1
|
Wei J, Wu BJ. Targeting monoamine oxidases in cancer: advances and opportunities. Trends Mol Med 2024:S1471-4914(24)00267-3. [PMID: 39438199 DOI: 10.1016/j.molmed.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Monoamine oxidases (MAOs) are a crucial pair of isoenzymes responsible for degrading monoamine neurotransmitters and dietary amines. In addition to extensive studies of their roles in the context of brain functions and disorders over decades, emerging evidence indicates that MAOs are also often dysregulated and associated with clinical outcomes in diverse cancers, with the ability to differentially regulate cancer growth, invasion, metastasis, progression, and therapy response depending on the cancer type. In this review, we summarize recent advances in understanding the clinical relevance, functional importance, and mechanisms of MAOs in a broad range of cancers, and discuss the application and therapeutic benefit of MAO inhibitors (MAOIs) for cancer treatment, highlighting the roles of MAOs as novel regulators, prognostic biomarkers, and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99223, USA
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99223, USA.
| |
Collapse
|
2
|
Chen H, Fang S, Zhu X, Liu H. Cancer-associated fibroblasts and prostate cancer stem cells: crosstalk mechanisms and implications for disease progression. Front Cell Dev Biol 2024; 12:1412337. [PMID: 39092186 PMCID: PMC11291335 DOI: 10.3389/fcell.2024.1412337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
The functional heterogeneity and ecological niche of prostate cancer stem cells (PCSCs), which are major drivers of prostate cancer development and treatment resistance, have attracted considerable research attention. Cancer-associated fibroblasts (CAFs), which are crucial components of the tumor microenvironment (TME), substantially affect PCSC stemness. Additionally, CAFs promote PCSC growth and survival by releasing signaling molecules and modifying the surrounding environment. Conversely, PCSCs may affect the characteristics and behavior of CAFs by producing various molecules. This crosstalk mechanism is potentially crucial for prostate cancer progression and the development of treatment resistance. Using organoids to model the TME enables an in-depth study of CAF-PCSC interactions, providing a valuable preclinical tool to accurately evaluate potential target genes and design novel treatment strategies for prostate cancer. The objective of this review is to discuss the current research on the multilevel and multitarget regulatory mechanisms underlying CAF-PCSC interactions and crosstalk, aiming to inform therapeutic approaches that address challenges in prostate cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Hao Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Chen L, Huang S, Wu X, He W, Song M. Serotonin signalling in cancer: Emerging mechanisms and therapeutic opportunities. Clin Transl Med 2024; 14:e1750. [PMID: 38943041 PMCID: PMC11213692 DOI: 10.1002/ctm2.1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine) is a multifunctional bioamine serving as a neurotransmitter, peripheral hormone and mitogen in the vertebrate system. It has pleiotropic activities in central nervous system and gastrointestinal function via an orchestrated action of serotonergic elements, particularly serotonin receptor-mediated signalling cascades. The mitogenic properties of serotonin have garnered recognition for years and have been exploited for repurposing serotonergic-targeted drugs in cancer therapy. However, emerging conflicting findings necessitate a more comprehensive elucidation of serotonin's role in cancer pathogenesis. MAIN BODY AND CONCLUSION Here, we provide an overview of the biosynthesis, metabolism and action modes of serotonin. We summarise our current knowledge regarding the effects of the peripheral serotonergic system on tumourigenesis, with a specific emphasis on its immunomodulatory activities in human cancers. We also discuss the dual roles of serotonin in tumour pathogenesis and elucidate the potential of serotonergic drugs, some of which display favourable safety profiles and impressive efficacy in clinical trials, as a promising avenue in cancer treatment. KEY POINTS Primary synthesis and metabolic routes of peripheral 5-hydroxytryptamine in the gastrointestinal tract. Advanced research has established a strong association between the serotonergic components and carcinogenic mechanisms. The interplay between serotonergic signalling and the immune system within the tumour microenvironment orchestrates antitumour immune responses. Serotonergic-targeted drugs offer valuable clinical options for cancer therapy.
Collapse
Affiliation(s)
- Lulu Chen
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| | - Shuting Huang
- School of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaoxue Wu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| | - Weiling He
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
- Department of Gastrointestinal SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenChina
| | - Mei Song
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
4
|
Xu Y, Bai Z, Lan T, Fu C, Cheng P. CD44 and its implication in neoplastic diseases. MedComm (Beijing) 2024; 5:e554. [PMID: 38783892 PMCID: PMC11112461 DOI: 10.1002/mco2.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 05/25/2024] Open
Abstract
CD44, a nonkinase single span transmembrane glycoprotein, is a major cell surface receptor for many other extracellular matrix components as well as classic markers of cancer stem cells and immune cells. Through alternative splicing of CD44 gene, CD44 is divided into two isoforms, the standard isoform of CD44 (CD44s) and the variant isoform of CD44 (CD44v). Different isoforms of CD44 participate in regulating various signaling pathways, modulating cancer proliferation, invasion, metastasis, and drug resistance, with its aberrant expression and dysregulation contributing to tumor initiation and progression. However, CD44s and CD44v play overlapping or contradictory roles in tumor initiation and progression, which is not fully understood. Herein, we discuss the present understanding of the functional and structural roles of CD44 in the pathogenic mechanism of multiple cancers. The regulation functions of CD44 in cancers-associated signaling pathways is summarized. Moreover, we provide an overview of the anticancer therapeutic strategies that targeting CD44 and preclinical and clinical trials evaluating the pharmacokinetics, efficacy, and drug-related toxicity about CD44-targeted therapies. This review provides up-to-date information about the roles of CD44 in neoplastic diseases, which may open new perspectives in the field of cancer treatment through targeting CD44.
Collapse
Affiliation(s)
- Yiming Xu
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziyi Bai
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Tianxia Lan
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Chenying Fu
- Laboratory of Aging and Geriatric Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ping Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
5
|
Ma Y, Chen H, Li H, Zhao Z, An Q, Shi C. Targeting monoamine oxidase A: a strategy for inhibiting tumor growth with both immune checkpoint inhibitors and immune modulators. Cancer Immunol Immunother 2024; 73:48. [PMID: 38349393 PMCID: PMC10864517 DOI: 10.1007/s00262-023-03622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024]
Abstract
Monoamine oxidase A (MAOA) is a membrane-bound mitochondrial enzyme present in almost all vertebrate tissues that catalyzes the degradation of biogenic and dietary-derived monoamines. MAOA is known for regulating neurotransmitter metabolism and has been implicated in antitumor immune responses. In this review, we retrospect that MAOA inhibits the activities of various types of tumor-associated immune cells (such as CD8+ T cells and tumor-associated macrophages) by regulating their intracellular monoamines and metabolites. Developing novel MAOA inhibitor drugs and exploring multidrug combination strategies may enhance the efficacy of immune governance. Thus, MAOA may act as a novel immune checkpoint or immunomodulator by influencing the efficacy and effectiveness of immunotherapy. In conclusion, MAOA is a promising immune target that merits further in-depth exploration in preclinical and clinical settings.
Collapse
Affiliation(s)
- Yifan Ma
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
- Gansu University of Traditional Chinese Medicine, Lanzhou, 730030, Gansu, People's Republic of China
| | - Hanmu Chen
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
- School of Basic Medical Sciences, Medical College of Yan'an University, 580 Bao-Ta Street, Yanan, 716000, Shaanxi, People's Republic of China
| | - Hui Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zhite Zhao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Qingling An
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Pu T, Wang J, Wei J, Zeng A, Zhang J, Chen J, Yin L, Li J, Lin TP, Melamed J, Corey E, Gao AC, Wu BJ. Stromal-derived MAOB promotes prostate cancer growth and progression. SCIENCE ADVANCES 2024; 10:eadi4935. [PMID: 38335292 PMCID: PMC10857382 DOI: 10.1126/sciadv.adi4935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Prostate cancer (PC) develops in a microenvironment where the stromal cells modulate adjacent tumor growth and progression. Here, we demonstrated elevated levels of monoamine oxidase B (MAOB), a mitochondrial enzyme that degrades biogenic and dietary monoamines, in human PC stroma, which was associated with poor clinical outcomes of PC patients. Knockdown or overexpression of MAOB in human prostate stromal fibroblasts indicated that MAOB promotes cocultured PC cell proliferation, migration, and invasion and co-inoculated prostate tumor growth in mice. Mechanistically, MAOB induces a reactive stroma with activated marker expression, increased extracellular matrix remodeling, and acquisition of a protumorigenic phenotype through enhanced production of reactive oxygen species. Moreover, MAOB transcriptionally activates CXCL12 through Twist1 synergizing with TGFβ1-dependent Smads in prostate stroma, which stimulates tumor-expressed CXCR4-Src/JNK signaling in a paracrine manner. Pharmacological inhibition of stromal MAOB restricted PC xenograft growth in mice. Collectively, these findings characterize the contribution of MAOB to PC and suggest MAOB as a potential stroma-based therapeutic target.
Collapse
Affiliation(s)
- Tianjie Pu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Alan Zeng
- Undergraduate Programs, University of Washington, Seattle, WA 98195, USA
| | - Jinglong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jingrui Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Lijuan Yin
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jingjing Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Tzu-Ping Lin
- Department of Urology, Taipei Veterans General Hospital, Taipei 11217, Taiwan, Republic of China
- Department of Urology, School of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan, Republic of China
| | - Jonathan Melamed
- Department of Pathology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Allen C. Gao
- Department of Urologic Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
7
|
Wang YY, Zhou YQ, Xie JX, Zhang X, Wang SC, Li Q, Hu LP, Jiang SH, Yi SQ, Xu J, Cao H, Zhao EH, Li J. MAOA suppresses the growth of gastric cancer by interacting with NDRG1 and regulating the Warburg effect through the PI3K/AKT/mTOR pathway. Cell Oncol (Dordr) 2023; 46:1429-1444. [PMID: 37249744 DOI: 10.1007/s13402-023-00821-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
OBJECTIVE Previous studies have indicated that neurotransmitters play important roles in the occurrence and development of gastric cancer. MAOA is an important catecholamine neurotransmitter-degrading enzyme involved in the degradation of norepinephrine, epinephrine and serotonin. To find a potential therapeutic target for the treatment of gastric cancer, the biological functions of MAOA and the underlying mechanism in gastric cancer need to be explored. METHODS The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) datasets, Kaplan‒Meier (KM) plotter were used to identify the differentially expressed genes, which mainly involved the degradation and synthesis enzymes of neurotransmitters in gastric cancer. We also investigated the expression pattern of MAOA in human and mouse tissues and cell lines by immunohistochemistry and Western blotting analysis. Western blotting, quantitative real-time PCR, enzyme-linked immunosorbent assay (ELISA) and a Seahorse experiment were used to identify the molecular mechanism of cancer cell glycolysis. MAOA expression and patient survival were analysed in the Ren Ji cohort, and univariate and multivariate analyses were performed based on the clinicopathological characteristics of the above samples. RESULTS MAOA expression was significantly downregulated in gastric cancer tissue and associated with poor patient prognosis. Moreover, the expression level of MAOA in gastric cancer tissue had a close negative correlation with the SUXmax value of PET-CT in patients. MAOA suppressed tumour growth and glycolysis and promoted cancer cell apoptosis. We also reported that MAOA can interact with NDRG1 and regulate glycolysis through suppression of the PI3K/Akt/mTOR pathway. MAOA expression may serve as an independent prognostic factor in gastric cancer patients. CONCLUSIONS MAOA attenuated glycolysis and inhibited the progression of gastric cancer through the PI3K/Akt/mTOR pathway. Loss of function or downregulation of MAOA can facilitate gastric cancer progression. Overexpression of MAOA and inhibition of the PI3K/Akt/mTOR pathway may provide a potential method for gastric cancer treatment in clinical therapeutic regimens.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yao-Qi Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jia-Xuan Xie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shu-Chang Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuang-Qin Yi
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Jia Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Hui Cao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - En-Hao Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
8
|
Kim EK, Koo JS. Expression of Amine Oxidase Proteins in Adrenal Cortical Neoplasm and Pheochromocytoma. Biomedicines 2023; 11:1896. [PMID: 37509535 PMCID: PMC10376964 DOI: 10.3390/biomedicines11071896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
We delved into the expression of amine oxidase family proteins and their potential significance in adrenal gland neoplasm. Tissue microarrays were prepared for 132 cases of adrenal cortical neoplasm (ACN) consisting of 115 cases of adrenal cortical adenoma (ACA), 17 cases of adrenal cortical carcinoma (ACC), and 163 cases of pheochromocytoma (PCC). Immunohistochemical stainings for MAOA, MAOB, LOX, and AOC3 were performed to evaluate the H-scores and compare them with clinicopathological parameters. The H-scores of MAOA (T; p = 0.005) and MAOB (T; p = 0.006) in tumor cells (T) were high in ACN, whereas LOX (T, S; p < 0.001) in tumor and stromal cells (S) and AOC3 (T; p < 0.001) were higher in PCC. In stromal cells, MAOA (S; p < 0.001) and AOC3 (S; p = 0.010) were more expressed in ACA than in ACC. MAOB (S) in PCC showed higher H-scores when the grading of adrenal pheochromocytoma and paraganglioma (GAPP) score was 3 or higher (p = 0.027). In the univariate analysis, low MAOA expression in stromal cells of ACN was associated with shorter overall survival (p = 0.008). In conclusion, monoamine oxidase proteins revealed differences in expression between ACN and PCC and also between benign and malignant cells.
Collapse
Affiliation(s)
- Eun Kyung Kim
- Department of Pathology, National Health Insurance Service Ilsan Hospital, Goyang 10444, Republic of Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
9
|
Cui D, Luo Z, Liu X, Chen X, Zhang Q, Yang X, Lu Q, Su Z, Guo H. Combination of metabolomics and network pharmacology analysis to decipher the mechanisms of total flavonoids of Litchi seed against prostate cancer. J Pharm Pharmacol 2023:7160314. [PMID: 37167442 DOI: 10.1093/jpp/rgad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVES To explore the underlying mechanism of total flavonoids of Litchi seed (TFLS) in treating prostate cancer (PCa). METHODS Cell Counting Kit-8 (CCK-8), EdU incorporation assay, trypan blue dye assay and colony formation assay were employed to evaluate the effect of TFLS on PCa in vitro. The xenograft mouse model was established to explore the anti-tumour effect of TFLS in vivo. Alterations in the metabolic profiles of the PC3 cells and mouse serum were obtained by untargeted metabolomics. Combination with metabolomics analysis and network pharmacology strategies, the potential targets were predicted and further validated by RT-qPCR. KEY FINDINGS TFLS attenuated PCa progression both in vitro and in vivo. Metabolomics results yielded from cells and serum indicated that the anti-cancer effect of TFLS was correlated with synergistic modulation of five common metabolic pathways including glycerophospholipid metabolism, arginine and proline metabolism, glycine, serine and threonine metabolism, tryptophan metabolism and steroid biosynthesis. Using in silico prediction and RT-qPCR analysis, we further revealed that TFLS exerted anti-PCa activities via regulating the expressions of nine genes, including MAOA, ACHE, ALDH2, AMD1, ARG1, PLA2G10, PLA2G1B, FDFT1 and SQLE. CONCLUSIONS TFLS suppressed tumour proliferation in PCa, which may be associated with regulating lipid and amino acid metabolisms.
Collapse
Affiliation(s)
- Dianxin Cui
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Anti-geriatric Drugs, Pharmaceutical college, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Zhuo Luo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Anti-geriatric Drugs, Pharmaceutical college, Guangxi Medical University, Nanning 530021, China
| | - Xi Liu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Anti-geriatric Drugs, Pharmaceutical college, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Qiuping Zhang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xin Yang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Qinpei Lu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Anti-geriatric Drugs, Pharmaceutical college, Guangxi Medical University, Nanning 530021, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Anti-geriatric Drugs, Pharmaceutical college, Guangxi Medical University, Nanning 530021, China
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Anti-geriatric Drugs, Pharmaceutical college, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
10
|
Zhou Y, Li T, Jia M, Dai R, Wang R. The Molecular Biology of Prostate Cancer Stem Cells: From the Past to the Future. Int J Mol Sci 2023; 24:ijms24087482. [PMID: 37108647 PMCID: PMC10140972 DOI: 10.3390/ijms24087482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Prostate cancer (PCa) continues to rank as the second leading cause of cancer-related mortality in western countries, despite the golden treatment using androgen deprivation therapy (ADT) or anti-androgen therapy. With decades of research, scientists have gradually realized that the existence of prostate cancer stem cells (PCSCs) successfully explains tumor recurrence, metastasis and therapeutic failure of PCa. Theoretically, eradication of this small population may improve the efficacy of current therapeutic approaches and prolong PCa survival. However, several characteristics of PCSCs make their diminishment extremely challenging: inherent resistance to anti-androgen and chemotherapy treatment, over-activation of the survival pathway, adaptation to tumor micro-environments, escape from immune attack and being easier to metastasize. For this end, a better understanding of PCSC biology at the molecular level will definitely inspire us to develop PCSC targeted approaches. In this review, we comprehensively summarize signaling pathways responsible for homeostatic regulation of PCSCs and discuss how to eliminate these fractional cells in clinical practice. Overall, this study deeply pinpoints PCSC biology at the molecular level and provides us some research perspectives.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Tian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
11
|
Han H, Li H, Ma Y, Zhao Z, An Q, Zhao J, Shi C. Monoamine oxidase A (MAOA): A promising target for prostate cancer therapy. Cancer Lett 2023; 563:216188. [PMID: 37076041 DOI: 10.1016/j.canlet.2023.216188] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Monoamine oxidase A (MAOA) is a mitochondrial enzyme that catalyzes the oxidative deamination of monoamine neurotransmitters and dietary amines. Previous studies have shown that MAOA is clinically associated with prostate cancer (PCa) progression and plays a key role in almost each stage of PCa, including castrate-resistant prostate cancer, neuroendocrine prostate cancer, metastasis, drug resistance, stemness, and perineural invasion. Moreover, MAOA expression is upregulated not only in cancer cells but also in stromal cells, intratumoral T cells, and tumor-associated macrophages; thus, targeting MAOA can be a multi-pronged approach to disrupt tumor promoting interactions between PCa cells and tumor microenvironment. Furthermore, targeting MAOA can disrupt the crosstalk between MAOA and the androgen receptor (AR) to restore enzalutamide sensitivity, blocks glucocorticoid receptor (GR)- and AR-dependent PCa cell growth, and is a potential strategy for immune checkpoint inhibition, thereby alleviating immune suppression and enhancing T cell immunity-based cancer immunotherapy. MAOA is a promising target for PCa therapy, which deserves further exploration in preclinical and clinical settings.
Collapse
Affiliation(s)
- Hao Han
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Basic Medical Sciences, Medical College of Yan'an University, 580 Bao-Ta Street, Yan'an, Shaanxi, 716000, China
| | - Hui Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Basic Medical Sciences, Medical College of Yan'an University, 580 Bao-Ta Street, Yan'an, Shaanxi, 716000, China
| | - Yifan Ma
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, 730030, China
| | - Zhite Zhao
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Qingling An
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jumei Zhao
- School of Basic Medical Sciences, Medical College of Yan'an University, 580 Bao-Ta Street, Yan'an, Shaanxi, 716000, China.
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
12
|
Wang N, Bai X, Wang X, Wang D, Ma G, Zhang F, Ye J, Lu F, Ji C. A Novel Fatty Acid Metabolism-Associated Risk Model for Prognosis Prediction in Acute Myeloid Leukaemia. Curr Oncol 2023; 30:2524-2542. [PMID: 36826154 PMCID: PMC9955245 DOI: 10.3390/curroncol30020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Acute myeloid leukaemia (AML) is the most common acute leukaemia in adults, with an unfavourable outcome and a high rate of recurrence due to its heterogeneity. Dysregulation of fatty acid metabolism plays a crucial role in the development of several tumours. However, the value of fatty acid metabolism (FAM) in the progression of AML remains unclear. In this study, we obtained RNA sequencing and corresponding clinicopathological information from the TCGA and GEO databases. Univariate Cox regression analysis and subsequent LASSO Cox regression analysis were utilized to identify prognostic FAM-related genes and develop a potential prognostic risk model. Kaplan-Meier analysis was used for prognostic significances. We also performed ROC curve to illustrate that the risk model in prognostic prediction has good performance. Moreover, significant differences in immune infiltration landscape were found between high-risk and low-risk groups using ESTIMATE and CIBERSOT algorithms. In the end, differential expressed genes (DEGs) were analyzed by gene set enrichment analysis (GSEA) to preliminarily explore the possible signaling pathways related to the prognosis of FAM and AML. The results of our study may provide potential prognostic biomarkers and therapeutic targets for AML patients, which is conducive to individualized precision therapy.
Collapse
Affiliation(s)
- Nana Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaoran Bai
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xinlu Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Dongmei Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Guangxin Ma
- Hematology and Oncology Unit, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Fan Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
- Correspondence: (F.L.); (C.J.)
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
- Correspondence: (F.L.); (C.J.)
| |
Collapse
|
13
|
Chen CH, Wu BJ. Monoamine oxidase A: An emerging therapeutic target in prostate cancer. Front Oncol 2023; 13:1137050. [PMID: 36860320 PMCID: PMC9968829 DOI: 10.3389/fonc.2023.1137050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Monoamine oxidase A (MAOA), a mitochondrial enzyme degrading biogenic and dietary amines, has been studied in the contexts of neuropsychiatry and neurological disorders for decades, but its importance in oncology, as best exemplified in prostate cancer (PC) to date, was only realized recently. PC is the most commonly diagnosed non-skin cancer and the second deadliest malignancy for men in the United States. In PC, the increased expression level of MAOA is correlated with dedifferentiated tissue microarchitecture and a worse prognosis. A wealth of literature has demonstrated that MAOA promotes growth, metastasis, stemness and therapy resistance in PC, mainly by increasing oxidative stress, augmenting hypoxia, inducing epithelial-to-mesenchymal transition, and activating the downstream principal transcription factor Twist1-dictated multiple context-dependent signaling cascades. Cancer-cell-derived MAOA also enables cancer-stromal cell interaction involving bone stromal cells and nerve cells by secretion of Hedgehog and class 3 semaphorin molecules respectively to modulate the tumor microenvironment in favor of invasion and metastasis. Further, MAOA in prostate stromal cells promotes PC tumorigenesis and stemness. Current studies suggest that MAOA functions in PC in both cell autonomous and non-autonomous manners. Importantly, clinically available monoamine oxidase inhibitors have shown promising results against PC in preclinical models and clinical trials, providing a great opportunity to repurpose them as a PC therapy. Here, we summarize recent advances in our understanding of MAOA roles and mechanisms in PC, present several MAOA-targeted strategies that have been nominated for treating PC, and discuss the unknowns of MAOA function and targeting in PC for future exploration.
Collapse
Affiliation(s)
- Chia-Hui Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| |
Collapse
|
14
|
Nallasamy P, Nimmakayala RK, Parte S, Are AC, Batra SK, Ponnusamy MP. Tumor microenvironment enriches the stemness features: the architectural event of therapy resistance and metastasis. Mol Cancer 2022; 21:225. [PMID: 36550571 PMCID: PMC9773588 DOI: 10.1186/s12943-022-01682-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer divergence has many facets other than being considered a genetic term. It is a tremendous challenge to understand the metastasis and therapy response in cancer biology; however, it postulates the opportunity to explore the possible mechanism in the surrounding tumor environment. Most deadly solid malignancies are distinctly characterized by their tumor microenvironment (TME). TME consists of stromal components such as immune, inflammatory, endothelial, adipocytes, and fibroblast cells. Cancer stem cells (CSCs) or cancer stem-like cells are a small sub-set of the population within cancer cells believed to be a responsible player in the self-renewal, metastasis, and therapy response of cancer cells. The correlation between TME and CSCs remains an enigma in understanding the events of metastasis and therapy resistance in cancer biology. Recent evidence suggests that TME dictates the CSCs maintenance to arbitrate cancer progression and metastasis. The immune, inflammatory, endothelial, adipocyte, and fibroblast cells in the TME release growth factors, cytokines, chemokines, microRNAs, and exosomes that provide cues for the gain and maintenance of CSC features. These intricate cross-talks are fueled to evolve into aggressive, invasive, migratory phenotypes for cancer development. In this review, we have abridged the recent developments in the role of the TME factors in CSC maintenance and how these events influence the transition of tumor progression to further translate into metastasis and therapy resistance in cancer.
Collapse
Affiliation(s)
- Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Abhirup C Are
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
15
|
Monoamine oxidase A drives neuroendocrine differentiation in prostate cancer. Biochem Biophys Res Commun 2022; 606:135-141. [DOI: 10.1016/j.bbrc.2022.03.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
|
16
|
Blažević A, Iyer AM, van Velthuysen MLF, Hofland J, van Koestveld PM, Franssen GJH, Feelders RA, Zajec M, Luider TM, de Herder WW, Hofland LJ. Aberrant tryptophan metabolism in stromal cells is associated with mesenteric fibrosis in small intestinal neuroendocrine tumors. Endocr Connect 2022; 11:EC-22-0020. [PMID: 35275095 PMCID: PMC9066570 DOI: 10.1530/ec-22-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Increased levels of serotonin secretion are associated with mesenteric fibrosis (MF) in small intestinal neuroendocrine tumors (SI-NETs). However, the profibrotic potential of serotonin differs between patients, and in this study, we aimed to gain an understanding of the mechanisms underlying this variability. To this end, we analyzed the proteins involved in tryptophan metabolism in SI-NETs. METHODS Proteomes of tumor and stroma from primary SI-NETs and paired mesenteric metastases of patients with MF (n = 6) and without MF (n = 6) were identified by liquid chromatography-mass spectrometry (LC-MS). The differential expression of proteins involved in tryptophan metabolism between patients with and without MF was analyzed. Concurrently, monoamine oxidase A (MAO-A) expression was analyzed in the tumor and stromal compartment by immunohistochemistry (IHC) and reported as intensity over area (I/A). RESULTS Of the 42 proteins involved in tryptophan metabolism, 20 were detected by LC-MS. Lower abundance of ten proteins was found in mesenteric metastases stroma in patients with MF. No differential expression was found in primary SI-NETs. In patients with MF, IHC showed lower MAO-A expression in the stroma of the primary SI-NETs (median 4.2 I/A vs 6.5 I/A in patients without MF, P = 0.003) and mesenteric metastases (median 2.1 I/A vs 2.8 I/A in patients without MF, P= 0.019). CONCLUSION We found a decreased expression of tryptophan and serotonin-metabolizing enzymes in the stroma in patients with MF, most notably in the mesenteric stroma. This might account for the increased profibrotic potential of serotonin and explain the variability in the development of SI-NET-associated fibrotic complications.
Collapse
Affiliation(s)
- Anela Blažević
- Department of Internal Medicine, Section Endocrinology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Anand M Iyer
- Department of Internal Medicine, Section Endocrinology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | | | - Johannes Hofland
- Department of Internal Medicine, Section Endocrinology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Peter M van Koestveld
- Department of Internal Medicine, Section Endocrinology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Gaston J H Franssen
- Department of Surgery, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Richard A Feelders
- Department of Internal Medicine, Section Endocrinology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Marina Zajec
- Laboratory of Neuro-Oncology/Clinical & Cancer Proteomics, Department of Neurology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Theo M Luider
- Laboratory of Neuro-Oncology/Clinical & Cancer Proteomics, Department of Neurology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Wouter W de Herder
- Department of Internal Medicine, Section Endocrinology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Leo J Hofland
- Department of Internal Medicine, Section Endocrinology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
17
|
Advances in neuroendocrine prostate cancer research: From model construction to molecular network analyses. J Transl Med 2022; 102:332-340. [PMID: 34937865 DOI: 10.1038/s41374-021-00716-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is the most common cancer among men and has a high incidence and associated mortality worldwide. It is an androgen-driven disease in which tumor growth is triggered via ligand-mediated signaling through the androgen receptor (AR). Recent evidence suggests that the widespread use of effective AR pathway inhibitors may increase the occurrence of neuroendocrine prostate cancer (NEPC), an aggressive and treatment-resistant AR-negative variant; however, mechanisms controlling NEPC development remain to be elucidated. Various preclinical models have recently been developed to investigate the mechanisms driving the NEPC differentiation. In the present study, we summarized strategies for the development of NEPC models and proposed a novel method for model evaluation, which will help in the timely and accurate identification of NEPC by virtue of its ability to recapitulate the heterogeneity of prostate cancer. Moreover, we discuss the origin and the mechanism of NEPC. The understanding of the regulatory network mediating neuroendocrine differentiation presented in this review could provide valuable insights into the identification of novel drug targets for NEPC as well as into the causes of antiandrogenic drug resistance.
Collapse
|
18
|
Zhang Z, Xie Z, Lv S, Shi Y, Zhai C, Li X, Qiao B, Gao X. Integrated Metabolomics and Network Pharmacology Study on the Mechanism of Kangfuxiaoyan Suppository for Treating Chronic Pelvic Inflammatory Disease. Front Pharmacol 2022; 13:812587. [PMID: 35185568 PMCID: PMC8854495 DOI: 10.3389/fphar.2022.812587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/10/2022] [Indexed: 01/08/2023] Open
Abstract
Kangfuxiaoyan suppository (KFXYS) is a commonly used traditional Chinese medicine (TCM) preparation for the treatment of chronic pelvic inflammatory disease (CPID) clinically, and its safety and effectiveness have been well verified. However, the potential mechanism remains unclear. The integrated strategy of metabolomics and network pharmacology was employed in the study to reveal the potential mechanism of KFXYS in the treatment of CPID. Our research consists of five steps. First, the effect of KFXYS in reversing uterine inflammation indexes was verified. Second, based on the comprehensive characterization of 123 chemical ingredients of KFXYS, the ingredients of KFXYS absorbed into blood were identified by UPLC-Q-TOF/MS, then ADME research was carried out on the main ingredients. Third, the differential metabolites with significant correlation to inflammatory indexes were discovered by metabolomics and correlation analysis. Fourth, the potential targets and pathways of KFXYS in treating CPID were predicted by network pharmacology based on the ingredients which had good ADME behavior. Fifth, the proteins in common pathways of metabolomics and network pharmacology were used to screen the key targets from the potential targets of network pharmacology, and the potential mechanism of KFXYS in treating CPID was clarified. As a result, KFXYS significantly reversed the uterine inflammation indexes, including IL-1 and IL-6. The ingredients absorbed into blood including matrine, sophocarpine, aloin, esculetin-O-glucuronide, 7,4′-dihydroxyisoflavone-O-glucuronide, and 4′-methoxyisoflavone-7-O-glucuronide had good ADME behavior in vivo. Among the differential metabolites, Leukotriene A4, 5-Hydroxyindoleacetic acid, Ornithine, Arginine, and PC (20:1 (11Z)/20:4 (8Z,11Z,14Z,17Z)) were significant correlation to inflammation indexes. The integration analysis of metabolomics and network pharmacology shows that KFXYS may regulate the key targets including ARG1, NOS2, NOS3, etc. We speculate that ingredients of KFXYS, such as matrine, sophocarpine, aloin etc. act on the key proteins including ARG1, NOS2, and NOS3, to exert anti-inflammatory effect.
Collapse
Affiliation(s)
- Zhengyi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziye Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shujing Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yulian Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanjia Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xuejiao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bin Qiao
- Sunflower Pharmaceutical Group Co., Ltd, Beijing, China
| | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Nong S, Wang Z, Wei Z, Ma L, Guan Y, Ni J. HN1L promotes stem cell-like properties by regulating TGF-β signaling pathway through targeting FOXP2 in prostate cancer. Cell Biol Int 2022; 46:83-95. [PMID: 34519127 DOI: 10.1002/cbin.11701] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/12/2021] [Indexed: 02/02/2023]
Abstract
Dysregulated hematological and neurological expressed 1-like (HN1L) has been implicated in carcinogenesis of difference cancers, including hepatocellular carcinoma and breast cancer. However, the role of HN1L in the progression of prostate cancer (PCA) remains unknown. Therefore, we aimed to investigate the role of HN1L in stemness and progression of PCA. The expression of HN1L in PCA tissues and cells was determined by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), western blot analysis, and/or immunohistochemistry (IHC). CD133+ cells were sorted from PCA cells using magnetic fluorescence cell sorting technology and were considered as cancer stem cells (CSCs). Sphere formation assays, transwell assays, and animal experiments were conducted to assess cell stemness, migration, invasion, and in vivo tumorigenesis, respectively. The results showed that HN1L expression was higher in PCA tissues and cells as compared with normal tissues and cells, as well as in CD133+ cells as compared with CD133- cells. HN1L knockdown significantly decreased the expression levels of CSC markers including OCT4 (POU class 5 homeobox 1), CD44, and SRY-box transcription factor 2, inhibited cell migration, invasion, and tumorigenesis and decreased the number of tumor spheroids and CD133+ cell population. Furthermore, we found that HN1L could bind to forkhead box P2 (FOXP2) and positively regulated transforming growth factor-β (TGF-β) expression via upregulation of FOXP2. In addition, the overexpression of TGF-β in HN1L-knockdown PCA cells increased the number of tumor spheroids and CD133+ cell population, as well as enhanced cell migration and invasion. Collectively, this study demonstrates that HN1L promotes stem cell-like properties and cancer progression by targeting FOXP2 through TGF-β signaling pathway in PCA.
Collapse
Affiliation(s)
- Shaojun Nong
- Department of Urological Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhiwei Wang
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhongqing Wei
- Department of Urological Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Limin Ma
- Department of Urological Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yangbo Guan
- Department of Urological Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jian Ni
- Department of Urological Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
20
|
Chen J, Rong N, Liu M, Xu C, Guo J. The exosome-circ_0001359 derived from cigarette smoke exposed-prostate stromal cells promotes epithelial cells collagen deposition and primary ciliogenesis. Toxicol Appl Pharmacol 2021; 435:115850. [PMID: 34968637 DOI: 10.1016/j.taap.2021.115850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cigarettes consumption is continued to be popular. We found that cigarette smoke (CS) exposure promoted prostatic fibrosis. In this study, human prostate epithelial RWPE-1 cells were co-cultured with exosomes derived from CS exposed-WPMY-1 cells (CS-WPMY-1-exo). The collagen deposition, primary ciliogenesis, epithelial-mesenchymal transition (EMT) and transforming growth factor (TGF)-β1 level of RWPE-1 were evaluated. The circRNAs profiles of WPMY-1-exo were explored by high-throughput RNA sequencing. It was found that CS-WPMY-1-exo significantly promoted RWPE-1 collagen deposition, EMT and primary ciliogenesis. There were 17 differentially expressed (DE) circRNAs (including circ_0001359) between CS-WPMY-1-exo and the negative control. Functional enrichment analyses showed that the DE circRNAs played important roles in ciliary basal body, spindle microtubule and TGF-β signaling pathway. Circ_0001359 siRNA attenuated CS-WPMY-1 induced RWPE-1 cells collagen deposition, EMT and primary ciliogenesis, as well as inhibited the level of TGF-β1. The whole results showed that circ_0001359 derived from CS-WPMY-1-exo contributed to prostatic fibrosis via stimulating epithelial cells phenotypes changes and collagen deposition.
Collapse
Affiliation(s)
- Jinglou Chen
- School of Medical, Jianghan University, Wuhan, China; The Gerontology Research Center of Jianghan University, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Jianghan University, Wuhan, China.
| | - Nan Rong
- The Gerontology Research Center of Jianghan University, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Jianghan University, Wuhan, China
| | - Min Liu
- The Gerontology Research Center of Jianghan University, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Jianghan University, Wuhan, China
| | - Congyue Xu
- School of Medical, Jianghan University, Wuhan, China
| | - Jing Guo
- School of Medical, Jianghan University, Wuhan, China
| |
Collapse
|
21
|
Ding Q, Lin D, Zhou Y, Li F, Lai J, Duan J, Chen J, Jiang C. Downregulation of amine oxidase copper containing 1 inhibits tumor progression by suppressing IL-6/JAK/STAT3 pathway activation in hepatocellular carcinoma. Oncol Lett 2021; 22:857. [PMID: 34777591 PMCID: PMC8581477 DOI: 10.3892/ol.2021.13118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/30/2021] [Indexed: 01/09/2023] Open
Abstract
Amine oxidase copper containing 1 (AOC1) is a copper-containing amine oxidase that catalyzes the deamination of polyamines. AOC1 functions as an oncogene in human gastric cancer. There is little information available regarding the function of AOC1 in hepatocellular carcinoma (HCC). In the present study, reverse transcription-quantitative PCR was used to detect the expression levels of AOC1 in HCC tissues, and the role of AOC1 in HCC progression was determined using western blot, Cell Counting Kit 8, clone formation, wound-healing and Transwell assays. An AOC1 survival curve was generated with data downloaded from The Cancer Genome Atlas, and Gene Set Enrichment Analysis was performed to investigate the potential biological mechanisms of AOC1 in HCC. AOC1 was found to be upregulated in HCC tissues, which was associated with a poor prognosis. Furthermore, AOC1-knockdown inhibited HCC cell proliferation, migration and invasiveness, suppressed IL-6 expression, as well as decreasing JAK2 and STAT3 phosphorylation. Ultimately, the results of the present study illustrate that AOC1 promoted the proliferation, migration and invasiveness of HCC cells by regulating the IL-6/JAK/STAT3 pathway.
Collapse
Affiliation(s)
- Qian Ding
- Department of Infectious Disease, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| | - Dongdong Lin
- Blood Purification Center, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| | - Yajing Zhou
- Department of Physical Therapy, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| | - Feng Li
- Department of Infectious Disease, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| | - Jianming Lai
- School of Clinical Medicine, QingDao University Medical College, Qingdao, Shandong 266071, P.R. China
| | - Jianping Duan
- Department of Infectious Disease, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| | - Jing Chen
- Department of Eight Areas of Liver Disease, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| | - Caihua Jiang
- Outpatient Department, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
22
|
Zhang P, Li Z, Yang G. Silencing of ISLR inhibits tumour progression and glycolysis by inactivating the IL‑6/JAK/STAT3 pathway in non‑small cell lung cancer. Int J Mol Med 2021; 48:222. [PMID: 34713300 PMCID: PMC8559699 DOI: 10.3892/ijmm.2021.5055] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the second most frequent cancer type in both men and women, and it is considered to be one of the major causes of cancer-related mortality worldwide. However, few biomarkers are currently available for the diagnosis of lung cancer. The aim of the present study was to investigate the function of the immunoglobulin superfamily containing leucine-rich repeat (ISLR) gene in non-small cell lung cancer (NSCLC) cells, and to elucidate the underlying molecular mechanism of its action. The current study analysed ISLR expression in NSCLC tumour and normal tissues using The Cancer Genome Atlas cohort datasets. ISLR expression in NSCLC cell lines was determined using reverse transcription-quantitative PCR. Cell Counting Kit-8, soft agar colony formation, wound healing, Transwell, flow cytometry and glycolysis assays were performed to determine the effects of ISLR silencing or overexpression on cells. The expression levels of the genes involved in epithelial-mesenchymal transition (EMT), apoptosis and glycolysis were evaluated via western blotting. Transfected cells were exposed to the pathway activator, IL-6, to validate the regulatory pathway. ISLR was overexpressed in NSCLC tissues and cell lines. Overall, patients with high ISLR expression had lower survival rates. In addition, small interfering RNA-ISLR inhibited the proliferation, EMT, migration, invasion and glycolysis of NSCLC cells, and promoted their apoptosis. ISLR overexpression had the opposite effect on tumour progression and glycolysis in NSCLC cells. Gene set enrichment analysis and western blotting results indicated that the IL-6/Janus kinase (JAK)/STAT3 pathway was enriched in ISLR-related NSCLC. Knockdown of ISLR inhibited IL-6-induced proliferation, invasion, migration and glycolysis in human NSCLC cells. In summary, ISLR silencing can inhibit tumour progression and glycolysis in NSCLC cells by activating the IL-6/JAK/STAT3 signalling pathway, which is a potential molecular target for NSCLC diagnosis and treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Second Provincial General Hospital, Ji'nan, Shandong 250022, P.R. China
| | - Zhen Li
- Department of Pulmonary and Critical Care Medicine, Shandong Second Provincial General Hospital, Ji'nan, Shandong 250022, P.R. China
| | - Guangming Yang
- Department of Tumor Radiotherapy, Shandong Second Provincial General Hospital, Ji'nan, Shandong 250022, P.R. China
| |
Collapse
|
23
|
Tian J, Zhang C, Kang N, Wang J, Kong N, Zhou J, Wu M, Ding L, Sun H, Yan G, Sheng X. Attenuated monoamine oxidase a impairs endometrial receptivity in women with adenomyosis via downregulation of FOXO1. Biol Reprod 2021; 105:1443-1457. [PMID: 34568943 DOI: 10.1093/biolre/ioab182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/12/2022] Open
Abstract
The establishment of endometrial receptivity is a prerequisite for successful pregnancy. Women with adenomyosis possess a lower chance of clinical pregnancy after assisted reproductive technology, which is partially due to impaired endometrial receptivity. The establishment of endometrial receptivity requires the participation of multiple processes, and proper endometrial epithelial cell (EEC) proliferation is indispensable. Monoamine oxidase A (MAOA) is a key molecule that regulates neurotransmitter metabolism in the nervous system. In the present study, we demonstrated a novel role for MAOA in the establishment of endometrial receptivity in women with adenomyosis and in an adenomyotic mouse model. Attenuated MAOA impairs endometrial receptivity by promoting inappropriate proliferation of EECs via the downregulation of FOXO1 during the window of implantation. These results revealed that MAOA plays a vital role in endometrial receptivity in female reproduction.
Collapse
Affiliation(s)
- Jiao Tian
- Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Center for Molecular Reproductive Medicine, Nanjing University
| | - Chunxue Zhang
- Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Center for Molecular Reproductive Medicine, Nanjing University
| | - Nannan Kang
- Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Center for Molecular Reproductive Medicine, Nanjing University
| | - Junxia Wang
- Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Center for Molecular Reproductive Medicine, Nanjing University
| | - Na Kong
- Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Center for Molecular Reproductive Medicine, Nanjing University
| | - Jidong Zhou
- Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Center for Molecular Reproductive Medicine, Nanjing University
| | - Min Wu
- Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Center for Molecular Reproductive Medicine, Nanjing University
| | - Lijun Ding
- Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Center for Molecular Reproductive Medicine, Nanjing University
| | - Haixiang Sun
- Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210032 Nanjing, China
| | - Guijun Yan
- Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Center for Molecular Reproductive Medicine, Nanjing University
| | - Xiaoqiang Sheng
- Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Center for Molecular Reproductive Medicine, Nanjing University
| |
Collapse
|
24
|
Identification of Differentially Expressed circRNAs, miRNAs, and Genes in Patients Associated with Cartilaginous Endplate Degeneration. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2545459. [PMID: 34104646 PMCID: PMC8158415 DOI: 10.1155/2021/2545459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/06/2021] [Indexed: 12/03/2022]
Abstract
Background Intervertebral disc degeneration (IDD) disease is a global challenge because of its predominant pathogenic factor in triggering low back pain, whereas cartilaginous endplate degeneration (CEPD) is the main cause of IDD. Accumulating evidence have indicated that the differentially expressed microRNAs (DEMs) and differentially expressed genes (DEGs) have been determined to be involved in multiple biological processes to mediate CEPD progression. However, the differentially expressed circular RNAs (DECs) and their potential biofunctions in CEPD have not been identified. Methods GSE153761 dataset was analyzed using R software to predict DECs, DEMs, and DEGs. Pathway enrichment analysis of DEGs and host genes of DECs and protein-protein interaction network of DEGs were conducted to explore their potential biofunctions. Furthermore, we explore the potential relationship between DEGs and DECs. Results There were 74 DECs, 17 DEMs, and 68 DEGs upregulated whereas 50 DECs, 16 DEMs, and 67 DEGs downregulated in CEPD group. Pathway analysis unveiled that these RNAs might regulate CEPD via mediating inflammatory response, ECM metabolism, chondrocytes apoptosis, and chondrocytes growth. A total of 17 overlapping genes were predicted between the host genes of DEGs and DECs, such as SDC1 and MAOA. Moreover, 6 upregulated DECs, of which hsa_circ_0052830 was the most upregulated circRNA in CEPD, were derived from the host genes SDC1, whereas 8 downregulated DECs were derived from the host genes MAOA. Conclusion This will provide novel clues for future experimental studies to elucidate the pathomechanism of CEPD and therapeutic targets for CEPD-related diseases.
Collapse
|
25
|
Li Y, Zhong X, Zhang Y, Lu X. Mesenchymal Stem Cells in Gastric Cancer: Vicious but Hopeful. Front Oncol 2021; 11:617677. [PMID: 34046337 PMCID: PMC8144497 DOI: 10.3389/fonc.2021.617677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor progression depends on the collaborative interactions between tumor cells and the surrounding stroma. First-line therapies direct against cancer cells may not reach a satisfactory outcome, such as gastric cancer (GC), with high risk of recurrence and metastasis. Therefore, novel treatments and drugs target the effects of stroma components are to be promising alternatives. Mesenchymal stem cells (MSC) represent the decisive components of tumor stroma that are found to strongly affect GC development and progression. MSC from bone marrow or adjacent normal tissues express homing profiles in timely response to GC-related inflammation signals and anchor into tumor bulks. Then the newly recruited “naïve” MSC would achieve phenotype and functional alternations and adopt the greater tumor-supporting potential under the reprogramming of GC cells. Conversely, both new-comers and tumor-resident MSC are able to modulate the tumor biology via aberrant activation of oncogenic signals, metabolic reprogramming and epithelial-to-mesenchymal transition. And they also engage in remodeling the stroma better suited for tumor progression through immunosuppression, pro-angiogenesis, as well as extracellular matrix reshaping. On the account of tumor tropism, MSC could be engineered to assist earlier diagnosis of GC and deliver tumor-killing agents precisely to the tumor microenvironment. Meanwhile, intercepting and abrogating vicious signals derived from MSC are of certain significance for the combat of GC. In this review, we mainly summarize current advances concerning the reciprocal metabolic interactions between MSC and GC and their underlying therapeutic implications in the future.
Collapse
Affiliation(s)
- Yuyi Li
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingwei Zhong
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunzhu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinliang Lu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Puhr M, Eigentler A, Handle F, Hackl H, Ploner C, Heidegger I, Schaefer G, Brandt MP, Hoefer J, Van der Pluijm G, Klocker H. Targeting the glucocorticoid receptor signature gene Mono Amine Oxidase-A enhances the efficacy of chemo- and anti-androgen therapy in advanced prostate cancer. Oncogene 2021; 40:3087-3100. [PMID: 33795839 PMCID: PMC8084733 DOI: 10.1038/s41388-021-01754-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
Despite increasing options for treatment of castration-resistant prostate cancer, development of drug resistance is inevitable. The glucocorticoid receptor (GR) is a prime suspect for acquired therapy resistance, as prostate cancer (PCa) cells are able to increase GR signaling during anti-androgen therapy and thereby circumvent androgen receptor (AR)-blockade and cell death. As standard AR-directed therapies fail to block the GR and GR inhibitors might result in intolerable side effects, the identification of GR signature genes, which are better suited for a targeted approach, is of clinical importance. Therefore, the specific epithelial and stromal GR signature was determined in cancer-associated fibroblasts as well as in abiraterone and enzalutamide-resistant cells after glucocorticoid (GC) treatment. Microarray and ChIP analysis identified MAO-A as a directly up-regulated mutual epithelial and stromal GR target, which is induced after GC treatment and during PCa progression. Elevated MAO-A levels were confirmed in in vitro cell models, in primary tissue cultures after GC treatment, and in patients after neoadjuvant chemotherapy with GCs. MAO-A expression correlates with GR/AR activity as well as with a reduced progression-free survival. Pharmacological MAO-A inhibition combined with 2nd generation AR signaling inhibitors or chemotherapeutics results in impaired growth of androgen-dependent, androgen-independent, and long-term anti-androgen-treated cells. In summary, these findings demonstrate that targeting MAO-A represents an innovative therapeutic strategy to synergistically block GR and AR dependent PCa cell growth and thereby overcome therapy resistance.
Collapse
MESH Headings
- Male
- Humans
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/genetics
- Androgen Antagonists/pharmacology
- Androgen Antagonists/therapeutic use
- Monoamine Oxidase/genetics
- Monoamine Oxidase/metabolism
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Phenylthiohydantoin/pharmacology
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Cell Line, Tumor
- Drug Resistance, Neoplasm/genetics
- Nitriles/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Benzamides/pharmacology
- Androstenes/pharmacology
- Androstenes/therapeutic use
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/pathology
- Cancer-Associated Fibroblasts/drug effects
- Glucocorticoids/pharmacology
Collapse
Affiliation(s)
- Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Andrea Eigentler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Handle
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Isabel Heidegger
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Schaefer
- Department of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maximilian P Brandt
- Department of Urology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Julia Hoefer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabri Van der Pluijm
- Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
27
|
Yin L, Li J, Wang J, Pu T, Wei J, Li Q, Wu BJ. MAOA promotes prostate cancer cell perineural invasion through SEMA3C/PlexinA2/NRP1-cMET signaling. Oncogene 2021; 40:1362-1374. [PMID: 33420365 DOI: 10.1038/s41388-020-01615-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023]
Abstract
Perineural invasion (PNI), a pathologic feature defined as cancer cell invasion in, around, and through nerves, is an indicator of poor prognosis and survival in prostate cancer (PC). Despite widespread recognition of the clinical significance of PNI, the molecular mechanisms are largely unknown. Here, we report that monoamine oxidase A (MAOA) is a clinically and functionally important mediator of PNI in PC. MAOA promotes PNI of PC cells in vitro and tumor innervation in an orthotopic xenograft model. Mechanistically, MAOA activates SEMA3C in a Twist1-dependent transcriptional manner, which in turn stimulates cMET to facilitate PNI via autocrine or paracrine interaction with coactivated PlexinA2 and NRP1. Furthermore, MAOA inhibitor treatment effectively reduces PNI of PC cells in vitro and tumor-infiltrating nerve fiber density along with suppressed xenograft tumor growth and progression in mice. Collectively, these findings characterize the contribution of MAOA to the pathogenesis of PNI and provide a rationale for using MAOA inhibitors as a targeted treatment for PNI in PC.
Collapse
Affiliation(s)
- Lijuan Yin
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jingjing Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA.,Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Tianjie Pu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Qinlong Li
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|