1
|
Neurath MF, Artis D, Becker C. The intestinal barrier: a pivotal role in health, inflammation, and cancer. Lancet Gastroenterol Hepatol 2025:S2468-1253(24)00390-X. [PMID: 40086468 DOI: 10.1016/s2468-1253(24)00390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 03/16/2025]
Abstract
The intestinal barrier serves as a boundary between the mucosal immune system in the lamina propria and the external environment of the intestinal lumen, which contains a diverse array of microorganisms and ingested environmental factors, including pathogens, food antigens, toxins, and other foreign substances. This barrier has a central role in regulating the controlled interaction between luminal factors and the intestinal immune system. Disruptions of intestinal epithelial cells, which serve as a physical barrier, or the antimicrobial peptides and mucins they produce, which act as a chemical barrier, can lead to a leaky gut. In this state, the intestinal wall is unable to efficiently separate the intestinal flora and luminal contents from the intestinal immune system. The subsequent activation of the immune system has an important role in the pathogenesis of inflammatory bowel disease, as well as in metabolic dysfunction-associated steatohepatitis, primary sclerosing cholangitis, and colorectal cancer. Dysregulated intestinal barrier integrity has also been described in patients with chronic inflammatory diseases outside the gastrointestinal tract, including rheumatoid arthritis and neurodegenerative disorders. Mechanistic studies of barrier dysfunction have revealed that the subsequent local activation and systemic circulation of activated immune cells and the cytokines they secrete, as well as extracellular vesicles, promote proinflammatory processes within and outside the gastrointestinal tract. In this Review, we summarise these findings and highlight several new therapeutic concepts currently being developed that attempt to control inflammatory processes via direct or indirect modulation of intestinal barrier function.
Collapse
Affiliation(s)
- Markus F Neurath
- Medical Clinic 1, Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Allen Discovery Center for Neuroimmune Interactions, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christoph Becker
- Medical Clinic 1, Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Huang X, Huang L, Ma C, Hong M, Xu L, Ju Y, Li H, Wang Y, Wang X. 4-Hydroxynonenal Promotes Colorectal Cancer Progression Through Regulating Cancer Stem Cell Fate. Antioxid Redox Signal 2025; 42:265-279. [PMID: 39264845 DOI: 10.1089/ars.2023.0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Aims: Tumor microenvironment (TME) plays a crucial role in sustaining cancer stem cells (CSCs). 4-hydroxynonenal (4-HNE) is abundantly present in the TME of colorectal cancer (CRC). However, the contribution of 4-HNE to CSCs and cancer progression remains unclear. This study aimed to investigate the impact of 4-HNE on the regulation of CSC fate and tumor progression. Methods: Human CRC cells were exposed to 4-HNE, and CSC signaling was analyzed using quantitative real-time polymerase chain reaction, immunofluorescent staining, fluorescence-activated cell sorting, and bioinformatic analysis. The tumor-promoting role of 4-HNE was confirmed using a xenograft model. Results: Exposure of CRC cells to 4-HNE activated noncanonical hedgehog (HH) signaling and homologous recombination repair (HRR) pathways in LGR5+ CSCs. Furthermore, blocking HH signaling led to a significant increase in the expression of γH2AX, indicating that 4-HNE induces double-stranded DNA breaks (DSBs) and simultaneously activates HH signaling to protect CSCs from 4-HNE-induced damage via the HRR pathway. In addition, 4-HNE treatment increased the population of LGR5+ CSCs and promoted asymmetric division in these cells, leading to enhanced self-renewal and differentiation. Notably, 4-HNE also promoted xenograft tumor growth and activated CSC signaling in vivo. Innovation and Conclusion: These findings demonstrate that 4-HNE, as a signaling inducer in the TME, activates the noncanonical HH pathway to shield CSCs from oxidative damage, enhances the proliferation and asymmetric division of LGR5+ CSCs, and thereby facilitates tumor growth. These novel insights shed light on the regulation of CSC fate within the oxidative TME, offering potential implications for understanding and targeting CSCs for CRC therapy. Antioxid. Redox Signal. 42, 265-279.
Collapse
Affiliation(s)
- Xu Huang
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Genetics and Reproductive Medicine, Nantong, China
| | - Lin Huang
- Department of Internal Medicine, Gastroenterology Section, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Chunhua Ma
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Genetics and Reproductive Medicine, Nantong, China
| | - Mingyang Hong
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University and the Sixth People's Hospital of Nantong, Nantong, China
| | - Lili Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Genetics and Reproductive Medicine, Nantong, China
| | - Yuanyuan Ju
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Genetics and Reproductive Medicine, Nantong, China
| | - Haibo Li
- Department of Clinical Laboratory, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Yilang Wang
- Nantong Key Laboratory of Genetics and Reproductive Medicine, Nantong, China
| | - Xingmin Wang
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Genetics and Reproductive Medicine, Nantong, China
| |
Collapse
|
3
|
Sunaga N, Miura Y, Masuda T, Sakurai R. Role of Epiregulin in Lung Tumorigenesis and Therapeutic Resistance. Cancers (Basel) 2024; 16:710. [PMID: 38398101 PMCID: PMC10886815 DOI: 10.3390/cancers16040710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Epidermal growth factor (EGF) signaling regulates multiple cellular processes and plays an essential role in tumorigenesis. Epiregulin (EREG), a member of the EGF family, binds to the epidermal growth factor receptor (EGFR) and ErbB4, and it stimulates EGFR-related downstream pathways. Increasing evidence indicates that both the aberrant expression and oncogenic function of EREG play pivotal roles in tumor development in many human cancers, including non-small cell lung cancer (NSCLC). EREG overexpression is induced by activating mutations in the EGFR, KRAS, and BRAF and contributes to the aggressive phenotypes of NSCLC with oncogenic drivers. Recent studies have elucidated the roles of EREG in a tumor microenvironment, including the epithelial-mesenchymal transition, angiogenesis, immune evasion, and resistance to anticancer therapy. In this review, we summarized the current understanding of EREG as an oncogene and discussed its oncogenic role in lung tumorigenesis and therapeutic resistance.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Yosuke Miura
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Tomomi Masuda
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Reiko Sakurai
- Oncology Center, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|
4
|
Targeting epiregulin in the treatment-damaged tumor microenvironment restrains therapeutic resistance. Oncogene 2022; 41:4941-4959. [PMID: 36202915 DOI: 10.1038/s41388-022-02476-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023]
Abstract
The tumor microenvironment (TME) represents a milieu enabling cancer cells to develop malignant properties, while concerted interactions between cancer and stromal cells frequently shape an "activated/reprogramed" niche to accelerate pathological progression. Here we report that a soluble factor epiregulin (EREG) is produced by senescent stromal cells, which non-cell-autonomously develop the senescence-associated secretory phenotype (SASP) upon DNA damage. Genotoxicity triggers EREG expression by engaging NF-κB and C/EBP, a process supported by elevated chromatin accessibility and increased histone acetylation. Stromal EREG reprograms the expression profile of recipient neoplastic cells in a paracrine manner, causing upregulation of MARCHF4, a membrane-bound E3 ubiquitin ligase involved in malignant progression, specifically drug resistance. A combinational strategy that empowers EREG-specific targeting in treatment-damaged TME significantly promotes cancer therapeutic efficacy in preclinical trials, achieving response indices superior to those of solely targeting cancer cells. In clinical oncology, EREG is expressed in tumor stroma and handily measurable in circulating blood of cancer patients post-chemotherapy. This study establishes EREG as both a targetable SASP factor and a new noninvasive biomarker of treatment-damaged TME, thus disclosing its substantial value in translational medicine.
Collapse
|
5
|
Cheng WL, Feng PH, Lee KY, Chen KY, Sun WL, Van Hiep N, Luo CS, Wu SM. The Role of EREG/EGFR Pathway in Tumor Progression. Int J Mol Sci 2021; 22:ijms222312828. [PMID: 34884633 PMCID: PMC8657471 DOI: 10.3390/ijms222312828] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of the epidermal growth factor receptor (EGFR/ERBB1) by erythroblastic leukemia viral oncogene homolog (ERBB) ligands contributes to various tumor malignancies, including lung cancer and colorectal cancer (CRC). Epiregulin (EREG) is one of the EGFR ligands and is low expressed in most normal tissues. Elevated EREG in various cancers mainly activates EGFR signaling pathways and promotes cancer progression. Notably, a higher EREG expression level in CRC with wild-type Kirsten rat sarcoma viral oncogene homolog (KRAS) is related to better efficacy of therapeutic treatment. By contrast, the resistance of anti-EGFR therapy in CRC was driven by low EREG expression, aberrant genetic mutation and signal pathway alterations. Additionally, EREG overexpression in non-small cell lung cancer (NSCLC) is anticipated to be a therapeutic target for EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, recent findings indicate that EREG derived from macrophages promotes NSCLC cell resistance to EGFR-TKI treatment. The emerging events of EREG-mediated tumor promotion signals are generated by autocrine and paracrine loops that arise from tumor epithelial cells, fibroblasts, and macrophages in the tumor microenvironment (TME). The TME is a crucial element for the development of various cancer types and drug resistance. The regulation of EREG/EGFR pathways depends on distinct oncogenic driver mutations and cell contexts that allows specific pharmacological targeting alone or combinational treatment for tailored therapy. Novel strategies targeting EREG/EGFR, tumor-associated macrophages, and alternative activation oncoproteins are under development or undergoing clinical trials. In this review, we summarize the clinical outcomes of EREG expression and the interaction of this ligand in the TME. The EREG/EGFR pathway may be a potential target and may be combined with other driver mutation targets to combat specific cancers.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Lun Sun
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Nguyen Van Hiep
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Shan Luo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|