1
|
Xu SB, Gao XK, Liang HD, Cong XX, Chen XQ, Zou WK, Tao JL, Pan ZY, Zhao J, Huang M, Bao Z, Zhou YT, Zheng LL. KPNA3 regulates histone locus body formation by modulating condensation and nuclear import of NPAT. J Cell Biol 2025; 224:e202401036. [PMID: 39621428 PMCID: PMC11613458 DOI: 10.1083/jcb.202401036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 12/11/2024] Open
Abstract
The histone locus body (HLB) is a membraneless organelle that determines the transcription of replication-dependent histones. However, the mechanisms underlying the appropriate formation of the HLB in the nucleus but not in the cytoplasm remain unknown. HLB formation is dependent on the scaffold protein NPAT. We identify KPNA3 as a specific importin that drives the nuclear import of NPAT by binding to the nuclear localization signal (NLS) sequence. NPAT undergoes phase separation, which is inhibited by KPNA3-mediated impairment of self-association. In this, a C-terminal self-interaction facilitator (C-SIF) motif, proximal to the NLS, binds the middle 431-1,030 sequence to mediate the self-association of NPAT. Mechanistically, the anchoring of KPNA3 to the NPAT-NLS sterically blocks C-SIF motif-dependent NPAT self-association. This leads to the suppression of aberrant NPAT condensation in the cytoplasm. Collectively, our study reveals a previously unappreciated role of KPNA3 in modulating HLB formation and delineates a steric hindrance mechanism that prevents inappropriate cytoplasmic NPAT condensation.
Collapse
Affiliation(s)
- Shui Bo Xu
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Xiu Kui Gao
- International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Hao Di Liang
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xia Cong
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Qi Chen
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Kai Zou
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Li Tao
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhao Yuan Pan
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiao Zhao
- Department of Endocrinology, Hangzhou First People’s Hospital, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Zhang Bao
- Department of Respiratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Ting Zhou
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Ling Zheng
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Ikliptikawati DK, Makiyama K, Hazawa M, Wong RW. Unlocking the Gateway: The Spatio-Temporal Dynamics of the p53 Family Driven by the Nuclear Pores and Its Implication for the Therapeutic Approach in Cancer. Int J Mol Sci 2024; 25:7465. [PMID: 39000572 PMCID: PMC11242911 DOI: 10.3390/ijms25137465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The p53 family remains a captivating focus of an extensive number of current studies. Accumulating evidence indicates that p53 abnormalities rank among the most prevalent in cancer. Given the numerous existing studies, which mostly focus on the mutations, expression profiles, and functional perturbations exhibited by members of the p53 family across diverse malignancies, this review will concentrate more on less explored facets regarding p53 activation and stabilization by the nuclear pore complex (NPC) in cancer, drawing on several studies. p53 integrates a broad spectrum of signals and is subject to diverse regulatory mechanisms to enact the necessary cellular response. It is widely acknowledged that each stage of p53 regulation, from synthesis to degradation, significantly influences its functionality in executing specific tasks. Over recent decades, a large body of data has established that mechanisms of regulation, closely linked with protein activation and stabilization, involve intricate interactions with various cellular components. These often transcend canonical regulatory pathways. This new knowledge has expanded from the regulation of genes themselves to epigenomics and proteomics, whereby interaction partners increase in number and complexity compared with earlier paradigms. Specifically, studies have recently shown the involvement of the NPC protein in such complex interactions, underscoring the further complexity of p53 regulation. Furthermore, we also discuss therapeutic strategies based on recent developments in this field in combination with established targeted therapies.
Collapse
Affiliation(s)
- Dini Kurnia Ikliptikawati
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
| | - Kei Makiyama
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| | - Richard W. Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| |
Collapse
|
3
|
Khakwani MMAK, Ji XY, Khattak S, Sun YC, Yao K, Zhang L. Targeting colorectal cancer at the level of nuclear pore complex. J Adv Res 2024:S2090-1232(24)00245-5. [PMID: 38876192 DOI: 10.1016/j.jare.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are the architectures entrenched in nuclear envelop of a cell that regulate the nucleo-cytoplasmic transportation of materials, such as proteins and RNAs for proper functioning of a cell. The appropriate localization of proteins and RNAs within the cell is essential for its normal functionality. For such a complex transportation of materials across the NPC, around 60 proteins are involved comprising nucleoporins, karyopherins and RAN system proteins that play a vital role in NPC's structure formation, cargo translocation across NPC, and cargoes' rapid directed transportation respectively. In various cancers, the structure and function of NPC is often exaggerated, following altered expressions of its nucleoporins and karyopherins, affecting other proteins of associated signaling pathways. Some inhibitors of karyopherins at present, have potential to regulate the altered level/expression of these karyopherin molecules. AIM OF REVIEW This review summarizes the data from 1990 to 2023, mainly focusing on recent studies that illustrate the structure and function of NPC, the relationship and mechanisms of nucleoporins and karyopherins with colorectal cancer, as well as therapeutic values, in order to understand the pathology and underlying basis of colorectal cancer associated with NPC. This is the first review to our knowledge elucidating the detailed updated studies targeting colorectal cancer at NPC. The review also aims to target certain karyopherins, Nups and their possible inhibitors and activators molecules as a therapeutic strategy. KEY SCIENTIFIC CONCEPTS OF REVIEW NPC structure provides understanding, how nucleoporins and karyopherins as key molecules are responsible for appropriate nucleocytoplasmic transportation. Many studies provide evidences, describing the role of disrupted nucleoporins and karyopherins not only in CRC but also in other non-hematological and hematological malignancies. At present, some inhibitors of karyopherins have therapeutic potential for CRC, however development of more potent inhibitors may provide more effective therapeutic strategies for CRC in near future.
Collapse
Affiliation(s)
- Muhammad Mahtab Aslam Khan Khakwani
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Department of Oncology, Huaxian County Hospital, Huaxian, Henan Province 456400, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan 450064, China
| | - Saadullah Khattak
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Ying-Chuan Sun
- Department of Internal Oncology (Section I), Xuchang Municipal Central Hospital, Xuchang, Henan 430000, China
| | - Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China.
| | - Lei Zhang
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
4
|
Nguyen PT, Shimojukkoku Y, Kajiya Y, Oku Y, Tomishima A, Shima K, Sasahira T. Gene alterations in the nuclear transport receptor superfamily: A study of head and neck cancer. PLoS One 2024; 19:e0300446. [PMID: 38820302 PMCID: PMC11142601 DOI: 10.1371/journal.pone.0300446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/28/2024] [Indexed: 06/02/2024] Open
Abstract
In cancer cells, the nuclear transport system is often disrupted, leading to abnormal localization of nuclear proteins and altered gene expression. This disruption can arise from various mechanisms such as mutations in genes that regulate nuclear transport, altered expression of transport proteins, and changes in nuclear envelope structure. Oncogenic protein build-up in the nucleus due to the disturbance in nuclear transport can also boost tumor growth and cell proliferation. In this study, we performed bioinformatic analyses of 23 key nuclear transport receptors using genomic and transcriptomic data from pancancer and head and neck squamous cell carcinoma (HNSCC) datasets from The Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia and found that the total alteration frequency of 23 nuclear transport receptors in 2691 samples of the PCAWG Consortium was 42.1% and a high levels of genetic alterations was significantly associated with poor overall survival. Amplification was the most common type of genetic alterations, and results in the overexpression of nuclear transport receptors in HNSCC compared to normal tissues. Furthermore, our study revealed that seven out of eight cell cycle genes (CDK1, CDK2, CDK4, CDK6, CCNA1, CCNB1, and CCNE2) were significantly and positively correlated with nuclear transport receptor genes in TCGA pancancer and CCLE datasets. Additionally, functional enrichment analysis showed that nuclear transport receptor genes were mainly enriched in the adhesion junction, cell cycle, ERBB, MAPK, MTOR and WNT signaling pathways.
Collapse
Affiliation(s)
- Phuong Thao Nguyen
- Department of Molecular Oral Pathology and Oncology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan
| | - Yudai Shimojukkoku
- Department of Molecular Oral Pathology and Oncology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan
| | - Yuka Kajiya
- Department of Molecular Oral Pathology and Oncology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan
| | - Yasunobu Oku
- Department of Molecular Oral Pathology and Oncology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan
| | - Ayami Tomishima
- Department of Molecular Oral Pathology and Oncology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan
| | - Kaori Shima
- Department of Molecular Oral Pathology and Oncology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan
| | - Tomonori Sasahira
- Department of Molecular Oral Pathology and Oncology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
5
|
Hazawa M, Ikliptikawati DK, Iwashima Y, Lin DC, Jiang Y, Qiu Y, Makiyama K, Matsumoto K, Kobayashi A, Nishide G, Keesiang L, Yoshino H, Minamoto T, Suzuki T, Kobayashi I, Meguro-Horike M, Jiang YY, Nishiuchi T, Konno H, Koeffler HP, Hosomichi K, Tajima A, Horike SI, Wong RW. Super-enhancer trapping by the nuclear pore via intrinsically disordered regions of proteins in squamous cell carcinoma cells. Cell Chem Biol 2024; 31:792-804.e7. [PMID: 37924814 DOI: 10.1016/j.chembiol.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Master transcription factors such as TP63 establish super-enhancers (SEs) to drive core transcriptional networks in cancer cells, yet the spatiotemporal regulation of SEs within the nucleus remains unknown. The nuclear pore complex (NPC) may tether SEs to the nuclear pore where RNA export rates are maximal. Here, we report that NUP153, a component of the NPC, anchors SEs to the NPC and enhances TP63 expression by maximizing mRNA export. This anchoring is mediated through protein-protein interaction between the intrinsically disordered regions (IDRs) of NUP153 and the coactivator BRD4. Silencing of NUP153 excludes SEs from the nuclear periphery, decreases TP63 expression, impairs cellular growth, and induces epidermal differentiation of squamous cell carcinoma. Overall, this work reveals the critical roles of NUP153 IDRs in the regulation of SE localization, thus providing insights into a new layer of gene regulation at the epigenomic and spatial level.
Collapse
Affiliation(s)
- Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Laboratory of molecular cell biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Dini Kurnia Ikliptikawati
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuki Iwashima
- Laboratory of molecular cell biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - De-Chen Lin
- Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Yuan Jiang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R.China; University of Science and Technology of China, Hefei 230026, P.R.China
| | - Yujia Qiu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kei Makiyama
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Koki Matsumoto
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akiko Kobayashi
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Goro Nishide
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Lim Keesiang
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hironori Yoshino
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Makiko Meguro-Horike
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yan-Yi Jiang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R.China; University of Science and Technology of China, Hefei 230026, P.R.China
| | - Takumi Nishiuchi
- Division of Integrated Omics research, Bioscience Core Facility Research Center for Experimental Modeling of Human Disease, Kanazawa University 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Shin-Ichi Horike
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Richard W Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Laboratory of molecular cell biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
6
|
Goswami R, Gupta A, Bednova O, Coulombe G, Patel D, Rotello VM, Leyton JV. Nuclear localization signal-tagged systems: relevant nuclear import principles in the context of current therapeutic design. Chem Soc Rev 2024; 53:204-226. [PMID: 38031452 PMCID: PMC10798298 DOI: 10.1039/d1cs00269d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nuclear targeting of therapeutics provides a strategy for enhancing efficacy of molecules active in the nucleus and minimizing off-target effects. 'Active' nuclear-directed transport and efficient translocations across nuclear pore complexes provide the most effective means of maximizing nuclear localization. Nuclear-targeting systems based on nuclear localization signal (NLS) motifs have progressed significantly since the beginning of the current millennium. Here, we offer a roadmap for understanding the basic mechanisms of nuclear import in the context of actionable therapeutic design for developing NLS-therapeutics with improved treatment efficacy.
Collapse
Affiliation(s)
- Ritabrita Goswami
- Department of Chemistry, University of Massachusetts, Massachusetts, USA.
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts, Massachusetts, USA.
| | - Olga Bednova
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec, Canada
| | - Gaël Coulombe
- Service des stages et du développement professionnel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dipika Patel
- Service des stages et du développement professionnel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Massachusetts, USA.
| | - Jeffrey V Leyton
- École des sciences pharmaceutiques, Université d'Ottawa, Ottawa, Ontario, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Huang JL, Yan XL, Huang D, Gan L, Gao H, Fan RZ, Li S, Yuan FY, Zhu X, Tang GH, Chen HW, Wang J, Yin S. Discovery of a highly potent and orally available importin- β1 inhibitor that overcomes enzalutamide-resistance in advanced prostate cancer. Acta Pharm Sin B 2023; 13:4934-4944. [PMID: 38045040 PMCID: PMC10692375 DOI: 10.1016/j.apsb.2023.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/27/2023] [Accepted: 07/11/2023] [Indexed: 12/05/2023] Open
Abstract
Nuclear transporter importin-β1 is emerging as an attractive target by virtue of its prevalence in many cancers. However, the lack of druggable inhibitors restricts its therapeutic proof of concept. In the present work, we optimized a natural importin-β1 inhibitor DD1 to afford an improved analog DD1-Br with better tolerability (>25 folds) and oral bioavailability. DD1-Br inhibited the survival of castration-resistant prostate cancer (CRPC) cells with sub-nanomolar potency and completely prevented tumor growth in resistant CRPC models both in monotherapy (0.5 mg/kg) and in enzalutamide-combination therapy. Mechanistic study revealed that by targeting importin-β1, DD1-Br markedly inhibited the nuclear accumulation of multiple CRPC drivers, particularly AR-V7, a main contributor to enzalutamide resistance, leading to the integral suppression of downstream oncogenic signaling. This study provides a promising lead for CRPC and demonstrates the potential of overcoming drug resistance in advanced CRPC via targeting importin-β1.
Collapse
Affiliation(s)
- Jia-Luo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Long Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou 550025, China
| | - Dong Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Gan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huahua Gao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Run-Zhu Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang-Yu Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Wu Chen
- School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
9
|
Ikliptikawati DK, Hirai N, Makiyama K, Sabit H, Kinoshita M, Matsumoto K, Lim K, Meguro-Horike M, Horike SI, Hazawa M, Nakada M, Wong RW. Nuclear transport surveillance of p53 by nuclear pores in glioblastoma. Cell Rep 2023; 42:112882. [PMID: 37552992 DOI: 10.1016/j.celrep.2023.112882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/30/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
Nuclear pore complexes (NPCs) are the central apparatus of nucleocytoplasmic transport. Disease-specific alterations of NPCs contribute to the pathogenesis of many cancers; however, the roles of NPCs in glioblastoma (GBM) are unknown. In this study, we report genomic amplification of NUP107, a component of NPCs, in GBM and show that NUP107 is overexpressed simultaneously with MDM2, a critical E3 ligase that mediates p53 degradation. Depletion of NUP107 inhibits the growth of GBM cell lines through p53 protein stabilization. Mechanistically, NPCs establish a p53 degradation platform via an export pathway coupled with 26S proteasome tethering. NUP107 is the keystone for NPC assembly; the loss of NUP107 affects the integrity of the NPC structure, and thus the proportion of 26S proteasome in the vicinity of nuclear pores significantly decreases. Together, our findings establish roles of NPCs in transport surveillance and provide insights into p53 inactivation in GBM.
Collapse
Affiliation(s)
- Dini Kurnia Ikliptikawati
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan; Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 9201192, Japan
| | - Nozomi Hirai
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 9208641, Japan; Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo 1538515, Japan
| | - Kei Makiyama
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 9208641, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 9208641, Japan
| | - Koki Matsumoto
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan
| | - Keesiang Lim
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 9201192, Japan
| | - Makiko Meguro-Horike
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shin-Ichi Horike
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan; Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 9201192, Japan.
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 9208641, Japan.
| | - Richard W Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan; Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 9201192, Japan.
| |
Collapse
|
10
|
Xu T, Zhu C, Chen J, Song F, Ren X, Wang S, Yi X, Zhang Y, Zhang W, Hu Q, Qin H, Liu Y, Zhang S, Tan Z, Pan Z, Huang P, Ge M. ISG15 and ISGylation modulates cancer stem cell-like characteristics in promoting tumor growth of anaplastic thyroid carcinoma. J Exp Clin Cancer Res 2023; 42:182. [PMID: 37501099 PMCID: PMC10373324 DOI: 10.1186/s13046-023-02751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC) was a rare and extremely malignant endocrine cancer with the distinct hallmark of high proportion of cancer stem cell-like characteristics. Therapies aiming to cancer stem-like cells (CSCs) were emerging as a new direction in cancer treatment, but targeting ATC CSCs remained challenging, mainly due to incomplete insights of the regulatory mechanism of CSCs. Here, we unveiled a novel role of ISG15 in the modulation of ATC CSCs. METHODS The expression of ubiquitin-like proteins were detected by bioinformatics and immunohistochemistry. The correlation between ISG15 expression and tumor stem cells and malignant progression of ATC was analyzed by single-cell RNA sequence from the Gene Expression Omnibus. Flow cytometry combined with immunofluorescence were used to verify the enrichment of ISG15 and ISGyaltion in cancer stem cells. The effect and mechanism of ISG15 and KPNA2 on cancer stem cell-like characteristics of ATC cells were determined by molecular biology experiments. Mass spectrometry combined with immunoprecipitation to screen the substrates of ISG15 and validate its ISGylation modification. Nude mice and zebrafish xenograft models were utilized to demonstrate that ISG15 regulates stem cell characteristics and promotes malignant progression of ATC. RESULTS We found that among several ubiquitin proteins, only ISG15 was aberrantly expressed in ATC and enriched in CSCs. Single-cell sequencing analysis revealed that abnormal expression of ISG15 were intensely associated with stemness and malignant cells in ATC. Inhibition of ISG15 expression dramatically attenuated clone and sphere formation of ATC cells, and facilitated its sensitivity to doxorubicin. Notably, overexpression of ISGylation, but not the non-ISGylation mutant, effectively reinforced cancer stem cell-like characteristics. Mechanistically, ISG15 mediated the ISGylation of KPNA2 and impeded its ubiquitination to promote stability, further maintaining cancer stem cell-like characteristics. Finally, depletion of ISG15 inhibited ATC growth and metastasis in xenografted mouse and zebrafish models. CONCLUSION Our studies not only provided new insights into potential intervention strategies targeting ATC CSCs, but also uncovered the novel biological functions and mechanisms of ISG15 and ISGylation for maintaining ATC cancer stem cell-like characteristics.
Collapse
Affiliation(s)
- Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chaozhuang Zhu
- Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jinming Chen
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinxin Ren
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shanshan Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaofen Yi
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wanli Zhang
- Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qing Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hui Qin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yujia Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Song Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhuo Tan
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, Hangzhou, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Minghua Ge
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, Hangzhou, China.
| |
Collapse
|
11
|
Sato K, Yoshino H, Sato Y, Nakano M, Tsuruga E. ΔNp63 Regulates Radioresistance in Human Head and Neck Squamous Carcinoma Cells. Curr Issues Mol Biol 2023; 45:6262-6271. [PMID: 37623213 PMCID: PMC10453785 DOI: 10.3390/cimb45080394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Radiation therapy is commonly used to treat head and neck squamous cell carcinoma (HNSCC); however, recurrence results from the development of radioresistant cancer cells. Therefore, it is necessary to identify the underlying mechanisms of radioresistance in HNSCC. Previously, we showed that the inhibition of karyopherin-β1 (KPNB1), a factor in the nuclear transport system, enhances radiation-induced cytotoxicity, specifically in HNSCC cells, and decreases the localization of SCC-specific transcription factor ΔNp63. This suggests that ΔNp63 may be a KPNB1-carrying nucleoprotein that regulates radioresistance in HNSCC. Here, we determined whether ΔNp63 is involved in the radioresistance of HNSCC cells. Cell survival was measured by a colony formation assay. Apoptosis was assessed by annexin V staining and cleaved caspase-3 expression. The results indicate that ΔNp63 knockdown decreased the survival of irradiated HNSCC cells, increased radiation-induced annexin V+ cells, and cleaved caspase-3 expression. These results show that ΔNp63 is involved in the radioresistance of HNSCC cells. We further investigated which specific karyopherin-α (KPNA) molecules, partners of KPNB1 for nuclear transport, are involved in nuclear ΔNp63 expression. The analysis of nuclear ΔNp63 protein expression suggests that KPNA1 is involved in nuclear ΔNp63 expression. Taken together, our results suggest that ΔNp63 is a KPNB1-carrying nucleoprotein that regulates radioresistance in HNSCC.
Collapse
Affiliation(s)
- Kota Sato
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki 036-8564, Aomori, Japan (Y.S.); (E.T.)
| | - Hironori Yoshino
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki 036-8564, Aomori, Japan (Y.S.); (E.T.)
| | - Yoshiaki Sato
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki 036-8564, Aomori, Japan (Y.S.); (E.T.)
| | - Manabu Nakano
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Aomori, Japan;
| | - Eichi Tsuruga
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki 036-8564, Aomori, Japan (Y.S.); (E.T.)
| |
Collapse
|
12
|
Li M, Luo M, Liu P, Wang R, Jing H. Circ_0001402 knockdown suppresses the chemoresistance and development of DDP-resistant cutaneous squamous cell carcinoma cells by functioning as a ceRNA for miR-625-5p. Exp Dermatol 2023; 32:529-541. [PMID: 36635223 DOI: 10.1111/exd.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the most common metastatic skin cancer. Circular RNAs (circRNAs) are differentially expressed in CSCC and can sequester and sponge microRNAs. GSE74758 shows that hsa_circ_0001402 (circ_0001402) is the most overexpressed circRNA in CSCC. Expression of circ_0001402, microRNA(miR)-625-5p and karyopherin subunit alpha 4 (KPNA4) was detected by quantitative real-time polymerase chain reaction and/or Western blot. Colon formation, flow cytometry, Transwell assays and xenograft tumour model confirmed the development of CSCC cells. The competing endogenous RNA (ceRNA) interaction was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Circ_0001402 was significantly upregulated in CSCC tissues and cells, and higher expression of circ_0001402 was found in DDP-resistant samples. Functionally, circ_0001402 knockdown induced apoptosis and inhibited half maximal inhibitory concentration of DDP, colony formation, migration and invasion of DDP-resistant CSCC cells, accompanied with the depressed multi-drug resistance-1 (MDR1) and MDR-related protein-1, while miR-625-5p inhibitor could counteract these effects. Mechanically, circ_0001402 mediated the expression regulation of KPNA4 via functioning as a ceRNA for miR-625-5p. KPNA4 re-expression could abate the functions of miR-625-5p. Furthermore, circ_0001402 knockdown could hinder tumour growth of DDP-resistant CSCC. Circ_0001402 knockdown can suppress the development and chemoresistance of DDP-resistant CSCC cells at least partly through targeting miR-625-5p/KPNA4 axis.
Collapse
Affiliation(s)
- Min Li
- Department of Dematology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ming Luo
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Pei Liu
- Department of Dematology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Runchao Wang
- Department of Dematology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Haixia Jing
- Department of Dematology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
13
|
Pan Z, Xu T, Bao L, Hu X, Jin T, Chen J, Chen J, Qian Y, Lu X, Li L, Zheng G, Zhang Y, Zou X, Song F, Zheng C, Jiang L, Wang J, Tan Z, Huang P, Ge M. CREB3L1 promotes tumor growth and metastasis of anaplastic thyroid carcinoma by remodeling the tumor microenvironment. Mol Cancer 2022; 21:190. [PMID: 36192735 PMCID: PMC9531463 DOI: 10.1186/s12943-022-01658-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is an extremely malignant type of endocrine cancer frequently accompanied by extrathyroidal extension or metastasis through mechanisms that remain elusive. We screened for the CREB3 transcription-factor family in a large cohort, consisting of four microarray datasets. This revealed that CREB3L1 was specifically up regulated in ATC tissues and negatively associated with overall survival of patients with thyroid cancer. Consistently, high expression of CREB3L1 was negatively correlated with progression-free survival in an independent cohort. CREB3L1 knockdown dramatically attenuated invasion of ATC cells, whereas overexpression of CREB3L1 facilitated the invasion of papillary thyroid carcinoma (PTC) cells. Loss of CREB3L1 inhibited metastasis and tumor growth of ATC xenografts in zebrafish and nude mouse model. Single-cell RNA-sequencing analysis revealed that CREB3L1 expression gradually increased during the neoplastic progression of a thyroid follicular epithelial cell to an ATC cell, accompanied by the activation of the extracellular matrix (ECM) signaling. CREB3L1 knockdown significantly decreased the expression of collagen subtypes in ATC cells and the fibrillar collagen in xenografts. Due to the loss of CREB3L1, ATC cells were unable to activate alpha-smooth muscle actin (α-SMA)-positive cancer-associated fibroblasts (CAFs). After CREB3L1 knockdown, the presence of CAFs inhibited the growth of ATC spheroids and the metastasis of ATC cells. Further cytokine array screening showed that ATC cells activated α-SMA-positive CAFs through CREB3L1-mediated IL-1α production. Moreover, KPNA2 mediated the nuclear translocation of CREB3L1, thus allowing it to activate downstream ECM signaling. These results demonstrate that CREB3L1 maintains the CAF-like property of ATC cells by activating the ECM signaling, which remodels the tumor stromal microenvironment and drives the malignancy of ATC.
Collapse
Affiliation(s)
- Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lisha Bao
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Tiefeng Jin
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jinming Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jianqiang Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yangyang Qian
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xixuan Lu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lu Li
- Department of Clinical Pharmacy, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Guowan Zheng
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China.,Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Chuanming Zheng
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China.,Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Liehao Jiang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China.,Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jiafeng Wang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China.,Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zhuo Tan
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China. .,Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China. .,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China.
| | - Minghua Ge
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China. .,Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
| |
Collapse
|
14
|
Lan X, Zhao L, Zhang J, Shao Y, Qv Y, Huang J, Cai L. Comprehensive analysis of karyopherin alpha family expression in lung adenocarcinoma: Association with prognostic value and immune homeostasis. Front Genet 2022; 13:956314. [PMID: 35991543 PMCID: PMC9382304 DOI: 10.3389/fgene.2022.956314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Karyopherin alpha (KPNA), a nuclear transporter, has been implicated in the development as well as the progression of many types of malignancies. Immune homeostasis is a multilevel system which regulated by multiple factors. However, the functional significance of the KPNA family in the pathogenesis of lung adenocarcinoma (LUAD) and the impact of immune homeostasis are not well characterized. Methods: In this study, by integrating the TCGA-LUAD database and Masked Somatic Mutation, we first conducted an investigation on the expression levels and mutation status of the KPNA family in patients with LUAD. Then, we constructed a prognostic model based on clinical features and the expression of the KPNA family. We performed functional enrichment analysis and constructed a regulatory network utilizing the differential genes in high-and low-risk groups. Lastly, we performed immune infiltration analysis using CIBERSORT. Results: Analysis of TCGA datasets revealed differential expression of the KPNA family in LUAD. Kaplan-Meier survival analyses indicated that the high expression of KPNA2 and KPNA4 were predictive of inferior overall survival (OS). In addition, we constructed a prognostic model incorporating clinical factors and the expression level of KPNA4 and KPNA5, which accurately predicted 1-year, 3-years, and 5-years survival outcomes. Patients in the high-risk group showed a poor prognosis. Functional enrichment analysis exhibited remarkable enrichment of transcriptional dysregulation in the high-risk group. On the other hand, gene set enrichment analysis (GSEA) displayed enrichment of cell cycle checkpoints as well as cell cycle mitotic in the high-risk group. Finally, analysis of immune infiltration revealed significant differences between the high-and low-risk groups. Further, the high-risk group was more prone to immune evasion while the inflammatory response was strongly associated with the low-risk group. Conclusions: the KPNA family-based prognostic model reflects many biological aspects of LUAD and provides potential targets for precision therapy in LUAD.
Collapse
Affiliation(s)
- Xiuwen Lan
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Zhao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingchun Shao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yunmeng Qv
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | | | - Li Cai
- *Correspondence: Jian Huang, ; Li Cai,
| |
Collapse
|
15
|
Karasev MM, Baloban M, Verkhusha VV, Shcherbakova DM. Nuclear Localization Signals for Optimization of Genetically Encoded Tools in Neurons. Front Cell Dev Biol 2022; 10:931237. [PMID: 35927988 PMCID: PMC9344056 DOI: 10.3389/fcell.2022.931237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear transport in neurons differs from that in non-neuronal cells. Here we developed a non-opsin optogenetic tool (OT) for the nuclear export of a protein of interest induced by near-infrared (NIR) light. In darkness, nuclear import reverses the OT action. We used this tool for comparative analysis of nuclear transport dynamics mediated by nuclear localization signals (NLSs) with different importin specificities. We found that widely used KPNA2-binding NLSs, such as Myc and SV40, are suboptimal in neurons. We identified uncommon NLSs mediating fast nuclear import and demonstrated that the performance of the OT for nuclear export can be adjusted by varying NLSs. Using these NLSs, we optimized the NIR OT for light-controlled gene expression for lower background and higher contrast in neurons. The selected NLSs binding importins abundant in neurons could improve performance of genetically encoded tools in these cells, including OTs and gene-editing tools.
Collapse
Affiliation(s)
- Maksim M. Karasev
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikhail Baloban
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vladislav V. Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Daria M. Shcherbakova
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
16
|
Kimura K, Yamamori S, Hazawa M, Kobayashi-Sun J, Kondo M, Wong RW, Kobayashi I. Inhibition of canonical Wnt signaling promotes ex vivo maintenance and proliferation of hematopoietic stem cells in zebrafish. Stem Cells 2022; 40:831-842. [PMID: 35759948 DOI: 10.1093/stmcls/sxac044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022]
Abstract
The maintenance and proliferation of hematopoietic stem cells (HSCs) are tightly regulated by their niches in the bone marrow. The analysis of niche cells or stromal cell lines that can support HSCs has facilitated the finding of novel supporting factors for HSCs. Despite large efforts in the murine bone marrow, however, HSC expansion is still difficult ex vivo, highlighting the need for new approaches to elucidate the molecular elements that regulate HSCs. The zebrafish provides a unique model to study hematopoietic niches as HSCs are maintained in the kidney, allowing for a parallel view of hematopoietic niches over evolution. Here, using a stromal cell line from the zebrafish kidney, zebrafish kidney stromal (ZKS), we uncover that an inhibitor of canonical Wnt signaling, IWR-1-endo, is a potent regulator of HSCs. Co-culture assays revealed that ZKS cells were in part supportive of maintenance, but not expansion, of gata2a:GFP+runx1:mCherry+ (gata2a+runx1+) HSCs. Transcriptome analysis revealed that, compared to candidate niche cells in the kidney, ZKS cells weakly expressed HSC maintenance factor genes, thpo and cxcl12, but highly expressed canonical Wnt ligand genes, wnt1, 7bb, and 9a. Thpo supplementation in ZKS culture slightly increased, but inhibition of canonical Wnt signaling by IWR-1-endo treatment largely increased the number of gata2a+runx1+ cells (> 2-fold). Moreover, we found that gata2a+runx1+ cells can be maintained by supplementing both IWR-1-endo and Thpo without stromal cells. Collectively, our data provide evidence that IWR-1-endo can be used as a novel supporting factor for HSCs.
Collapse
Affiliation(s)
- Koki Kimura
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Shiori Yamamori
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Ishikawa, Japan.,WPI Nano Life Science Institute, Kanazawa University, Ishikawa, Japan.,Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| | - Jingjing Kobayashi-Sun
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan.,Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, Japan
| | - Mao Kondo
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Richard W Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Ishikawa, Japan.,WPI Nano Life Science Institute, Kanazawa University, Ishikawa, Japan.,Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
17
|
Kondo H, Mishiro K, Iwashima Y, Qiu Y, Kobayashi A, Lim K, Domoto T, Minamoto T, Ogawa K, Kunishima M, Hazawa M, Wong RW. Discovery of a Novel Aminocyclopropenone Compound That Inhibits BRD4-Driven Nucleoporin NUP210 Expression and Attenuates Colorectal Cancer Growth. Cells 2022; 11:cells11030317. [PMID: 35159127 PMCID: PMC8833887 DOI: 10.3390/cells11030317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Epigenetic deregulation plays an essential role in colorectal cancer progression. Bromodomains are epigenetic “readers” of histone acetylation. Bromodomain-containing protein 4 (BRD4) plays a pivotal role in transcriptional regulation and is a feasible drug target in cancer cells. Disease-specific elevation of nucleoporin, a component of the nuclear pore complex (NPC), is a determinant of cancer malignancy, but BRD4-driven changes of NPC composition remain poorly understood. Here, we developed novel aminocyclopropenones and investigated their biological effects on cancer cell growth and BRD4 functions. Among 21 compounds developed here, we identified aminocyclopropenone 1n (ACP-1n) with the strongest inhibitory effects on the growth of the cancer cell line HCT116. ACP-1n blocked BRD4 functions by preventing its phase separation ability both in vitro and in vivo, attenuating the expression levels of BRD4-driven MYC. Notably, ACP-1n significantly reduced the nuclear size with concomitant suppression of the level of the NPC protein nucleoporin NUP210. Furthermore, NUP210 is in a BRD4-dependent manner and silencing of NUP210 was sufficient to decrease nucleus size and cellular growth. In conclusion, our findings highlighted an aminocyclopropenone compound as a novel therapeutic drug blocking BRD4 assembly, thereby preventing BRD4-driven oncogenic functions in cancer cells. This study facilitates the development of the next generation of effective and potent inhibitors of epigenetic bromodomains and extra-terminal (BET) protein family.
Collapse
Affiliation(s)
- Hiroya Kondo
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (H.K.); (K.M.); (K.O.)
| | - Kenji Mishiro
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (H.K.); (K.M.); (K.O.)
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Yuki Iwashima
- Laboratory of Molecular Cell Biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Yujia Qiu
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (Y.Q.); (K.L.)
| | - Akiko Kobayashi
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (Y.Q.); (K.L.)
| | - Takahiro Domoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-0934, Japan; (T.D.); (T.M.)
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-0934, Japan; (T.D.); (T.M.)
| | - Kazuma Ogawa
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (H.K.); (K.M.); (K.O.)
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Masaharu Hazawa
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (H.K.); (K.M.); (K.O.)
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
- Laboratory of Molecular Cell Biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (Y.Q.); (K.L.)
- Correspondence: (M.H.); (R.W.W.); Tel.: +81-076-264-6250 (R.W.W.)
| | - Richard W. Wong
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (H.K.); (K.M.); (K.O.)
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
- Laboratory of Molecular Cell Biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (Y.Q.); (K.L.)
- Correspondence: (M.H.); (R.W.W.); Tel.: +81-076-264-6250 (R.W.W.)
| |
Collapse
|
18
|
Makiyama K, Hazawa M, Kobayashi A, Lim K, Voon DC, Wong RW. NSP9 of SARS-CoV-2 attenuates nuclear transport by hampering nucleoporin 62 dynamics and functions in host cells. Biochem Biophys Res Commun 2022; 586:137-142. [PMID: 34844119 PMCID: PMC8604569 DOI: 10.1016/j.bbrc.2021.11.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/21/2021] [Accepted: 11/12/2021] [Indexed: 12/22/2022]
Abstract
Nuclear pore complexes (NPC) regulate molecular traffics on nuclear envelope, which plays crucial roles during cell fate specification and diseases. The viral accessory protein NSP9 of SARS-CoV-2 is reported to interact with nucleoporin 62 (NUP62), a structural component of the NPC, but its biological impact on the host cell remain obscure. Here, we established new cell line models with ectopic NSP9 expression and determined the subcellular destination and biological functions of NSP9. Confocal imaging identified NSP9 to be largely localized in close proximity to the endoplasmic reticulum. In agreement with the subcellular distribution of NSP9, association of NSP9 with NUP62 was observed in cytoplasm. Furthermore, the overexpression of NSP9 correlated with a reduction of NUP62 expression on the nuclear envelope, suggesting that attenuating NUP62 expression might have contributed to defective NPC formation. Importantly, the loss of NUP62 impaired translocation of p65, a subunit of NF-κB, upon TNF-α stimulation. Concordantly, NSP9 over-expression blocked p65 nuclear transport. Taken together, these data shed light on the molecular mechanisms underlying the modulation of host cells during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kei Makiyama
- Laboratory of Molecular Cell Biology, School of Biological Science and Technology, College of Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masaharu Hazawa
- Laboratory of Molecular Cell Biology, School of Biological Science and Technology, College of Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan; Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan; WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | - Akiko Kobayashi
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Keesiang Lim
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Dominic C Voon
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan; Cancer Research Institute, Kanazawa University, Ishikawa, Japan
| | - Richard W Wong
- Laboratory of Molecular Cell Biology, School of Biological Science and Technology, College of Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan; Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan; WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.
| |
Collapse
|
19
|
Abstract
Clonal haematopoiesis (CH) is a common, age-related expansion of blood cells with somatic mutations that is associated with an increased risk of haematological malignancies, cardiovascular disease and all-cause mortality. CH may be caused by point mutations in genes associated with myeloid neoplasms, chromosomal copy number changes and loss of heterozygosity events. How inherited and environmental factors shape the incidence of CH is incompletely understood. Even though the several varieties of CH may have distinct phenotypic consequences, recent research points to an underlying genetic architecture that is highly overlapping. Moreover, there are numerous commonalities between the inherited variation associated with CH and that which has been linked to age-associated biomarkers and diseases. In this Review, we synthesize what is currently known about how inherited variation shapes the risk of CH and how this genetic architecture intersects with the biology of diseases that occur with ageing.
Collapse
Affiliation(s)
- Alexander J Silver
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander G Bick
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael R Savona
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
20
|
Hazawa M, Amemori S, Nishiyama Y, Iga Y, Iwashima Y, Kobayashi A, Nagatani H, Mizuno M, Takahashi K, Wong RW. A light-switching pyrene probe to detect phase-separated biomolecules. iScience 2021; 24:102865. [PMID: 34386728 PMCID: PMC8346672 DOI: 10.1016/j.isci.2021.102865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/04/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Biomolecules may undergo liquid-liquid phase separation (LLPS) to spatiotemporally compartmentalize and regulate diverse biological processes. Because the number of tools to directly probe LLPS is limited (ie. FRAP, FRET, fluorescence microscopy, fluorescence anisotropy, circular dichroism, etc.), the physicochemical traits of phase-separated condensates remain largely elusive. Here, we introduce a light-switching dipyrene probe (Pyr-A) that forms monomers in either hydrophobic or viscous environments, and intramolecular excimers in aqueous solutions. By exploiting their distinct fluorescence emission spectra, we used fluorescent microscopic imaging to study phase-separated condensates formed by in vitro protein droplets and membraneless intracellular organelles (centrosomes). Ratiometric measurement of excimer and monomer fluorescence intensities showed that protein droplets became hydrophobic and viscous as their size increased. Moreover, centrosomes became hydrophobic and viscous during maturation. Our results show that Pyr-A is a valuable tool to characterize LLPS and enhance our understanding of phase separation underlying biological functions.
Collapse
Affiliation(s)
- Masaharu Hazawa
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shogo Amemori
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- NanoMaterials Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshio Nishiyama
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshihiro Iga
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuki Iwashima
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Akiko Kobayashi
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hirohisa Nagatani
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Motohiro Mizuno
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- NanoMaterials Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kenji Takahashi
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Richard W. Wong
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
21
|
Abstract
Nuclear pore complexes (NPCs) at the surface of nuclear membranes play a critical role in regulating the transport of both small molecules and macromolecules between the cell nucleus and cytoplasm via their multilayered spiderweb-like central channel. During mitosis, nuclear envelope breakdown leads to the rapid disintegration of NPCs, allowing some NPC proteins to play crucial roles in the kinetochore structure, spindle bipolarity, and centrosome homeostasis. The aberrant functioning of nucleoporins (Nups) and NPCs has been associated with autoimmune diseases, viral infections, neurological diseases, cardiomyopathies, and cancers, especially leukemia. This Special Issue highlights several new contributions to the understanding of NPC proteostasis.
Collapse
|
22
|
Suk FM, Chang CC, Sun PC, Ke WT, Chung CC, Lee KL, Chan TS, Liang YC. MCPIP1 Enhances TNF-α-Mediated Apoptosis through Downregulation of the NF-κB/cFLIP Axis. BIOLOGY 2021; 10:biology10070655. [PMID: 34356509 PMCID: PMC8301320 DOI: 10.3390/biology10070655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Monocyte chemoattractant protein-1-induced protein 1 (MCPIP1) is rapidly produced under proinflammatory stimuli, thereby feeding back to downregulate excessive inflammation. In this study, we used the stable, inducible expressions of wild-type (WT) MCPIP1 and an MCPIP1-D141N mutant in T-REx-293 cells by means of a tetracycline on (Tet-on) system. We found that WT MCPIP1 but not MCPIP1-D141N mutant expression dramatically increased apoptosis, caspase-3, -7, -8, and -9 activation, and c-Jun N-terminal kinase (JNK) phosphorylation in TNF-α-treated cells. The pan-caspase inhibitor, z-VAD-fmk, and the caspase-1 inhibitor, z-YVAD-fmk, but not the JNK inhibitor, SP600125, significantly reversed apoptosis and caspase activation in TNF-α/MCPIP1-treated cells. Surprisingly, MCPIP1 itself was also cleaved, and the cleavage was suppressed by treatment with the pan-caspase inhibitor and caspase-1 inhibitor. Moreover, MCPIP1 was found to contain a caspase-1/-4 consensus recognition sequence located in residues 234~238. As expected, the WT MCPIP1 but not the MCPIP1-D141N mutant suppressed NF-κB activation, as evidenced by inhibition of IκB kinase (IKK) phosphorylation and IκB degradation using Western blotting, IKK activity using in vitro kinase activity, and NF-κB translocation to nuclei using an immunofluorescence assay. Interestingly, MCPIP1 also significantly inhibited importin α3 and importin α4 expressions, which are major nuclear transporter receptors for NF-κB. Inhibition of NF-κB activation further downregulated expression of the caspase-8 inhibitor, cFLIP. In summary, the results suggest that MCPIP1 could enhance the TNF-α-induced apoptotic pathway through decreasing NF-κB activation and cFLIP expression.
Collapse
Affiliation(s)
- Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (F.-M.S.); (C.-C.C.); (T.-S.C.)
| | - Chi-Ching Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (F.-M.S.); (C.-C.C.); (T.-S.C.)
- Division of Rheumatology, Immunology and Allergy, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Pei-Chi Sun
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.-C.S.); (W.-T.K.); (C.-C.C.); (K.-L.L.)
| | - Wei-Ting Ke
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.-C.S.); (W.-T.K.); (C.-C.C.); (K.-L.L.)
| | - Chia-Chen Chung
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.-C.S.); (W.-T.K.); (C.-C.C.); (K.-L.L.)
| | - Kun-Lin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.-C.S.); (W.-T.K.); (C.-C.C.); (K.-L.L.)
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tze-Sian Chan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (F.-M.S.); (C.-C.C.); (T.-S.C.)
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.-C.S.); (W.-T.K.); (C.-C.C.); (K.-L.L.)
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
23
|
Mehmood R, Jibiki K, Shibazaki N, Yasuhara N. Molecular profiling of nucleocytoplasmic transport factor genes in breast cancer. Heliyon 2021; 7:e06039. [PMID: 33553736 PMCID: PMC7851789 DOI: 10.1016/j.heliyon.2021.e06039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/14/2020] [Accepted: 01/14/2021] [Indexed: 11/24/2022] Open
Abstract
Transport of functional molecules across the nuclear membrane of a eukaryotic cell is regulated by a dedicated set of transporter proteins that carry molecules into the nucleus or out of the nucleus to the cytoplasm for homeostasis of the cell. One of the categories of cargo molecules these transporters carry are the molecules for cell cycle regulation. Therefore, their role is critical in terms of cancer development. Any misregulation of the transport factors would means aberrant abundance of cell cycle regulators and might have consequences in cell cycle progression. While earlier studies have focussed on individual transport related molecules, a collective overview of how these molecules may be dysregulated in breast cancer is lacking. Using genomic and transcriptomic datasets from TCGA (The Cancer Genome Atlas) and microarray platforms, we carried out bioinformatic analysis and provide a genetic and molecular profile of all the molecules directly related to nucleocytoplasmic shuttling of proteins and RNAs. Interestingly, we identified that many of these molecules are either mutated or have dysregulated expression in breast cancer. Strikingly, some of the molecules, namely, KPNA2, KPNA3, KPNA5, IPO8, TNPO1, XPOT, XPO7 and CSE1L were correlated with poor patient survival. This study provides a comprehensive genetic and molecular landscape of nucleocytoplasmic factors in breast cancer and points to the important roles of various nucleocytoplasmic factors in cancer progression. This data might have implications in prognosis and therapeutic targeting in breast cancer.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Kazuya Jibiki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Noriko Shibazaki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Noriko Yasuhara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
24
|
MNK1 and MNK2 enforce expression of E2F1, FOXM1, and WEE1 to drive soft tissue sarcoma. Oncogene 2021; 40:1851-1867. [PMID: 33564073 PMCID: PMC7946644 DOI: 10.1038/s41388-021-01661-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/25/2020] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Soft tissue sarcoma (STS) is a heterogeneous disease that arises from connective tissues. Clinical outcome of patients with advanced tumors especially de-differentiated liposarcoma and uterine leiomyosarcoma remains unsatisfactory, despite intensive treatment regimens including maximal surgical resection, radiation, and chemotherapy. MAP kinase-interacting serine/threonine-protein kinase 1 and 2 (MNK1/2) have been shown to contribute to oncogenic translation via phosphorylation of eukaryotic translation initiation factor 4E (eIF4E). However, little is known about the role of MNK1/2 and their downstream targets in STS. In this study, we show that depletion of either MNK1 or MNK2 suppresses cell viability, anchorage-independent growth, and tumorigenicity of STS cells. We also identify a compelling antiproliferative efficacy of a novel, selective MNK inhibitor ETC-168. Cellular responsiveness of STS cells to ETC-168 correlates positively with that of phosphorylated ribosomal protein S6 (RPS6). Mirroring MNK1/2 silencing, ETC-168 treatment strongly blocks eIF4E phosphorylation and represses expression of sarcoma-driving onco-proteins including E2F1, FOXM1, and WEE1. Moreover, combination of ETC-168 and MCL1 inhibitor S63845 exerts a synergistic antiproliferative activity against STS cells. In summary, our study reveals crucial roles of MNK1/2 and their downstream targets in STS tumorigenesis. Our data encourage further clinical translation of MNK inhibitors for STS treatment.
Collapse
|
25
|
Kato K, Ikliptikawati DK, Kobayashi A, Kondo H, Lim K, Hazawa M, Wong RW. Overexpression of SARS-CoV-2 protein ORF6 dislocates RAE1 and NUP98 from the nuclear pore complex. Biochem Biophys Res Commun 2020; 536:59-66. [PMID: 33360543 PMCID: PMC7733692 DOI: 10.1016/j.bbrc.2020.11.115] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022]
Abstract
The novel human betacoronavirus SARS-CoV-2 has caused an unprecedented pandemic in the 21st century. Several studies have revealed interactions between SARS-CoV-2 viral proteins and host nucleoporins, yet their functions are largely unknown. Here, we demonstrate that the open-reading frame 6 (ORF6) of SARS-CoV-2 can directly manipulate localization and functions of nucleoporins. We found that ORF6 protein disrupted nuclear rim staining of nucleoporins RAE1 and NUP98. Consequently, this disruption caused aberrant nucleocytoplasmic trafficking and led to nuclear accumulation of mRNA transporters such as hnRNPA1. Ultimately, host cell nucleus size was reduced and cell growth was halted.
Collapse
Affiliation(s)
- Koki Kato
- School of Natural System, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Dini Kurnia Ikliptikawati
- School of Natural System, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Akiko Kobayashi
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Hiroya Kondo
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masaharu Hazawa
- School of Natural System, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan; Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan; Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan; WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Richard W Wong
- School of Natural System, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan; Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan; Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan; WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
26
|
Feng L, Wang R, Yang Y, Shen X, Shi Q, Lian M, Ma H, Fang J. KPNA4 regulated by miR-548b-3p promotes the malignant phenotypes of papillary thyroid cancer. Life Sci 2020; 265:118743. [PMID: 33188837 DOI: 10.1016/j.lfs.2020.118743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
AIM Karyopherin α4 (KPNA4, importin α3) has been verified to be an oncogene in many cancers. However, its role in papillary thyroid cancer (PTC), the most frequent endocrine malignancy, is still unclear. MATERIALS AND METHODS KPNA4 expression was analyzed in PTC tissues and cells. The effects of KPNA4 on the proliferation, invasion, and apoptosis of PTC cells were evaluated after overexpression or downregulation of KPNA4. The influence of KPNA4 on NF-κB activation was evaluated by nuclear NF-κB p65 expression and NF-κB-luciferase reporter assays. Moreover, we also explored whether KPNA4 was regulated by miR-548b-3p. Additionally, the roles of miR-548b-3p and KPNA4 were explored in a xenograft mouse model. KEY FINDINGS KPNA4 expression was increased in PTC tissues and cells, and its expression was significantly related to patients' clinicopathologic features and overall survival. Overexpression of KPNA4 significantly promoted PTC cell proliferation and invasion, enhanced nuclear p65 expression and augmented NF-κB luciferase activity. However, KPNA4 silencing showed opposite effects on the above indexes, and induced apoptosis of PTC cells. KPNA4 was a target of miR-548b-3p, which was downregulated in PTC and inhibited proliferation and invasion, but promoted apoptosis of PTC cells. KPNA4 overexpression abrogated the suppression of miR-548b-3p on the malignant phenotypes of PTC cells. Both miR-548b-3p overexpression and KPNA4 downregulation inhibited tumor growth and Ki-67 expression, elevated numbers of Tunel-positive cells, and deceased nuclear p65 expression in mouse tumor tissues. SIGNIFICANCE KPNA4 was negatively regulated by miR-548b-3p and promoted the development of PTC via activating the NF-κB pathway.
Collapse
Affiliation(s)
- Ling Feng
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Yifan Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Xixi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Qian Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Hongzhi Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China.
| |
Collapse
|
27
|
Zhuo Y, Guo Z, Ba T, Zhang C, He L, Zeng C, Dai H. African Swine Fever Virus MGF360-12L Inhibits Type I Interferon Production by Blocking the Interaction of Importin α and NF-κB Signaling Pathway. Virol Sin 2020; 36:176-186. [PMID: 33141406 PMCID: PMC7606853 DOI: 10.1007/s12250-020-00304-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
African swine fever (ASF) is an infectious transboundary disease of domestic pigs and wild boar and spreading throughout Eurasia. There is no vaccine and treatment available. Complex immune escape strategies of African swine fever virus (ASFV) are crucial factors affecting immune prevention and vaccine development. MGF360 genes have been implicated in the modulation of the IFN-I response. The molecular mechanisms contributing to innate immunity are poorly understood. In this study, we demonstrated that ASFV MGF360-12L (MGF360 families 12L protein) significantly inhibited the mRNA transcription and promoter activity of IFN-β and NF-κB, accompanied by decreases of IRF3, STING, TBK1, ISG54, ISG56 and AP-1 mRNA transcription. Also, MGF360-12L might suppress the nuclear localization of p50 and p65 mediated by classical nuclear localization signal (NLS). Additionally, MGF360-12L could interact with KPNA2, KPNA3, and KPNA4, which interrupted the interaction between p65 and KPNA2, KPNA3, KPNA4. We further found that MGF360-12L could interfere with the NF-κB nuclear translocation by competitively inhibiting the interaction between NF-κB and nuclear transport proteins. These findings suggested that MGF360-12L could inhibit the IFN-I production by blocking the interaction of importin α and NF-κB signaling pathway, which might reveal a novel strategy for ASFV to escape the host innate immune response.
Collapse
Affiliation(s)
- Yisha Zhuo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeheng Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tongtong Ba
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lihua He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cuiping Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
28
|
Zohud BA, Guo P, Zohud BA, Li F, Hao JJ, Shan X, Yu W, Guo W, Qin Y, Cai X. Importin 13 promotes NSCLC progression by mediating RFPL3 nuclear translocation and hTERT expression upregulation. Cell Death Dis 2020; 11:879. [PMID: 33082305 PMCID: PMC7575581 DOI: 10.1038/s41419-020-03101-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
Our previous studies have reported that RFPL3 protein exerts its unique function as a transcriptional factor of hTERT promoter after being transported into the lung cancer cell nucleus. However, the detailed mechanism by which RFPL3 undergoes nuclear transport has not been reported yet. Here, we identified RFPL3 as a potential import cargo for IPO13, which was found to be overexpressed in NSCLC cells and tissues. IPO13 interacted with RFPL3 in lung cancer cells, and the knockdown of IPO13 led to the cytoplasmic accumulation of RFPL3, the decreased anchoring of RFPL3 at hTERT promoter, and the downregulation of hTERT expression. Moreover, IPO13 silencing suppressed tumor growth in vitro and in vivo. IHC analysis confirmed the positive correlation between the expression levels of IPO13 and hTERT in the tumor tissues from patients with lung cancer. Furthermore, the mechanistic study revealed that IPO13 recognized RFPL3 via a functional nuclear localization signal (NLS), which is located in the B30.2 domain at the C-terminal region of RFPL3. Of note, the presence of EGFR mutations was significantly related to the increased IPO13 expression. The EGFR-TKI Osimertinib downregulated IPO13 expression level in NSCLC cell lines with EGFR mutations, but not in EGFR wild-type ones. In summary, our data suggest that inhibition of IPO13 transport activity itself might be an alternative and potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
| | - Ping Guo
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | | | - Fengzhou Li
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Jiao J Hao
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Xiu Shan
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China.
| | - Yu Qin
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
| | - Xin Cai
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
| |
Collapse
|
29
|
Karyopherin-β1 Regulates Radioresistance and Radiation-Increased Programmed Death-Ligand 1 Expression in Human Head and Neck Squamous Cell Carcinoma Cell Lines. Cancers (Basel) 2020; 12:cancers12040908. [PMID: 32276424 PMCID: PMC7226044 DOI: 10.3390/cancers12040908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Nuclear transport receptors, such as karyopherin-β1 (KPNB1), play important roles in the nuclear-cytoplasmic transport of macromolecules. Recent evidence indicates the involvement of nuclear transport receptors in the progression of cancer, making these receptors promising targets for the treatment of cancer. Here, we investigated the anticancer effects of KPNB1 blockage or in combination with ionizing radiation on human head and neck squamous cell carcinoma (HNSCC). HNSCC cell line SAS and Ca9-22 cells were used in this study. Importazole, an inhibitor of KPNB1, or knockdown of KPNB1 by siRNA transfection were applied for the blockage of KPNB1 functions. The roles of KPNB1 on apoptosis induction and cell surface expression levels of programmed death-ligand 1 (PD-L1) in irradiated HNSCC cells were investigated. The major findings of this study are that (i) blockage of KPNB1 specifically enhanced the radiation-induced apoptosis and radiosensitivity of HNSCC cells; (ii) importazole elevated p53-upregulated modulator of apoptosis (PUMA) expression via blocking the nuclear import of SCC-specific oncogene ΔNp63 in HNSCC cells; and (iii) blockage of KPNB1 attenuated the upregulation of cell surface PD-L1 expression on irradiated HNSCC cells. Taken together, these results suggest that co-treatment with KPNB1 blockage and ionizing radiation is a promising strategy for the treatment of HNSCC.
Collapse
|