers (CaSki-M). Compared with those in CaSki-M cells, CD73 expression and Ado generation ability were significantly increased in CaSki-T cells. CaSki-T cells exhibited enrichment in the CSC-like phenotype due to increases in the expression levels of stem cell markers (CD49f, CK17, and P63; OCT4 and SOX2), greater sphere formation efficiency (SFE), and an increase in the percentage of side population (SP) cells. Interestingly, compared with CaSki-M cells, CaSki-T cells produced a greater amount of TGF-β1 and presented a marked protumor phenotype characterized by a significant decrease in the expression of major histocompatibility complex class-I (MHC-I) molecules, an increase in the expression of multidrug resistance protein-I (MRP-I) and vimentin, and an increase in the protein expression levels of Snail-1 and Twist, which was strongly reversed with TGF-β1 inhibition. These results suggest that the presence of TGF-β1-CD73-Ado feedback loop can promote protumoral characteristics in the CC tumor microenvironment.
Collapse
Affiliation(s)
- Rosario García‐Rocha
- Laboratorio de InmunobiologíaUIDCC‐UMIEZ, FES‐Zaragoza, UNAMCiudad de MéxicoMéxico,Programa de Beca Posdoctoral UNAM DGAPA‐PAPIITCiudad de MéxicoMexico
| | - Alberto Monroy‐García
- Laboratorio de InmunobiologíaUIDCC‐UMIEZ, FES‐Zaragoza, UNAMCiudad de MéxicoMéxico,Laboratorio de Inmunología y Cáncer, UIMEO, H Oncología, CMN SXXIInstituto Mexicano del Seguro SocialCiudad de MéxicoMéxico
| | - Monserrat Carrera‐Martínez
- Laboratorio de Inmunología y Cáncer, UIMEO, H Oncología, CMN SXXIInstituto Mexicano del Seguro SocialCiudad de MéxicoMéxico,Programa de Posgrado en Ciencias Biológicas, UNAMCiudad de MéxicoMéxico
| | | | | | - Benny Weiss‐Steider
- Laboratorio de InmunobiologíaUIDCC‐UMIEZ, FES‐Zaragoza, UNAMCiudad de MéxicoMéxico
| | | | - María de los Ángeles Ponce‐Chavero
- Laboratorio de InmunobiologíaUIDCC‐UMIEZ, FES‐Zaragoza, UNAMCiudad de MéxicoMéxico,Programa de Posgrado en Ciencias Biológicas, UNAMCiudad de MéxicoMéxico
| | - Juan José Montesinos‐Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXIInstituto Mexicano del Seguro SocialCiudad de MéxicoMéxico
| | - María Luisa Escobar‐Sánchez
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de MéxicoCiudad UniversitariaCiudad de MéxicoMexico
| | - Gabriela Molina Castillo
- Laboratorio de InmunobiologíaUIDCC‐UMIEZ, FES‐Zaragoza, UNAMCiudad de MéxicoMéxico,Programa de Posgrado en Ciencias Biológicas, UNAMCiudad de MéxicoMéxico
| | - Rommel Chacón‐Salinas
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI)Instituto Politécnico NacionalCiudad de MéxicoMexico,Departamento de Inmunología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional, ENCB‐IPNCiudad de MéxicoMexico
| | - Luis Vallejo‐Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI)Instituto Politécnico NacionalCiudad de MéxicoMexico,Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav‐IPN)Ciudad de MéxicoMexico
| | - Sonia Mayra Pérez‐Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI)Instituto Politécnico NacionalCiudad de MéxicoMexico,Departamento de Inmunología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional, ENCB‐IPNCiudad de MéxicoMexico,Laboratorio Nacional para Servicios Especializados de Investigacioón, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos (LANSEIDI‐FarBiotec‐CONACyT), Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico CityMexico
| | | |
Collapse
|
15
|
Singh MK, Altameemi S, Lares M, Newton MA, Setaluri V. Role of dual specificity phosphatases (DUSPs) in melanoma cellular plasticity and drug resistance. Sci Rep 2022; 12:14395. [PMID: 35999349 PMCID: PMC9399232 DOI: 10.1038/s41598-022-18578-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
Melanoma cells exhibit phenotypic plasticity that allows transition from a proliferative and differentiated phenotype to a more invasive and undifferentiated or transdifferentiated phenotype often associated with drug resistance. The mechanisms that control melanoma phenotype plasticity and its role in drug resistance are not fully understood. We previously demonstrated that emergence of MAPK inhibitor (MAPKi)-resistance phenotype is associated with decreased expression of stem cell proliferation genes and increased expression of MAPK inactivation genes, including dual specificity phosphatases (DUSPs). Several members of the DUSP family genes, specifically DUSP1, -3, -8 and -9, are expressed in primary and metastatic melanoma cell lines and pre-and post BRAFi treated melanoma cells. Here, we show that knockdown of DUSP1 or DUSP8 or treatment with BCI, a pharmacological inhibitor of DUSP1/6 decrease the survival of MAPKi-resistant cells and sensitizes them to BRAFi and MEKi. Pharmacological inhibition of DUSP1/6 upregulated nestin, a neural crest stem cell marker, in both MAPKi-sensitive cells and cells with acquired MAPKi-resistance. In contrast, treatment with BCI resulted in upregulation of MAP2, a neuronal differentiation marker, only in MAPKi-sensitive cells but caused downregulation of both MAP2 and GFAP, a glial marker, in all MAPKi-resistant cell lines. These data suggest that DUSP proteins are involved in the regulation of cellular plasticity cells and melanoma drug resistance and are potential targets for treatment of MAPKi-resistant melanoma.
Collapse
Affiliation(s)
- Mithalesh K Singh
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA. .,Department of Dermatology, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53706, USA.
| | - Sarah Altameemi
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Marcos Lares
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Michael A Newton
- Department of Statistics, Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Vijayasaradhi Setaluri
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA. .,William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA. .,Department of Dermatology, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53706, USA.
| |
Collapse
|
16
|
Rath S, Chakraborty D, Pradhan J, Imran Khan M, Dandapat J. Epigenomic interplay in tumor heterogeneity: Potential of epidrugs as adjunct therapy. Cytokine 2022; 157:155967. [PMID: 35905624 DOI: 10.1016/j.cyto.2022.155967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
"Heterogeneity" in tumor mass has immense importance in cancer progression and therapy. The impact of tumor heterogeneity is an emerging field and not yet fully explored. Tumor heterogeneity is mainly considered as intra-tumor heterogeneity and inter-tumor heterogeneity based on their origin. Intra-tumor heterogeneity refers to the discrepancy within the same cancer mass while inter-tumor heterogeneity refers to the discrepancy between different patients having the same tumor type. Both of these heterogeneity types lead to variation in the histopathological as well as clinical properties of the cancer mass which drives disease resistance towards therapeutic approaches. Cancer stem cells (CSCs) act as pinnacle progenitors for heterogeneity development along with various other genetic and epigenetic parameters that are regulating this process. In recent times epigenetic factors are one of the most studied parameters that drive oxidative stress pathways essential during cancer progression. These epigenetic changes are modulated by various epidrugs and have an impact on tumor heterogeneity. The present review summarizes various aspects of epigenetic regulation in the tumor microenvironment, oxidative stress, and progression towards tumor heterogeneity that creates complications during cancer treatment. This review also explores the possible role of epidrugs in regulating tumor heterogeneity and personalized therapy against drug resistance.
Collapse
Affiliation(s)
- Suvasmita Rath
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Diptesh Chakraborty
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Jyotsnarani Pradhan
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Mohammad Imran Khan
- Department of Biochemistry, King Abdulaziz University (KAU), Jeddah 21577, Saudi Arabia; Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
17
|
Gurova K. Can aggressive cancers be identified by the "aggressiveness" of their chromatin? Bioessays 2022; 44:e2100212. [PMID: 35452144 DOI: 10.1002/bies.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Phenotypic plasticity is a crucial feature of aggressive cancer, providing the means for cancer progression. Stochastic changes in tumor cell transcriptional programs increase the chances of survival under any condition. I hypothesize that unstable chromatin permits stochastic transitions between transcriptional programs in aggressive cancers and supports non-genetic heterogeneity of tumor cells as a basis for their adaptability. I present a mechanistic model for unstable chromatin which includes destabilized nucleosomes, mobile chromatin fibers and random enhancer-promoter contacts, resulting in stochastic transcription. I suggest potential markers for "unsettled" chromatin in tumors associated with poor prognosis. Although many of the characteristics of unstable chromatin have been described, they were mostly used to explain changes in the transcription of individual genes. I discuss approaches to evaluate the role of unstable chromatin in non-genetic tumor cell heterogeneity and suggest using the degree of chromatin instability and transcriptional noise in tumor cells to predict cancer aggressiveness.
Collapse
Affiliation(s)
- Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
18
|
Simulating the Dynamic Intra-Tumor Heterogeneity and Therapeutic Responses. Cancers (Basel) 2022; 14:cancers14071645. [PMID: 35406417 PMCID: PMC8996855 DOI: 10.3390/cancers14071645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
A tumor is a complex tissue comprised of heterogeneous cell subpopulations which exhibit substantial diversity at morphological, genetic and epigenetic levels. Under the selective pressure of cancer therapies, a minor treatment-resistant subpopulation could survive and repopulate. Therefore, the intra-tumor heterogeneity is recognized as a major obstacle to effective treatment. In this paper, we propose a stochastic clonal expansion model to simulate the dynamic evolution of tumor subpopulations and the therapeutic effect at different times during tumor progression. The model is incorporated in the CES webserver, for the convenience of simulation according to initial user input. Based on this model, we investigate the influence of various factors on tumor progression and treatment consequences and present conclusions drawn from observations, highlighting the importance of treatment timing. The model provides an intuitive illustration to deepen the understanding of temporal intra-tumor heterogeneity dynamics and treatment responses, thus helping the improvement of personalized diagnostic and therapeutic strategies.
Collapse
|
19
|
Insights into Intra-Tumoral Heterogeneity: Transcriptional Profiling of Chemoresistant MPM Cell Subpopulations Reveals Involvement of NFkB and DNA Repair Pathways and Contributes a Prognostic Signature. Int J Mol Sci 2021; 22:ijms222112071. [PMID: 34769499 PMCID: PMC8585077 DOI: 10.3390/ijms222112071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Chemoresistance is a hallmark of malignant pleural mesothelioma (MPM) management and the expression of ALDH1A3 is responsible for the survival and activity of MPM chemoresistant cell subpopulations (ALDHbright cells). We enriched mesothelioma ALDHbright cells to near homogeneity by FACS sorting and an Aldefluor assay and performed unbiased Affymetrix gene expression profiling. Viability and ELISA assays were used to rule out significant apoptosis in the sorted cell subpopulations and to assess target engagement by butein. Statistical analysis of the results, pathway enrichment and promoter enrichment were employed for the generation of the data. Q-RTPCR was used to validate a subset of the identified, modulated mRNAs In this work, we started from the observation that the mRNA levels of the ALDH1A3 isoform could prognostically stratify MPM patients. Thus, we purified MPM ALDHbright cells from NCI-H2595 cells and interrogated their gene expression (GES) profile. We analyzed the GES of the purified cells at both a steady state and upon treatment with butein (a multifunctional tetrahydroxy-chalcone), which abates the ALDHbright cell number, thereby exerting chemo-sensitizing effects in vitro and in vivo. We identified 924 genes modulated in a statistically significant manner as a function of ALDH status and of the response to the inhibitor. Pathway and promoter enrichment identified the molecular determinant of high ALDH status and how butein treatment altered the molecular portrait of those chemoresistant cell subpopulations. Further, we unraveled an eighteen-gene signature with high prognostic significance for MPM patients, and showed that most of the identified prognostic contributors escaped the analysis of unfractionated samples. This work proves that digging into the unexplored field of intra-tumor heterogeneity (ITH) by working at the cell subpopulation level may provide findings of prognostic relevance, in addition to mechanistic insights into tumor resistance to therapy.
Collapse
|
20
|
Stem Cell Theory of Cancer: Origin of Tumor Heterogeneity and Plasticity. Cancers (Basel) 2021; 13:cancers13164006. [PMID: 34439162 PMCID: PMC8394880 DOI: 10.3390/cancers13164006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
In many respects, heterogeneity is one of the most striking revelations and common manifestations of a stem cell origin of cancer. We observe heterogeneity in myriad mixed tumors including testicular, lung, and breast cancers. We recognize heterogeneity in diverse tumor subtypes in prostate and kidney cancers. From this perspective, we illustrate that one of the main stem-ness characteristics, i.e., the ability to differentiate into diverse and multiple lineages, is central to tumor heterogeneity. We postulate that cancer subtypes can be meaningless and useless without a proper theory about cancer's stem cell versus genetic origin and nature. We propose a unified theory of cancer in which the same genetic abnormalities, epigenetic defects, and microenvironmental aberrations cause different effects and lead to different outcomes in a progenitor stem cell versus a mature progeny cell. We need to recognize that an all-encompassing genetic theory of cancer may be incomplete and obsolete. A stem cell theory of cancer provides greater universality, interconnectivity, and utility. Although genetic defects are pivotal, cellular context is paramount. When it concerns tumor heterogeneity, perhaps we need to revisit the conventional wisdom of precision medicine and revise our current practice of targeted therapy in cancer care.
Collapse
|
21
|
Kong FE, Li GM, Tang YQ, Xi SY, Loong JHC, Li MM, Li HL, Cheng W, Zhu WJ, Mo JQ, Gong YF, Tang H, Zhao Y, Zhang Y, Ma S, Guan XY, Ma NF, Xie MB, Liu M. Targeting tumor lineage plasticity in hepatocellular carcinoma using an anti-CLDN6 antibody-drug conjugate. Sci Transl Med 2021; 13:13/579/eabb6282. [PMID: 33536280 DOI: 10.1126/scitranslmed.abb6282] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Tumor lineage plasticity is emerging as a critical mechanism of therapeutic resistance and tumor relapse. Highly plastic tumor cells can undergo phenotypic switching to a drug-tolerant state to avoid drug toxicity. Here, we investigate the transmembrane tight junction protein Claudin6 (CLDN6) as a therapeutic target related to lineage plasticity for hepatocellular carcinoma (HCC). CLDN6 was highly expressed in embryonic stem cells but markedly decreased in normal tissues. Reactivation of CLDN6 was frequently observed in HCC tumor tissues as well as in premalignant lesions. Functional assays indicated that CLDN6 is not only a tumor-associated antigen but also conferred strong oncogenic effects in HCC. Overexpression of CLDN6 induced phenotypic shift of HCC cells from hepatic lineage to biliary lineage, which was more refractory to sorafenib treatment. The enhanced tumor lineage plasticity and cellular identity change were potentially induced by the CLDN6/TJP2 (tight junction protein 2)/YAP1 (Yes-associated protein 1) interacting axis and further activation of the Hippo signaling pathway. A de novo anti-CLDN6 monoclonal antibody conjugated with cytotoxic agent (Mertansine) DM1 (CLDN6-DM1) was developed. Preclinical data on both HCC cell lines and primary tumors showed the potent antitumor efficiency of CLDN6-DM1 as a single agent or in combination with sorafenib in HCC treatment.
Collapse
Affiliation(s)
- Fan-En Kong
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Guang-Meng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yun-Qiang Tang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Shao-Yan Xi
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jane Ho Chun Loong
- School of Biomedical Sciences, State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong 852, Hong Kong
| | - Mei-Mei Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Hao-Long Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Cheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Wen-Jie Zhu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Jia-Qiang Mo
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yuan-Feng Gong
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Hui Tang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne 50923, Germany
| | - Yan Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Stephanie Ma
- School of Biomedical Sciences, State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong 852, Hong Kong
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.,Department of Clinical Oncology, State Key Laboratory of Liver Research, University of Hong Kong 852, Hong Kong
| | - Ning-Fang Ma
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Mao-Bin Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Ming Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
22
|
Intratumoral Heterogeneity in Differentiated Thyroid Tumors: An Intriguing Reappraisal in the Era of Personalized Medicine. J Pers Med 2021; 11:jpm11050333. [PMID: 33922518 PMCID: PMC8146970 DOI: 10.3390/jpm11050333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Differentiated thyroid tumors (DTTs) are characterized by significant molecular variability in both spatial and temporal intra-tumoral heterogeneity (ITH), that could influence the therapeutic management. ITH phenomenon appears to have a relevant role in tumor growth, aggressive behavior and drug resistance. Accordingly, characteristics and consequences of ITH in DTTs should be better analyzed and understood in order to guide clinical practice, improving survival. Consequently, in the present review, we investigated morphological and molecular ITH of DTTs in benign, borderline neoplasms and in malignant entities, summarizing the most significant data. Molecular testing in DTTs documents a high risk for recurrence of cancer associated with BRAFV600E, RET/PTC 1/3, ALK and NTRK fusions, while the intermediate risk may be related to BRAFK601E, H/K/N RAS and PAX8/PPARγ. In addition, it may be suggested that tumor genotype is associated with peculiar phenotype.
Collapse
|
23
|
Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S. Strategies for Delivering Nanoparticles across Tumor Blood Vessels. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007363. [PMID: 37197212 PMCID: PMC10187772 DOI: 10.1002/adfm.202007363] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 05/19/2023]
Abstract
Nanoparticle transport across tumor blood vessels is a key step in nanoparticle delivery to solid tumors. However, the specific pathways and mechanisms of this nanoparticle delivery process are not fully understood. Here, the biological and physical characteristics of the tumor vasculature and the tumor microenvironment are explored and how these features affect nanoparticle transport across tumor blood vessels is discussed. The biological and physical methods to deliver nanoparticles into tumors are reviewed and paracellular and transcellular nanoparticle transport pathways are explored. Understanding the underlying pathways and mechanisms of nanoparticle tumor delivery will inform the engineering of safer and more effective nanomedicines for clinical translation.
Collapse
Affiliation(s)
- Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| |
Collapse
|
24
|
Paran Y, Liron Y, Batsir S, Mabjeesh N, Geiger B, Kam Z. Multi-parametric characterization of drug effects on cells. F1000Res 2021; 9. [PMID: 33363713 PMCID: PMC7737707 DOI: 10.12688/f1000research.26254.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/28/2022] Open
Abstract
We present here a novel multi-parametric approach for the characterization of multiple cellular features, using images acquired by high-throughput and high-definition light microscopy. We specifically used this approach for deep and unbiased analysis of the effects of a drug library on five cultured cell lines. The presented method enables the acquisition and analysis of millions of images, of treated and control cells, followed by an automated identification of drugs inducing strong responses, evaluating the median effect concentrations and those cellular properties that are most highly affected by the drug. The tools described here provide standardized quantification of multiple attributes for systems level dissection of complex functions in normal and diseased cells, using multiple perturbations. Such analysis of cells, derived from pathological samples, may help in the diagnosis and follow-up of treatment in patients.
Collapse
Affiliation(s)
- Yael Paran
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel.,IDEA Biomedical Ltd., Rehovot, 76705, Israel
| | - Yuvalal Liron
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Sarit Batsir
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nicola Mabjeesh
- Department of Urology, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel.,Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Zvi Kam
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
25
|
Escalante PI, Quiñones LA, Contreras HR. Epithelial-Mesenchymal Transition and MicroRNAs in Colorectal Cancer Chemoresistance to FOLFOX. Pharmaceutics 2021; 13:pharmaceutics13010075. [PMID: 33429840 PMCID: PMC7827270 DOI: 10.3390/pharmaceutics13010075] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
The FOLFOX scheme, based on the association of 5-fluorouracil and oxaliplatin, is the most frequently indicated chemotherapy scheme for patients diagnosed with metastatic colorectal cancer. Nevertheless, development of chemoresistance is one of the major challenges associated with this disease. It has been reported that epithelial-mesenchymal transition (EMT) is implicated in microRNA-driven modulation of tumor cells response to 5-fluorouracil and oxaliplatin. Moreover, from pharmacogenomic research, it is known that overexpression of genes encoding dihydropyrimidine dehydrogenase (DPYD), thymidylate synthase (TYMS), methylenetetrahydrofolate reductase (MTHFR), the DNA repair enzymes ERCC1, ERCC2, and XRCC1, and the phase 2 enzyme GSTP1 impair the response to FOLFOX. It has been observed that EMT is associated with overexpression of DPYD, TYMS, ERCC1, and GSTP1. In this review, we investigated the role of miRNAs as EMT promotors in tumor cells, and its potential effect on the upregulation of DPYD, TYMS, MTHFR, ERCC1, ERCC2, XRCC1, and GSTP1 expression, which would lead to resistance of CRC tumor cells to 5-fluorouracil and oxaliplatin. This constitutes a potential mechanism of epigenetic regulation involved in late-onset of acquired resistance in mCRC patients under FOLFOX chemotherapy. Expression of these biomarker microRNAs could serve as tools for personalized medicine, and as potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Paula I. Escalante
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, 8500000 Santiago, Chile;
- Laboratory of Cellular and Molecular Oncology (LOCYM), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| | - Luis A. Quiñones
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, 8500000 Santiago, Chile;
- Latin American Network for the Implementation and Validation of Pharmacogenomic Clinical Guidelines (RELIVAF-CYTED), 28015 Madrid, Spain
- Correspondence: (L.A.Q.); (H.R.C.); Tel.: +56-2-29770741 or +56-2-29770743 (L.A.Q.); +56-2-29786862 or +56-2-29786861 (H.R.C.)
| | - Héctor R. Contreras
- Laboratory of Cellular and Molecular Oncology (LOCYM), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
- Correspondence: (L.A.Q.); (H.R.C.); Tel.: +56-2-29770741 or +56-2-29770743 (L.A.Q.); +56-2-29786862 or +56-2-29786861 (H.R.C.)
| |
Collapse
|
26
|
Yang H, Yao F, Davis PF, Tan ST, Hall SRR. CD73, Tumor Plasticity and Immune Evasion in Solid Cancers. Cancers (Basel) 2021; 13:cancers13020177. [PMID: 33430239 PMCID: PMC7825701 DOI: 10.3390/cancers13020177] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Tumors are ecosystems composed of cancer cells and non-tumor stroma together in a hypoxic environment often described as wounds that do not heal. Accumulating data suggest that solid tumors hijack cellular plasticity possibly to evade detection by the immune system. CD73-mediated generation of the purine nucleoside adenosine, is an important biochemical constituent of the immunosuppressive tumor microenvironment. In this review, the association between CD73 expression and features associated with cellular plasticity involving stemness, epithelial-to-mesenchymal transition and metastasis together with immune infiltration is summarized for a wide range of solid tumor types. Our analyses demonstrate that CD73 correlates with signatures associated with cellular plasticity in solid tumors. In addition, there are strong associations between CD73 expression and type of infiltrating lymphocytes. Collectively, the observations suggest a biomarker-based stratification to identify CD73-adenosinergic rich tumors may help identify patients with solid cancers who will respond to a combinatorial strategy that includes targeting CD73. Abstract Regulatory networks controlling cellular plasticity, important during early development, can re-emerge after tissue injury and premalignant transformation. One such regulatory molecule is the cell surface ectoenzyme ecto-5′-nucleotidase that hydrolyzes the conversion of extracellular adenosine monophosphate to adenosine (eADO). Ecto-5′-nucleotidase (NT5E) or cluster of differentiation 73 (CD73), is an enzyme that is encoded by NT5E in humans. In normal tissue, CD73-mediated generation of eADO has important pleiotropic functions ranging from the promotion of cell growth and survival, to potent immunosuppression mediated through purinergic G protein-coupled adenosine receptors. Importantly, tumors also utilize several mechanisms mediated by CD73 to resist therapeutics and in particular, evade the host immune system, leading to undesired resistance to targeted therapy and immunotherapy. Tumor cell CD73 upregulation is associated with worse clinical outcomes in a variety of cancers. Emerging evidence indicates a link between tumor cell stemness with a limited host anti-tumor immune response. In this review, we provide an overview of a growing body of evidence supporting the pro-tumorigenic role of CD73 and adenosine signaling. We also discuss data that support a link between CD73 expression and tumor plasticity, contributing to dissemination as well as treatment resistance. Collectively, targeting CD73 may represent a novel treatment approach for solid cancers.
Collapse
Affiliation(s)
- Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China;
- Correspondence: or (H.Y.); (S.R.R.H.); Tel.: +86-(0)-22200000 (H.Y.); +64-(0)-42820366 (S.R.R.H.)
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Paul F. Davis
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (P.F.D.); (S.T.T.)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (P.F.D.); (S.T.T.)
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Sean R. R. Hall
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand; (P.F.D.); (S.T.T.)
- Correspondence: or (H.Y.); (S.R.R.H.); Tel.: +86-(0)-22200000 (H.Y.); +64-(0)-42820366 (S.R.R.H.)
| |
Collapse
|
27
|
Richard V, Kumar TRS, Pillai RM. Transitional dynamics of cancer stem cells in invasion and metastasis. Transl Oncol 2021; 14:100909. [PMID: 33049522 PMCID: PMC7557893 DOI: 10.1016/j.tranon.2020.100909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
At the onset, few cancer cells amidst the tumor bulk, identified as cancer stem cells (CSCs) or early disseminated cancer cells (eDCCs) are capable of survival post conventional therapy and persist as minimal residual disease (MRD). Metastatic subclones emerge both early and late in the life of primary tumor ensuing an ongoing regional clonal evolution of progenitor cells in metastatic and primary tumors. In the last decade, multiple studies proposed various identities of stem-like cells that undergo transitions to adapt to the changing microenvironment as the disease progresses. This review advocates with substantial evidence the dynamic model of tumor propagation by exploring the specific cell types, reversible phenotypic plasticity between the tumorigenic leader seeds and the supporting follower cancer cells both in circulation and in solid tissue to accurately decipher tumor promoting clones and its role in metastatic dissemination and tumor re-growth. (142 words).
Collapse
Affiliation(s)
- Vinitha Richard
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala State, India
| | - T R Santhosh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala State, India
| | - Radhakrishna M Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala State, India.
| |
Collapse
|
28
|
Bacci M, Lorito N, Smiriglia A, Morandi A. Fat and Furious: Lipid Metabolism in Antitumoral Therapy Response and Resistance. Trends Cancer 2020; 7:198-213. [PMID: 33281098 DOI: 10.1016/j.trecan.2020.10.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
Lipid metabolic reprogramming is an established trait of cancer metabolism that guides response and resistance to antitumoral therapies. Enhanced lipogenesis, increased lipid content (either free or stored into lipid droplets), and lipid-dependent catabolism sustain therapy desensitization and the emergence of a resistant phenotype of tumor cells exposed to chemotherapy or targeted therapies. Aberrant lipid metabolism, therefore, has emerged as a potential metabolic vulnerability of therapy-resistant cancers that could be exploited for therapeutic interventions or for identifying tumors more likely to respond to further lines of therapies. This review gathers recent findings on the role of aberrant lipid metabolism in influencing antitumoral therapy response and in sustaining the emergence of resistance.
Collapse
Affiliation(s)
- Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
29
|
Alison MR. The cellular origins of cancer with particular reference to the gastrointestinal tract. Int J Exp Pathol 2020; 101:132-151. [PMID: 32794627 PMCID: PMC7495846 DOI: 10.1111/iep.12364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022] Open
Abstract
Stem cells or their closely related committed progenitor cells are the likely founder cells of most neoplasms. In the continually renewing and hierarchically organized epithelia of the oesophagus, stomach and intestine, homeostatic stem cells are located at the beginning of the cell flux, in the basal layer of the oesophagus, the isthmic region of gastric oxyntic glands and at the bottom of gastric pyloric-antral glands and colonic crypts. The introduction of mutant oncogenes such as KrasG12D or loss of Tp53 or Apc to specific cell types expressing the likes of Lgr5 and Mist1 can be readily accomplished in genetically engineered mouse models to initiate tumorigenesis. Other origins of cancer are discussed including 'reserve' stem cells that may be activated by damage or through disruption of morphogen gradients along the crypt axis. In the liver and pancreas, with little cell turnover and no obvious stem cell markers, the importance of regenerative hyperplasia associated with chronic inflammation to tumour initiation is vividly apparent, though inflammatory conditions in the renewing populations are also permissive for tumour induction. In the liver, hepatocytes, biliary epithelial cells and hepatic progenitor cells are embryologically related, and all can give rise to hepatocellular carcinoma and cholangiocarcinoma. In the exocrine pancreas, both acinar and ductal cells can give rise to pancreatic ductal adenocarcinoma (PDAC), although the preceding preneoplastic states are quite different: acinar-ductal metaplasia gives rise to pancreatic intraepithelial neoplasia culminating in PDAC, while ducts give rise to PDAC via. mucinous cell metaplasia that may have a polyclonal origin.
Collapse
Affiliation(s)
- Malcolm R. Alison
- Centre for Tumour BiologyBarts Cancer Institute, Charterhouse SquareBarts and The London School of Medicine and DentistryLondonUK
| |
Collapse
|
30
|
Olivares-Urbano MA, Griñán-Lisón C, Marchal JA, Núñez MI. CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer. Cells 2020; 9:cells9071651. [PMID: 32660072 PMCID: PMC7407195 DOI: 10.3390/cells9071651] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT) is a modality of oncologic treatment that can be used to treat approximately 50% of all cancer patients either alone or in combination with other treatment modalities such as surgery, chemotherapy, immunotherapy, and therapeutic targeting. Despite the technological advances in RT, which allow a more precise delivery of radiation while progressively minimizing the impact on normal tissues, issues like radioresistance and tumor recurrence remain important challenges. Tumor heterogeneity is responsible for the variation in the radiation response of the different tumor subpopulations. A main factor related to radioresistance is the presence of cancer stem cells (CSC) inside tumors, which are responsible for metastases, relapses, RT failure, and a poor prognosis in cancer patients. The plasticity of CSCs, a process highly dependent on the epithelial–mesenchymal transition (EMT) and associated to cell dedifferentiation, complicates the identification and eradication of CSCs and it might be involved in disease relapse and progression after irradiation. The tumor microenvironment and the interactions of CSCs with their niches also play an important role in the response to RT. This review provides a deep insight into the characteristics and radioresistance mechanisms of CSCs and into the role of CSCs and tumor microenvironment in both the primary tumor and metastasis in response to radiation, and the radiobiological principles related to the CSC response to RT. Finally, we summarize the major advances and clinical trials on the development of CSC-based therapies combined with RT to overcome radioresistance. A better understanding of the potential therapeutic targets for CSC radiosensitization will provide safer and more efficient combination strategies, which in turn will improve the live expectancy and curability of cancer patients.
Collapse
Affiliation(s)
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Correspondence: (J.A.M.); (M.I.N.); Tel.: +34-958-249321 (J.A.M.); +34-958-242077 (M.I.N.)
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, University of Granada, 18016 Granada, Spain;
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain;
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Correspondence: (J.A.M.); (M.I.N.); Tel.: +34-958-249321 (J.A.M.); +34-958-242077 (M.I.N.)
| |
Collapse
|
31
|
Role of Exosomal miRNAs and the Tumor Microenvironment in Drug Resistance. Cells 2020; 9:cells9061450. [PMID: 32545155 PMCID: PMC7349227 DOI: 10.3390/cells9061450] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor microenvironment (TME) is composed of different cellular populations, such as stromal, immune, endothelial, and cancer stem cells. TME represents a key factor for tumor heterogeneity maintenance, tumor progression, and drug resistance. The transport of molecules via extracellular vesicles emerged as a key messenger in intercellular communication in the TME. Exosomes are small double-layered lipid extracellular vesicles that can carry a variety of molecules, including proteins, lipids, and nucleic acids. Exosomal miRNA released by cancer cells can mediate phenotypical changes in the cells of TME to promote tumor growth and therapy resistance, for example, fibroblast- and macrophages-induced differentiation. Cancer stem cells can transfer and enhance drug resistance in neighboring sensitive cancer cells by releasing exosomal miRNAs that target antiapoptotic and immune-suppressive pathways. Exosomes induce drug resistance by carrying ABC transporters, which export chemotherapeutic agents out of the recipient cells, thereby reducing the drug concentration to suboptimal levels. Exosome biogenesis inhibitors represent a promising adjunct therapeutic approach in cancer therapy to avoid the acquisition of a resistant phenotype. In conclusion, exosomal miRNAs play a crucial role in the TME to confer drug resistance and survivability to tumor cells, and we also highlight the need for further investigations in this promising field.
Collapse
|
32
|
Lu Y, Chan YT, Tan HY, Li S, Wang N, Feng Y. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer 2020; 19:79. [PMID: 32340605 PMCID: PMC7184703 DOI: 10.1186/s12943-020-01197-3] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Epigenetics is dynamic and heritable modifications to the genome that occur independently of DNA sequence. It requires interactions cohesively with various enzymes and other molecular components. Aberrant epigenetic alterations can lead to inappropriate onset of genetic expressions and promote tumorigenesis. As the epigenetic modifiers are susceptible to extrinsic factors and reversible, they are becoming promising targets in multiple cancer therapies. Recently, various epi-drugs have been developed and implicated in clinical use. The use of epi-drugs alone, or in combination with chemotherapy or immunotherapy, has shown compelling outcomes, including augmentation of anti-tumoral effects, overcoming drug resistance, and activation of host immune response.
Collapse
Affiliation(s)
- Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China
| | - Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China.
| |
Collapse
|