1
|
Jiang C, Hong Z, Liu S, Hong Z, Dai B. Roles of CDK12 mutations in PCa development and treatment. Biochim Biophys Acta Rev Cancer 2024; 1880:189247. [PMID: 39681197 DOI: 10.1016/j.bbcan.2024.189247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Prostate cancer (PCa) is one of the most common cancers in men, and cyclin-dependent kinase 12 (CDK12) is emerging as a novel star player in the PCa tumorigenesis and progression to castration-resistant prostate cancer (CRPC). In PCa, CDK12 alterations are mostly loss-of-function mutations featuring intronic polyadenylation (IPA), focal tandem duplications (FTDs), and R-loops formation and transcription-replication conflicts (TRCs). The occurrence of IPA can result in homologous recombination deficiency (HRD) and androgen receptor (AR) variation. FTDs induce neoantigens and increase the expression of the AR, MYC, and other hotspot- associated genes. R-loops lead to TRCs and influence various cellular processes, including gene expression and genome stability. Due to the poor prognosis of CDK12-mutant PCa patients and the mediocre response to classic standard therapies, HRD and increased neoantigen levels have provided clinicians with new insights into alternative systematic treatments for this novel PCa phenotype. In this review, we summarize the roles of CDK12 mutations in PCa and discuss their clinical value, suggesting that CDK12 potentially represents a target for further research and the development of clinical strategies for PCa.
Collapse
Affiliation(s)
- Chenye Jiang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Zhe Hong
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China.
| | - Shiwei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Zongyuan Hong
- Laboratory of Quantitative Pharmacology, Wannan Medical College, Wuhu 241002, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China.
| |
Collapse
|
2
|
Elbialy A, Kappala D, Desai D, Wang P, Fadiel A, Wang SJ, Makary MS, Lenobel S, Sood A, Gong M, Dason S, Shabsigh A, Clinton S, Parwani AV, Putluri N, Shvets G, Li J, Liu X. Patient-Derived Conditionally Reprogrammed Cells in Prostate Cancer Research. Cells 2024; 13:1005. [PMID: 38920635 PMCID: PMC11201841 DOI: 10.3390/cells13121005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Prostate cancer (PCa) remains a leading cause of mortality among American men, with metastatic and recurrent disease posing significant therapeutic challenges due to a limited comprehension of the underlying biological processes governing disease initiation, dormancy, and progression. The conventional use of PCa cell lines has proven inadequate in elucidating the intricate molecular mechanisms driving PCa carcinogenesis, hindering the development of effective treatments. To address this gap, patient-derived primary cell cultures have been developed and play a pivotal role in unraveling the pathophysiological intricacies unique to PCa in each individual, offering valuable insights for translational research. This review explores the applications of the conditional reprogramming (CR) cell culture approach, showcasing its capability to rapidly and effectively cultivate patient-derived normal and tumor cells. The CR strategy facilitates the acquisition of stem cell properties by primary cells, precisely recapitulating the human pathophysiology of PCa. This nuanced understanding enables the identification of novel therapeutics. Specifically, our discussion encompasses the utility of CR cells in elucidating PCa initiation and progression, unraveling the molecular pathogenesis of metastatic PCa, addressing health disparities, and advancing personalized medicine. Coupled with the tumor organoid approach and patient-derived xenografts (PDXs), CR cells present a promising avenue for comprehending cancer biology, exploring new treatment modalities, and advancing precision medicine in the context of PCa. These approaches have been used for two NCI initiatives (PDMR: patient-derived model repositories; HCMI: human cancer models initiatives).
Collapse
Affiliation(s)
- Abdalla Elbialy
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Computational Oncology Unit, The University of Chicago Comprehensive Cancer Center, 900 E 57th Street, KCBD Bldg., STE 4144, Chicago, IL 60637, USA
| | - Deepthi Kappala
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Dhruv Desai
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Peng Wang
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Ahmed Fadiel
- Computational Oncology Unit, The University of Chicago Comprehensive Cancer Center, 900 E 57th Street, KCBD Bldg., STE 4144, Chicago, IL 60637, USA
| | - Shang-Jui Wang
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mina S. Makary
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Division of Vascular and Interventional Radiology, Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Scott Lenobel
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Division of Musculoskeletal Imaging, Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Akshay Sood
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Michael Gong
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shawn Dason
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmad Shabsigh
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Steven Clinton
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Anil V. Parwani
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
| | - Jenny Li
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xuefeng Liu
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, Urology, and Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
LoPiccolo J, Gusev A, Christiani DC, Jänne PA. Lung cancer in patients who have never smoked - an emerging disease. Nat Rev Clin Oncol 2024; 21:121-146. [PMID: 38195910 PMCID: PMC11014425 DOI: 10.1038/s41571-023-00844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
Lung cancer is the most common cause of cancer-related deaths globally. Although smoking-related lung cancers continue to account for the majority of diagnoses, smoking rates have been decreasing for several decades. Lung cancer in individuals who have never smoked (LCINS) is estimated to be the fifth most common cause of cancer-related deaths worldwide in 2023, preferentially occurring in women and Asian populations. As smoking rates continue to decline, understanding the aetiology and features of this disease, which necessitate unique diagnostic and treatment paradigms, will be imperative. New data have provided important insights into the molecular and genomic characteristics of LCINS, which are distinct from those of smoking-associated lung cancers and directly affect treatment decisions and outcomes. Herein, we review the emerging data regarding the aetiology and features of LCINS, particularly the genetic and environmental underpinnings of this disease as well as their implications for treatment. In addition, we outline the unique diagnostic and therapeutic paradigms of LCINS and discuss future directions in identifying individuals at high risk of this disease for potential screening efforts.
Collapse
Affiliation(s)
- Jaclyn LoPiccolo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- The Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|