1
|
Fernández-Nogueira P, Linzoain-Agos P, Cueto-Remacha M, De la Guia-Lopez I, Recalde-Percaz L, Parcerisas A, Gascon P, Carbó N, Gutierrez-Uzquiza A, Fuster G, Bragado P. Role of semaphorins, neuropilins and plexins in cancer progression. Cancer Lett 2024; 606:217308. [PMID: 39490515 DOI: 10.1016/j.canlet.2024.217308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Progress in understanding nervous system-cancer interconnections has emphasized the functional role of semaphorins (SEMAs) and their receptors, neuropilins (NRPs) and plexins (PLXNs), in cancer progression. SEMAs are a conserved and extensive family of broadly expressed soluble and membrane-associated proteins that were first described as regulators of axon guidance and neural and vascular development. However, recent advances have shown that they can have a dual role in cancer progression, acting either as tumor promoters or suppressors. SEMAs effects result from their interaction with specific co-receptors/receptors NRPs/PLXNs, that have also been described to play a role in cancer progression. They can influence both cancer cells and tumor microenvironment components modulating various aspects of tumorigenesis such as oncogenesis, tumor growth, invasion and metastatic spread or treatment resistance. In this review we focus on the role of these axon guidance signals and their receptors and co-receptors in various aspects of cancer. Furthermore, we also highlight their potential application as novel approaches for cancer treatment in the future.
Collapse
Affiliation(s)
- P Fernández-Nogueira
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - P Linzoain-Agos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - M Cueto-Remacha
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - I De la Guia-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - L Recalde-Percaz
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - A Parcerisas
- Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500, Vic, Catalonia, Spain
| | - P Gascon
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - N Carbó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - A Gutierrez-Uzquiza
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - G Fuster
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain; Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500, Vic, Catalonia, Spain.
| | - P Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain.
| |
Collapse
|
2
|
Chen YI, Tien SC, Ko YL, Chang CC, Hsu MF, Chien HJ, Peng HY, Jeng YM, Tien YW, Chang YT, Chang MC, Hu CM. SEMA7A-mediated juxtacrine stimulation of IGFBP-3 upregulates IL-17RB at pancreatic cancer invasive front. Cancer Gene Ther 2024; 31:1840-1855. [PMID: 39448803 PMCID: PMC11645274 DOI: 10.1038/s41417-024-00849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Tumor invasion is the hallmark of tumor malignancy. The invasive infiltration pattern of tumor cells located at the leading edge is highly correlated with metastasis and unfavorable patient outcomes. However, the regulatory mechanisms governing tumor malignancy at the invasive margin remain unclear. The IL-17B/IL-17RB pathway is known to promote pancreatic cancer invasion and metastasis, yet the specific mechanisms underlying IL-17RB upregulation during invasion are poorly understood. In this study, we unveiled a multistep process for IL-17RB upregulation at the invasive margin, which occurs through direct communication between tumor cells and fibroblasts. Tumor ATP1A1 facilitates plasma membrane expression of SEMA7A, which binds to and induces IGFBP-3 secretion from fibroblasts. The resulting gradient of IGFBP-3 influences the direction and enhances IL-17RB expression to regulate SNAI2 in invasion. These findings highlight the importance of local tumor-fibroblast interactions in promoting cancer cell invasiveness, potentially leading to the development of new therapeutic strategies targeting this communication.
Collapse
Affiliation(s)
- Yi-Ing Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Sui-Chih Tien
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Ko
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Min-Fen Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hung Jen Chien
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsuan-Yu Peng
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun-Wen Tien
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Chang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- National Taiwan University Hospital Hsin-Chu Branch, Hsinchu County, Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Chen T, Li S, Wang L. Semaphorins in tumor microenvironment: Biological mechanisms and therapeutic progress. Int Immunopharmacol 2024; 132:112035. [PMID: 38603857 DOI: 10.1016/j.intimp.2024.112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Hallmark features of the tumor microenvironment include immune cells, stromal cells, blood vessels, and extracellular matrix (ECM), providing a conducive environment for the growth and survival of tumors. Recent advances in the understanding of cancer biology have highlighted the functional role of semaphorins (SEMAs). SEMAs are a large and diverse family of widely expressed secreted and membrane-binding proteins, which were initially implicated in axon guidance and neural development. However, it is now clear that they are widely expressed beyond the nervous system and participate in regulating immune responses and cancer progression. In fact, accumulating evidence disclosed that different SEMAs can either stimulate or restrict tumor progression, some of which act as important regulators of tumor angiogenesis. Conversely, limited information is known about the functional relevance of SEMA signals in TME. In this setting, we systematically elaborate the role SEMAs and their major receptors played in characterized components of TME. Furthermore, we provide a convergent view of current SEMAs pharmacological progress in clinical treatment and also put forward their potential application value and clinical prospects in the future.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China
| | - Shazhou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China
| | - Lufang Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China.
| |
Collapse
|
4
|
Liu Z, Meng X, Zhang Y, Sun J, Tang X, Zhang Z, Liu L, He Y. FUT8-mediated aberrant N-glycosylation of SEMA7A promotes head and neck squamous cell carcinoma progression. Int J Oral Sci 2024; 16:26. [PMID: 38548747 PMCID: PMC10978839 DOI: 10.1038/s41368-024-00289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/01/2024] Open
Abstract
SEMA7A belongs to the Semaphorin family and is involved in the oncogenesis and tumor progression. Aberrant glycosylation has been intricately linked with immune escape and tumor growth. SEMA7A is a highly glycosylated protein with five glycosylated sites. The underlying mechanisms of SEMA7A glycosylation and its contribution to immunosuppression and tumorigenesis are unclear. Here, we identify overexpression and aberrant N-glycosylation of SEMA7A in head and neck squamous cell carcinoma, and elucidate fucosyltransferase FUT8 catalyzes aberrant core fucosylation in SEMA7A at N-linked oligosaccharides (Asn 105, 157, 258, 330, and 602) via a direct protein‒protein interaction. A glycosylated statue of SEMA7A is necessary for its intra-cellular trafficking from the cytoplasm to the cytomembrane. Cytokine EGF triggers SEMA7A N-glycosylation through increasing the binding affinity of SEMA7A toward FUT8, whereas TGF-β1 promotes abnormal glycosylation of SEMA7A via induction of epithelial-mesenchymal transition. Aberrant N-glycosylation of SEMA7A leads to the differentiation of CD8+ T cells along a trajectory toward an exhausted state, thus shaping an immunosuppressive microenvironment and being resistant immunogenic cell death. Deglycosylation of SEMA7A significantly improves the clinical outcome of EGFR-targeted and anti-PD-L1-based immunotherapy. Finally, we also define RBM4, a splice regulator, as a downstream effector of glycosylated SEMA7A and a pivotal mediator of PD-L1 alternative splicing. These findings suggest that targeting FUT8-SEMA7A axis might be a promising strategy for improving antitumor responses in head and neck squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai, China
| | - Xiaoyan Meng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai, China
| | - Yuxin Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Jingjing Sun
- Department of Oral Pathology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease Shanghai, Shanghai, China
| | - Xiao Tang
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai, China
| | - Liu Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai, China.
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai, China.
| |
Collapse
|
5
|
Dou H, Jia S, Ba Y, Luo D, Yu P, Li F, Wang Y, Chen X, Xiao M. Clinical characteristics and pathologic complete response (pCR) rate after neoadjuvant chemotherapy in postpartum women with breast cancer. J Cancer Res Clin Oncol 2023; 149:14185-14204. [PMID: 37555951 PMCID: PMC10590317 DOI: 10.1007/s00432-023-05194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE Breast cancer (BC) is currently the leading cause of death in women worldwide. Studies have confirmed that pregnancy is an independent factor affecting the survival of BC patients. BC found during pregnancy, lactation, or shortly after delivery is what we used to think of as pregnancy-associated breast cancer (PABC). The current expert definition of this concept is not uniform; however, there is growing evidence that postpartum breast cancer (PPBC) differs from other types of BC in terms of both biological features and prognosis, with a slightly different focus on diagnosis and treatment. With the increase of female reproductive age population and changes in fertility policies in China, patients with PPBC are receiving increasing attention. Here, we systematically analyzed the clinicopathological characteristics and chemotherapeutic response of patients with PPBC. We retrospectively analyzed the clinicopathological data, molecular subtypes, chemotherapy regimens, and pathological complete remission (pCR) rates of 1343 patients with non-metastatic BC at Harbin Medical University Cancer Hospital from January 1, 2012 to May 31, 2023. The categorical data were compared by chi-square test and Fisher exact test using logistic regression model. Predictor variables with P < 0.05 in the univariate analysis were included in the multivariate regression analysis to investigate the relationship between different age groups and pCR. RESULTS A total of 714 patients were eligible for analysis in this study, and 667 patients had a history of pregnancy, 40 (5.6%) of whom were PPBC patients. When diagnosed with BC, patients with PPBC were younger, more likely to undergo breast-conserving surgery (BCS), and more likely to achieve pCR (P < 0.05). In molecular typing, human epidermal growth factor receptor 2 (HER-2)-positive and triple-negative breast cancer (TNBC) were more frequent. In the entire cohort, HER-2 expression and delivery status were independent predictors of pCR rates in BC patients after neoadjuvant chemotherapy (NAC). CONCLUSION Our findings suggest that postpartum status is an independent predictor of pCR attainment in BC patients. PPBC is more sensitive to chemotherapy than other patients.We need to pay more attention to this group and achieve individualized treatment, which will help us treat BC better and provide new targets and blueprints for our clinical therapy.
Collapse
Affiliation(s)
- He Dou
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Siyuan Jia
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Yuling Ba
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Danli Luo
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Pingyang Yu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Fucheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Youyu Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Xingyan Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Min Xiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China.
| |
Collapse
|
6
|
Tarullo SE, He Y, Daughters C, Knutson TP, Henzler CM, Price MA, Shanley R, Witschen P, Tolg C, Kaspar RE, Hallstrom C, Gittsovich L, Sulciner ML, Zhang X, Forster CL, Lange CA, Shats O, Desler M, Cowan KH, Yee D, Schwertfeger KL, Turley EA, McCarthy JB, Nelson AC. Receptor for hyaluronan-mediated motility (RHAMM) defines an invasive niche associated with tumor progression and predicts poor outcomes in breast cancer patients. J Pathol 2023; 260:289-303. [PMID: 37186300 PMCID: PMC10417882 DOI: 10.1002/path.6082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/13/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Breast cancer invasion and metastasis result from a complex interplay between tumor cells and the tumor microenvironment (TME). Key oncogenic changes in the TME include aberrant synthesis, processing, and signaling of hyaluronan (HA). Hyaluronan-mediated motility receptor (RHAMM, CD168; HMMR) is an HA receptor enabling tumor cells to sense and respond to this aberrant TME during breast cancer progression. Previous studies have associated RHAMM expression with breast tumor progression; however, cause and effect mechanisms are incompletely established. Focused gene expression analysis of an internal breast cancer patient cohort confirmed that increased RHAMM expression correlates with aggressive clinicopathological features. To probe mechanisms, we developed a novel 27-gene RHAMM-related signature (RRS) by intersecting differentially expressed genes in lymph node (LN)-positive patient cases with the transcriptome of a RHAMM-dependent model of cell transformation, which we validated in an independent cohort. We demonstrate that the RRS predicts for poor survival and is enriched for cell cycle and TME-interaction pathways. Further analyses using CRISPR/Cas9-generated RHAMM-/- breast cancer cells provided direct evidence that RHAMM promotes invasion in vitro and in vivo. Immunohistochemistry studies highlighted heterogeneous RHAMM protein expression, and spatial transcriptomics associated the RRS with RHAMM-high microanatomic foci. We conclude that RHAMM upregulation leads to the formation of 'invasive niches', which are enriched in RRS-related pathways that drive invasion and could be targeted to limit invasive progression and improve patient outcomes. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sarah E Tarullo
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Yuyu He
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Claire Daughters
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Todd P Knutson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Christine M Henzler
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Matthew A Price
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Ryan Shanley
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Patrice Witschen
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Cornelia Tolg
- London Health Sciences Center, Western University, Ontario, Canada
| | - Rachael E Kaspar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Caroline Hallstrom
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Lyubov Gittsovich
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Megan L Sulciner
- School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Xihong Zhang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Colleen L Forster
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Oleg Shats
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michelle Desler
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kenneth H Cowan
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Eva A Turley
- London Health Sciences Center, Western University, Ontario, Canada
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Crown A, McCartan D, Curry MA, Patil S, Kamer S, Goldfarb S, Gemignani ML. Pregnancy-associated breast cancer: does timing of presentation affect outcome? Breast Cancer Res Treat 2023; 198:283-294. [PMID: 36662395 DOI: 10.1007/s10549-022-06833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/01/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE Pregnancy-associated breast cancer (PABC) comprises breast cancer diagnosed during the gestational period or within 12 months postpartum. While the incidence of PABC appears to be increasing, data regarding prognosis remain limited. METHODS Here we evaluate clinicopathologic features, treatments, and clinical outcomes among women with stage 0-III PABC diagnosed between 1992 and 2020. Comparisons were made between women who were diagnosed with PABC during gestation and those who were diagnosed within 12 months postpartum. RESULTS A total of 341 women were identified, with a median age of 36 years (range 25-46). The pregnancy group comprised 119 (35%) women, while 222 (65%) women made up the postpartum group. Clinicopathologic features were similar between groups, with most patients being parous and presenting with stage I and II disease. Treatment delays were uncommon, with a median time from histologic diagnosis to treatment of 4 weeks for both groups. Recurrence-free survival was similar between groups: 67% at 10 years for both. While 10-year overall survival appeared higher in the postpartum group (83% versus 78%, p = 0.02), only the presence of nodal metastases was associated with an increased risk of death (hazard ratio 5.61, 95% CI 2.20-14.3, p < 0.001), whereas timing of diagnosis and receptor profile did not reach statistical significance. CONCLUSION Clinicopathologic features of women with PABC are similar regardless of timing of diagnosis. While 10-year recurrence-free survival is similar between groups, 10-year overall survival is higher among women diagnosed postpartum; however, timing of diagnosis may not be the driving factor in determining survival outcomes.
Collapse
Affiliation(s)
- Angelena Crown
- Department of Breast Surgery, True Family Women's Cancer Center, Swedish Cancer Institute, Seattle, WA, USA
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Damian McCartan
- Department of Breast Surgery, St Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Michael A Curry
- Biostatistics Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sujata Patil
- Biostatistics Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sabrina Kamer
- Department of Obstetrics and Gynecology, Albany Medical Center, Albany, NY, USA
| | - Shari Goldfarb
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Mary L Gemignani
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
8
|
Bica C, Tirpe A, Nutu A, Ciocan C, Chira S, Gurzau ES, Braicu C, Berindan-Neagoe I. Emerging roles and mechanisms of semaphorins activity in cancer. Life Sci 2023; 318:121499. [PMID: 36775114 DOI: 10.1016/j.lfs.2023.121499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Semaphorins are regulatory molecules that are linked to the modulation of several cancer processes, such as angiogenesis, cancer cell invasiveness and metastasis, tumor growth, as well as cancer cell survival. Semaphorin (SEMA) activity depends on the cancer histotypes and their particularities. In broad terms, the effects of SEMAs result from their interaction with specific receptors/co-receptors - Plexins, Neuropilins and Integrins - and the subsequent effects upon the downstream effectors (e.g. PI3K/AKT, MAPK/ERK). The present article serves as an integrative review work, discussing the broad implications of semaphorins in cancer, focusing on cell proliferation/survival, angiogenesis, invasion, metastasis, stemness, and chemo-resistance/response whilst highlighting their heterogeneity as a family. Herein, we emphasized that semaphorins are largely implicated in cancer progression, interacting with the tumor microenvironment components. Whilst some SEMAs (e.g. SEMA3A, SEMA3B) function widely as tumor suppressors, others (e.g. SEMA3C) act as pro-tumor semaphorins. The differences observed in terms of the biological structure of SEMAs and the particularities of each cancer histotypes require that each semaphorin be viewed as a unique entity, and its roles must be researched accordingly. A more in-depth and comprehensive view of the molecular mechanisms that promote and sustain the malignant behavior of cancer cells is of utmost importance.
Collapse
Affiliation(s)
- Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Eugen S Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| |
Collapse
|
9
|
Gibson SV, Roozitalab RM, Allen MD, Jones JL, Carter EP, Grose RP. Everybody needs good neighbours: the progressive DCIS microenvironment. Trends Cancer 2023; 9:326-338. [PMID: 36739265 DOI: 10.1016/j.trecan.2023.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a pre-invasive form of breast cancer where neoplastic luminal cells are confined to the ductal tree. While as many as 70% of DCIS cases will remain indolent, most women are treated with surgery, often combined with endocrine and radiotherapies. Overtreatment is therefore a major issue, demanding new methods to stratify patients. Somewhat paradoxically, the neoplastic cells in DCIS are genetically comparable to those in invasive disease, suggesting the tumour microenvironment is the driving force for progression. Clinical and mechanistic studies highlight the complex DCIS microenvironment, with multiple cell types competing to regulate progression. Here, we examine recent studies detailing distinct aspects of the DCIS microenvironment and discuss how these may inform more effective care.
Collapse
Affiliation(s)
- Shayin V Gibson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Reza M Roozitalab
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Michael D Allen
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
10
|
Hu J, Chen W, Shen L, Chen Z, Huang J. Crosstalk between the peripheral nervous system and breast cancer influences tumor progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188828. [PMID: 36283598 DOI: 10.1016/j.bbcan.2022.188828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
Abstract
Recent studies have shown that peripheral nerves play an important role in the progression of breast cancer. Breast cancer cells (BCCs) promote local peripheral nerve growth and branching by secreting neuroactive molecules, including neurotrophins and axon guidance molecules (AGMs). Sympathetic nerves promote breast cancer progression, while parasympathetic and sensory nerves mainly have anti-tumor effects in the progression of breast cancer. Specifically, peripheral nerves can influence the progression of breast cancer by secreting neurotransmitters not only directly binding to the corresponding receptors of BCCs, but also indirectly acting on immune cells to modulate anti-tumor immunity. In this review, we summarize the crosstalk between breast cancer and peripheral nerves and the roles of important neuroactive molecules in the progression of breast cancer. In addition, we summarize indicators, including nerve fiber density and perineural invasion (PNI), that may help determine the prognosis of breast cancer based on current research results, as well as potential therapeutic approaches, such as β-blockers and retroviral-mediated genetic neuroengineering techniques, that may enhance the prognosis of breast cancer. In addition, we propose suggestions for future research priorities based on a current lack of knowledge in this area.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wuzhen Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lesang Shen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhigang Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China..
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China..
| |
Collapse
|
11
|
Crump LS, Kines KT, Richer JK, Lyons TR. Breast cancers co-opt normal mechanisms of tolerance to promote immune evasion and metastasis. Am J Physiol Cell Physiol 2022; 323:C1475-C1495. [PMID: 36189970 PMCID: PMC9662806 DOI: 10.1152/ajpcell.00189.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Normal developmental processes, such as those seen during embryonic development and postpartum mammary gland involution, can be reactivated by cancer cells to promote immune suppression, tumor growth, and metastatic spread. In mammalian embryos, paternal-derived antigens are at risk of being recognized as foreign by the maternal immune system. Suppression of the maternal immune response toward the fetus, which is mediated in part by the trophoblast, is critical to ensure embryonic survival and development. The postpartum mammary microenvironment also exhibits immunosuppressive mechanisms accompanying the massive cell death and tissue remodeling that occurs during mammary gland involution. These normal immunosuppressive mechanisms are paralleled during malignant transformation, where tumors can develop neoantigens that may be recognized as foreign by the immune system. To circumvent this, tumors can dedifferentiate and co-opt immune-suppressive mechanisms normally utilized during fetal tolerance and postpartum mammary involution. In this review, we discuss those similarities and how they can inform our understanding of cancer progression and metastasis.
Collapse
Affiliation(s)
- Lyndsey S Crump
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kelsey T Kines
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| |
Collapse
|
12
|
Kumar R, Abreu C, Toi M, Saini S, Casimiro S, Arora A, Paul AM, Velaga R, Rameshwar P, Lipton A, Gupta S, Costa L. Oncobiology and treatment of breast cancer in young women. Cancer Metastasis Rev 2022; 41:749-770. [PMID: 35488982 DOI: 10.1007/s10555-022-10034-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/14/2022] [Indexed: 12/20/2022]
Abstract
Female breast cancer emerged as the leading cancer type in terms of incidence globally in 2020. Although mortality due to breast cancer has improved during the past three decades in many countries, this trend has reversed in women less than 40 years since the past decade. From the biological standpoint, there is consensus among experts regarding the clinically relevant definition of breast cancer in young women (BCYW), with an age cut-off of 40 years. The idea that breast cancer is an aging disease has apparently broken in the case of BCYW due to the young onset and an overall poor outcome of BCYW patients. In general, younger patients exhibit a worse prognosis than older pre- and postmenopausal patients due to the aggressive nature of cancer subtypes, a high percentage of cases with advanced stages at diagnosis, and a high risk of relapse and death in younger patients. Because of clinically and biologically unique features of BCYW, it is suspected to represent a distinct biologic entity. It is unclear why BCYW is more aggressive and has an inferior prognosis with factors that contribute to increased incidence. However, unique developmental features, adiposity and immune components of the mammary gland, hormonal interplay and crosstalk with growth factors, and a host of intrinsic and extrinsic risk factors and cellular regulatory interactions are considered to be the major contributing factors. In the present article, we discuss the status of BCYW oncobiology, therapeutic interventions and considerations, current limitations in fully understanding the basis and underlying cause(s) of BCYW, understudied areas of BCYW research, and postulated advances in the coming years for the field.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India. .,Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India. .,Department of Medicine, Division of Hematology and Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA. .,Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Catarina Abreu
- Department of Medical Oncology, Hospital de Santa Maria- Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Masakazu Toi
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sunil Saini
- Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Sandra Casimiro
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Anshika Arora
- Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Aswathy Mary Paul
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Ravi Velaga
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Pranela Rameshwar
- Department of Medicine, Division of Hematology and Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Allan Lipton
- Hematology-Oncology, Department of Medicine, Penn State University School of Medicine, Hershey, PA, USA
| | - Sudeep Gupta
- Department of Medical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Luis Costa
- Department of Medical Oncology, Hospital de Santa Maria- Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal.,Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Yan D, Cai S, Bai L, Du Z, Li H, Sun P, Cao J, Yi N, Liu SB, Tang Z. Integration of immune and hypoxia gene signatures improves the prediction of radiosensitivity in breast cancer. Am J Cancer Res 2022; 12:1222-1240. [PMID: 35411250 PMCID: PMC8984882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023] Open
Abstract
Immunity and hypoxia are two important factors that affect the response of cancer patients to radiotherapy. At the same time, considering the limited predictive value of a single predictive model and the uncertainty of grouping patients near the cutoff value, we developed and validated a combined model based on immune- and hypoxia-related gene expression profiles to predict the radiosensitivity of breast cancer patients. This study was based on breast cancer data from The Cancer Genome Atlas (TCGA). Spike-and-slab Lasso regression analysis was performed to select three immune-related genes and develop a radiosensitivity model. Lasso Cox regression modeling selected 11 hypoxia-related genes for development of radiosensitivity model. Three independent datasets (Molecular Taxonomy of Breast Cancer International Consortium [METABRIC], E-TABM-158, GSE103746) were used to validate the predictive value of radiosensitivity signatures. In the TCGA dataset, the 10-year survival probabilities of the immune radioresistant (IRR) and hypoxia radioresistant (HRR) groups were 0.189 (0.037, 0.973) and 0.477 (0.293, 0.776), respectively. The 10-year survival probabilities of the immune radiosensitive (IRS) and hypoxia radiosensitive (HRS) groups were 0.778 (0.676, 0.895) and 0.824 (0.723, 0.939), respectively. Based on these two gene signatures, we further constructed a combined model and divided all patients into three groups (IRS/HRS, mixed, IRR/HRR). We identified the IRS/HRS patients most likely to benefit from radiotherapy; the 10-year survival probability was 0.886 (0.806, 0.976). The 10-year survival probability of the IRR/HRR group was 0. In conclusion, a combined model integrating immune- and hypoxia-related gene signatures could effectively predict the radiosensitivity of breast cancer and more accurately identify radiosensitive and radioresistant patients than a single model.
Collapse
Affiliation(s)
- Derui Yan
- Department of Biostatistics, School of Public Health, Medical College of Soochow UniversitySuzhou 215123, Jiangsu, China
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health CollegeSuzhou 215009, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow UniversitySuzhou 215123, Jiangsu, China
| | - Shang Cai
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215004, Jiangsu, China
| | - Lu Bai
- Department of Biostatistics, School of Public Health, Medical College of Soochow UniversitySuzhou 215123, Jiangsu, China
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health CollegeSuzhou 215009, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow UniversitySuzhou 215123, Jiangsu, China
| | - Zixuan Du
- Department of Biostatistics, School of Public Health, Medical College of Soochow UniversitySuzhou 215123, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow UniversitySuzhou 215123, Jiangsu, China
| | - Huijun Li
- Department of Biostatistics, School of Public Health, Medical College of Soochow UniversitySuzhou 215123, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow UniversitySuzhou 215123, Jiangsu, China
| | - Peng Sun
- Department of Otolaryngology, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Jianping Cao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow UniversitySuzhou 215031, Jiangsu, China
| | - Nengjun Yi
- Department of Biostatistics, University of Alabama at BirminghamBirmingham, AL 35294, USA
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health CollegeSuzhou 215009, Jiangsu, China
| | - Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow UniversitySuzhou 215123, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow UniversitySuzhou 215123, Jiangsu, China
| |
Collapse
|
14
|
Ruiz TFR, Leonel ECR, Colleta SJ, Bedolo CM, Pegorin de Campos SG, Taboga SR. Gestational and lactational xenoestrogen exposure disrupts morphology and inflammatory aspects in mammary gland of gerbil mothers during involution. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103785. [PMID: 34896274 DOI: 10.1016/j.etap.2021.103785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In the mammary gland (MG), the developmental window for gestational/lactational differentiation and growth is highly vulnerable to hormonal disruption. Here we describe that the MG involution process in female gerbil mothers is delayed by bisphenol A (BPA) exposure during gestation and lactation. The process is directly influenced by changes in expression of extracellular matrix proteases MMP-2, MMP-9, and FAP, and the incidence of collagen and elastin is reduced after 7 and 14 days of weaning. A pro-inflammatory environment in the late involution process was confirmed by higher expression of TNF-α, COX-2 and phospho-STAT3 n the MG stroma, allied to increases in the incidence of macrophages and mast cells. These aspects impacted the proliferative pattern of epithelial cells, which decreased on the 14th post-weaning day. These data confirm that the milk production window of susceptibility is vulnerable to the impact of BPA, which promotes a suggestive pro-tumoral microenvironment during mammary involution.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| | - Ellen Cristina Rivas Leonel
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil; Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Avenida Esperança, s/n, Câmpus Samambaia, 74690-900 Goiânia, Goiás, Brazil.
| | - Simone Jacovaci Colleta
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Carolina Marques Bedolo
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin de Campos
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
15
|
Rutherford TR, Elder AM, Lyons TR. Anoikis resistance in mammary epithelial cells is mediated by semaphorin 7a. Cell Death Dis 2021; 12:872. [PMID: 34561423 PMCID: PMC8463677 DOI: 10.1038/s41419-021-04133-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022]
Abstract
Semaphorin-7a (SEMA7A), best known as a neuroimmune molecule, plays a diverse role in many cellular processes and pathologies. Here, we show that SEMA7A promotes anoikis resistance in cultured mammary epithelial cells through integrins and activation of pro-survival kinase AKT, which led us to investigate a role for SEMA7A during postpartum mammary gland involution-a normal developmental process where cells die by anoikis. Our results reveal that SEMA7A is expressed on live mammary epithelial cells during involution, that SEMA7A expression is primarily observed in α6-integrin expressing cells, and that luminal progenitor cells, specifically, are decreased in mammary glands of SEMA7A-/- mice during involution. We further identify a SEMA7A-α6/β1-integrin dependent mechanism of mammosphere formation and chemoresistance in mammary epithelial cells and suggest that this mechanism is relevant for recurrence in breast cancer patients.
Collapse
Affiliation(s)
- Taylor R Rutherford
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cell biology, Stem cell, and Development Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alan M Elder
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cancer biology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Cell biology, Stem cell, and Development Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Cancer biology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- University of Colorado Cancer Center, Aurora, CO, USA.
| |
Collapse
|
16
|
Song Y, Wang L, Zhang L, Huang D. The involvement of semaphorin 7A in tumorigenic and immunoinflammatory regulation. J Cell Physiol 2021; 236:6235-6248. [PMID: 33611799 DOI: 10.1002/jcp.30340] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 02/04/2023]
Abstract
Semaphorins, a large group of highly conserved proteins, consist of eight subfamilies that are widely expressed in vertebrates, invertebrates, and viruses and exist in membrane-bound or secreted forms. First described as axon guidance cues during neurogenesis, semaphorins also perform physiological functions in other organ systems, such as bone homeostasis, immune response, and tumor progression. Semaphorin 7A (SEMA7A), also known as CDw108, is an immune semaphorin that modulates diverse immunoinflammatory processes, including immune cell interactions, inflammatory infiltration, and cytokine production. In addition, SEMA7A regulates the proliferation, migration, invasion, lymph formation, and angiogenesis of multiple types of tumor cells, and these effects are mediated by the interaction of SEMA7A with two specific receptors, PLXNC1 and integrins. Thus, SEMA7A is intimately related to the pathogenesis of multiple autoimmune and inflammation-related diseases and tumors. This review focuses on the role of SEMA7A in the pathogenesis of autoimmune disorders, inflammatory diseases, and tumors, as well as the underlying mechanisms. Furthermore, strategies targeting SEMA7A as a potential predictive, diagnostic, and therapeutic agent for these diseases are also addressed.
Collapse
Affiliation(s)
- Yao Song
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Mastrantonio R, You H, Tamagnone L. Semaphorins as emerging clinical biomarkers and therapeutic targets in cancer. Theranostics 2021; 11:3262-3277. [PMID: 33537086 PMCID: PMC7847692 DOI: 10.7150/thno.54023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022] Open
Abstract
Semaphorins are a large family of developmental regulatory signals, characterized by aberrant expression in human cancers. These molecules crucially control cell-cell communication, cell migration, invasion and metastasis, tumor angiogenesis, inflammatory and anti-cancer immune responses. Semaphorins comprise secreted and cell surface-exposed molecules and their receptors are mainly found in the Plexin and Neuropilin families, which are further implicated in a signaling network controlling the tumor microenvironment. Accumulating evidence indicates that semaphorins may be considered as novel clinical biomarkers for cancer, especially for the prediction of patient survival and responsiveness to therapy. Moreover, preclinical experimental studies have demonstrated that targeting semaphorin signaling can interfere with tumor growth and/or metastatic dissemination, suggesting their relevance as novel therapeutic targets in cancer; this has also prompted the development of semaphorin-interfering molecules for application in the clinic. Here we will survey, in diverse human cancers, the current knowledge about the relevance of semaphorin family members, and conceptualize potential lines of future research development in this field.
Collapse
|
18
|
Crump LS, Wyatt GL, Rutherford TR, Richer JK, Porter WW, Lyons TR. Hormonal Regulation of Semaphorin 7a in ER + Breast Cancer Drives Therapeutic Resistance. Cancer Res 2020; 81:187-198. [PMID: 33122307 DOI: 10.1158/0008-5472.can-20-1601] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022]
Abstract
Approximately 70% of all breast cancers are estrogen receptor-positive (ER+ breast cancer), and endocrine therapy has improved survival for patients with ER+ breast cancer. However, up to half of these tumors recur within 20 years. Recurrent ER+ breast cancers develop resistance to endocrine therapy; thus, novel targets are needed to treat recurrent ER+ breast cancer. Here we report that semaphorin 7A (SEMA7A) confers significantly decreased patient survival rates in ER+ breast cancer. SEMA7A was hormonally regulated in ER+ breast cancer, but its expression did not uniformly decrease with antiestrogen treatments. Additionally, overexpression of SEMA7A in ER+ cell lines drove increased in vitro growth in the presence of estrogen deprivation, tamoxifen, and fulvestrant. In vivo, SEMA7A conferred primary tumor resistance to fulvestrant and induced lung metastases. Prosurvival signaling was identified as a therapeutic vulnerability of ER+SEMA7A+ tumors. We therefore propose that targeting this pathway with inhibitors of survival signaling such as venetoclax may prove efficacious for treating SEMA7A+ tumors. SIGNIFICANCE: SEMA7A predicts for and likely contributes to poor response to standard-of-care therapies, suggesting that patients with SEMA7A+ER+ tumors may benefit from alternative therapeutic strategies. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/1/187/F1.large.jpg.
Collapse
Affiliation(s)
- Lyndsey S Crump
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Garhett L Wyatt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Taylor R Rutherford
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Weston W Porter
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. .,Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,University of Colorado Cancer Center, Aurora, Colorado
| |
Collapse
|
19
|
Borges VF, Hu J, Young C, Maggard J, Parris HJ, Gao D, Lyons TR. Semaphorin 7a is a biomarker for recurrence in postpartum breast cancer. NPJ Breast Cancer 2020; 6:56. [PMID: 33088913 PMCID: PMC7572422 DOI: 10.1038/s41523-020-00198-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a global health threat and cases diagnosed in women during the years after childbirth, or postpartum breast cancers (PPBCs), have high risk for metastasis. In preclinical murine models, semaphorin 7a (SEMA7A) drives the metastatic potential of postpartum mammary tumors. Thus, we hypothesize that SEMA7A may drive metastasis of PPBC in women. We report that SEMA7A protein expression is increased in PPBCs compared to their nulliparous counterparts in our University of Colorado cohort. Additionally, tumors from PPBC patients with involved lymph nodes and lymphovascular invasion were higher on average suggesting a potential role for SEMA7A as a prognostic biomarker. Consistent with this hypothesis we identify a level of SEMA7A expression in tumors that can predict for recurrence. We propose SEMA7A as a potential biomarker and therapeutic target for PPBC patients, who currently lack strong predictors of outcome and unique targeted therapy options.
Collapse
Affiliation(s)
- Virginia F. Borges
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, CO USA
- Division of Medical Oncology, University of Colorado, Anschutz Medical Center, Aurora, CO USA
| | - Junxiao Hu
- Department of Pediatrics, School of Medicine, and Dept of Biostatistics, University of Colorado School of Public Health, Aurora, CO USA
| | - Chloe Young
- Division of Medical Oncology, University of Colorado, Anschutz Medical Center, Aurora, CO USA
| | - Jaron Maggard
- Division of Medical Oncology, University of Colorado, Anschutz Medical Center, Aurora, CO USA
| | - Hannah J. Parris
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, CO USA
- Department of Epidemiology, University of Colorado School of Public Health, Aurora, CO USA
| | - Dexiang Gao
- Department of Pediatrics, School of Medicine, and Dept of Biostatistics, University of Colorado School of Public Health, Aurora, CO USA
| | - Traci R. Lyons
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, CO USA
- Division of Medical Oncology, University of Colorado, Anschutz Medical Center, Aurora, CO USA
| |
Collapse
|
20
|
The Role of Semaphorins in Metabolic Disorders. Int J Mol Sci 2020; 21:ijms21165641. [PMID: 32781674 PMCID: PMC7460634 DOI: 10.3390/ijms21165641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Semaphorins are a family originally identified as axonal guidance molecules. They are also involved in tumor growth, angiogenesis, immune regulation, as well as other biological and pathological processes. Recent studies have shown that semaphorins play a role in metabolic diseases including obesity, adipose inflammation, and diabetic complications, including diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, diabetic wound healing, and diabetic osteoporosis. Evidence provides mechanistic insights regarding the role of semaphorins in metabolic diseases by regulating adipogenesis, hypothalamic melanocortin circuit, immune responses, and angiogenesis. In this review, we summarize recent progress regarding the role of semaphorins in obesity, adipose inflammation, and diabetic complications.
Collapse
|
21
|
Elder AM, Stoller AR, Black SA, Lyons TR. Macphatics and PoEMs in Postpartum Mammary Development and Tumor Progression. J Mammary Gland Biol Neoplasia 2020; 25:103-113. [PMID: 32535810 PMCID: PMC7395889 DOI: 10.1007/s10911-020-09451-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Postpartum mammary gland involution is a mammalian tissue remodeling event that occurs after pregnancy and lactation to return the gland to the pre-pregnant state. This event is characterized by apoptosis and lysosomal-mediated cell death of the majority of the lactational mammary epithelium, followed by remodeling of the extracellular matrix, influx of immune cell populations (in particular, T helper cells, monocytes, and macrophages), and neo-lymphangiogenesis. This postpartum environment has been shown to be promotional for tumor growth and metastases and may partially account for why women diagnosed with breast cancer during the postpartum period or within 5 years of last childbirth have an increased risk of developing metastases when compared to their nulliparous counterparts. The lymphatics and macrophages present during mammary gland involution have been implicated in promoting the observed growth and metastasis. Of importance are the macrophages, which are of the "M2" phenotype and are known to create a pro-tumor microenvironment. In this report, we describe a subset of postpartum macrophages that express lymphatic proteins (PoEMs) and directly interact with lymphatic vessels to form chimeric vessels or "macphatics". Additionally, these PoEMs are very similar to tumor-associated macrophages that also express lymphatic proteins and are present at the sites of lymphatic vessels where tumors escape the tissue and enter the lymphatic vasculature. Further characterizing these PoEMs may offer insight in preventing lymphatic metastasis of breast cancer, as well as provide information for how developmental programming of lymphatic endothelial cells and macrophages can contribute to different disease progression.
Collapse
Affiliation(s)
- Alan M Elder
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, University of Colorado Cancer Center, 12801 E 17th Ave, RC1 South, Mailstop 8117, Aurora, CO, 80045, USA
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
- Graduate Program in Cancer Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander R Stoller
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, University of Colorado Cancer Center, 12801 E 17th Ave, RC1 South, Mailstop 8117, Aurora, CO, 80045, USA
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| | - Sarah A Black
- University of Colorado School of Medicine, Aurora, CO, USA
| | - Traci R Lyons
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, University of Colorado Cancer Center, 12801 E 17th Ave, RC1 South, Mailstop 8117, Aurora, CO, 80045, USA.
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA.
- Graduate Program in Cancer Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
22
|
Borges VF, Lyons TR, Germain D, Schedin P. Postpartum Involution and Cancer: An Opportunity for Targeted Breast Cancer Prevention and Treatments? Cancer Res 2020; 80:1790-1798. [PMID: 32075799 PMCID: PMC8285071 DOI: 10.1158/0008-5472.can-19-3448] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/24/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022]
Abstract
Childbirth at any age confers a transient increased risk for breast cancer in the first decade postpartum and this window of adverse effect extends over two decades in women with late-age first childbirth (>35 years of age). Crossover to the protective effect of pregnancy is dependent on age at first pregnancy, with young mothers receiving the most benefit. Furthermore, breast cancer diagnosis during the 5- to 10-year postpartum window associates with high risk for subsequent metastatic disease. Notably, lactation has been shown to be protective against breast cancer incidence overall, with varying degrees of protection by race, multiparity, and lifetime duration of lactation. An effect for lactation on breast cancer outcome after diagnosis has not been described. We discuss the most recent data and mechanistic insights underlying these epidemiologic findings. Postpartum involution of the breast has been identified as a key mediator of the increased risk for metastasis in women diagnosed within 5-10 years of a completed pregnancy. During breast involution, immune avoidance, increased lymphatic network, extracellular matrix remodeling, and increased seeding to the liver and lymph node work as interconnected pathways, leading to the adverse effect of a postpartum diagnosis. We al discuss a novel mechanism underlying the protective effect of breastfeeding. Collectively, these mechanistic insights offer potential therapeutic avenues for the prevention and/or improved treatment of postpartum breast cancer.
Collapse
Affiliation(s)
- Virginia F Borges
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado.
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Traci R Lyons
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Doris Germain
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pepper Schedin
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado.
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|